
 1

Getting Started with LPG

LPG (a.k.a. JikesPG) is a LR parser generator that you can use to build automatically
lexers and parsers for LALR(k) languages. Lexing and parsing actions may be written in
almost any programming language including Java, C and C++ , although here we only
consider actions and parsers written in Java. The LPG system is much like LEX and
YACC in its use of LR parsing, but it is also like ANTLR in its overall structure and its
approach to lexical analysis. We hope that LPG will be a highly usable and efficient
replacement for ANTLR, CUP and similar systems.

Constructing a parser is generally quite a complicated process in which many detailed
issues must be addressed. Of course, a parser generator, such as LPG, is intended to
simplify and partially automate the task, but the workings and use of generator itself are
difficult to explain and understand. In this document we explain the use of LPG using an
example lexer and parser for a little expression grammar called LEG. We do not explain
in detail the various options for LPG , the various files it generates and its runtime.
Understanding will come, we hope, from the examples.

The Little Expression Grammar (LEG) Example
Suppose you want to build a lexer and parser for a simple C-like expression language,
which we will call LEG. The LEG language is specified by a grammar written in
standard BNF. With LPG you specify the grammar rules and associated processing in a
text file with a “.g” extension, although any extension may be used (an alternative is
“.lpg”). You also specify the lexical analyzer in a similar way.

We have included the LEG example in this distribution. You may want to compile and
run it before delving into the details. We’ll do this from the command line.

Running the LEG Example
First run LPG on the lexer grammar file, leglexer.g . Here is the command line output
(but we have suppressed some of the options and statistics).

C:\legexample\leg>lpg leglexer.g

Options in effect for leglexer.g:
 ACTION-BLOCK=("LegLexer.java","/.","./")
 FILE-PREFIX="LegLexer"
 LALR=5 NOLIST PACKAGE="leg" PARSE-TABLE="lpg.*" PREFIX="Char_"
 PRS-FILE="LegLexerprs.java" SYM-FILE="LegLexersym.java"
 TABLE=JAVA

leglexer.g is LALR(5).

Number of Terminals: 73
Number of Nonterminals: 28

 2

Number of Productions: 170
Number of Items: 378
Number of States: 30
Number of look-ahead states: 18
Number of Shift actions: 80
Number of Goto actions: 14
Number of Shift/Reduce actions: 427
Number of Goto/Reduce actions: 50
Number of Reduce actions: 1068
Number of Shift-Reduce conflicts: 0
Number of Reduce-Reduce conflicts: 0

. . .

Based on the options given in leglexer.g grammar file, LPG has generated three Java
files. The names of these files are prefixed with the string given by the “file-prefix”
option, which here is LegLexer. The “sym-file”, LegLexersym.java, is an interface
defining the lexer’s terminal symbols (characters and character ranges). The “prs-file”,
LegLexerprs.java, is a class defining the tables the LPG parser will use. The file
LegLexer.java, specified in the “action-block” option, is the class defining the actions
taken when rules are reduced. For a lexer, the actions generate the tokens to be parsed.
The actions are Java statements enclosed with the brackets “/.” and “./”.

The “package” option identifies the Java package for Leg (which is leg) and this package
declaration is placed in every Java file LPG generates. The “prs-table” option, “lpg.*”
tells LPG that in the “prs-file” this package (here the LPG runtime) must be imported.
The “table” option indicates programming language that the parse tables are to be
accessed from (in our example it is Java).

Finally, there are various statistics about the grammar and the tables used to parse it. In
particular, notice that this grammar is confirmed to be LALR(5). We discuss below the
important “template” and “export-terminals” options.

Next run LPG on the Leg parser, legparser.g. The (somewhat modified) output is:

C:\legexample\leg>lpg legparser.g

Options in effect for legparser.g:

 ACTION-BLOCK=("LegParser.java","/.","./")
 BACKTRACK LALR=1 TABLE=JAVA
 SERIALIZE
 DAT-FILE="LegParserdcl.data" DAT-DIRECTORY="../bin"
 FILE-PREFIX="LegParser"
 PACKAGE="leg" PARSE-TABLE="lpg.*"
 PRS-FILE="LegParserprs.java"
 SYM-FILE="LegParsersym.java"

*** Shift/reduce conflict on "LEFT_BRACKET" with rule 21

legparser.g is not LALR(1).

 3

Number of Terminals: 21
Number of Nonterminals: 9
Number of Productions: 23
Number of Shift-Reduce conflicts: 1
Number of Reduce-Reduce conflicts: 0

For the Leg parser the same Java “prs”, “sym” and “action” files are produced (but using
the “file prefix” LegParser). The “backtrack” option signals that the LPG backtracking
parser will try all possible alternatives when there are conflicts. The “serialize” option
tells LPG to serialize the parse tables to the “dat-file” (with extension “data”) instead of
including them as initialization in the “prs-file”. The Leg parser data file is
LegParserdcl.data and LPG places it in the “dat-directory”, which is our bin directory,
so it can be accessed on the class path.

 The Leg parser grammar has a conflict that cannot be resolved using just one token of
look-ahead. In a certain state the parser cannot determine whether to shift or reduce the
“[“. The backtracking parser will try both possibilities in turn and choose the first one
that allows the parse to advance through the rest of the input or signal an error if neither
does.

Next compile the Leg example Java files which will place the class and data files in the
bin directory.

C:\legexample\leg>javac -d ../bin
 -classpath ../bin;../bin/lpg.jar *.java

Finally, execute the main program on the input file test.leg.

C:\legexample\leg>type test.leg
(1) = expression;
(2) if (expression) then
(3) expression = 1;
(4) else expression = 0;
(5) end if;
 . . .
(10) while expression do
(11) whi le expression do
(12) if expression then
(13) break;
(14) else
(15) end if;

C:\legexample\leg>java -cp ../bin;../bin/lpg.jar leg.Main test.leg
test.leg:1:2:1:2: "variable"inserted before this token
test.leg:11:1:11:6: "WHILE"formed from merged tokens
test.leg:11:1:28:42: "END WHILE ;"inserted to complete scope
test.leg:10:1:28:42: "END WHILE ;"inserted to complete scope

The test file has syntax errors so we see the error messages produced by the diagnosing
parser. There are options for dumping the tokens and showing the AST defined in the
Option class which you can explore. You may want to try test2.leg, a correct example,
and dump its AST. The command (and part of the output) is:

 4

C:\legexample\leg>java -cp ../bin;../bin/lpg.jar leg.Main -da test2.leg
****Begin Parse
#1 (Block): #4 #15 #23 #24 #26 #33 #38 #43 #48 #51 #54 #58 #69
#4 (AssignmentStatement): #2 = #3
#2 (VariableExpression): variable
#3 (VariableExpression): expression
#15 (IfStatement): if #6 then #7 else #11 end if ;
#6 (ParenthesizedExpression): (#5)
#5 (VariableExpression): expression
#7 (Block): #10
#10 (AssignmentStatement): #8 = #9
#8 (VariableExpression): expression
#9 (ConstantExpression): 1
#11 (Block): #14
#14 (AssignmentStatement): #12 = #13
#12 (VariableExpression): expression
#13 (ConstantExpression): 0
#23 (WhileStatement): while #16 17 end while ;
#16 (VariableExpression): expression
. . .

The LEG Parser

Grammar Rules
The grammar file has several “sections”, the most important of which is designated
“$Rules”. Here is the $Rules section for LEG:

$Rules
 block ::= $empty
 block ::= block statement
 statement ::= variable = expression ;
 statement ::= IF expression THEN block ELSE block END IF ;
 statement ::= WHILE expression DO block END WHILE ;
 statement ::= BREAK ;
 statement ::= array_declaration ;
 array_declaration ::= IDENTIFIER []
 array_declaration ::= array_declaration []
 expression ::= term
 expression ::= expression + term
 expression ::= expression - term
 term ::= factor
 term ::= term / factor
 term ::= term * factor
 factor ::= variable
 factor ::= CONSTANT
 factor ::= (expression)
 variable ::= IDENTIFIER
 variable ::= variable [expression]
$End

 5

The rules contain “terminal” and “nonterminal” symbols. The symbols “block” and
“factor” are examples of nonterminal symbols, while “WHILE” and “;” are terminal
symbols. The symbol “$empty” is special; it means the rule is an empty rule – i.e., has
no right hand side. Here each rule is stated separately. But you can use alternatives – for
example:

 term ::= factor
 | term / factor
 | term * factor

There is no special notation for grouping, e.g. “(A|B|C)”, repetition, e.g. “*” or “+”,
or optional choice, e.g., “?”. However, these conveniences can be easily expressed with
additional rules.

Terminal and Non-terminal Symbols

In LPG symbols (terminal and non-terminal) are represented internally as integers.
Terminal symbols represent “tokens” that are produced by scanning or lexically
analyzing an input text source. (How tokens may be produced by a LPG generated parser
is described below). Non-terminal symbols, such as “expression”, represent syntactic
classes. A special file, called the “sym” file will be generated by LPG that contains the
mapping of terminal symbols to integers. Here is what the Java LEG sym file looks like:

package leg;

interface LegParsersym {
 public final static int
 TK_ASSIGN = 13,
 TK_LEFT_BRACKET = 7,
 TK_RIGHT_BRACKET = 9,
 TK_SEMICOLON = 1,
 TK_PLUS = 2,
 TK_MINUS = 3,
 TK_DIVIDE = 10,
 TK_STAR = 11,
 TK_LEFT_PARENTHESIS = 14,
 TK_RIGHT_PARENTHESIS = 15,
 TK_IDENTIFIER = 4,
 TK_CONSTANT = 16,
 TK_EOF_SYMBOL = 17,
 TK_IF = 5,
 TK_THEN = 18,
 TK_ELSE = 19,
 TK_END = 12,
 TK_WHILE = 6,
 TK_DO = 20,
 TK_BREAK = 8,
 TK_ERROR_SYMBOL = 21,

 NUM_TOKENS = 21;
}

 6

First notice that LPG has generated the Java interface “LegParsersym” declared in the
package “leg”. Two LPG options are needed to make this happen, the package option
and the file prefix option. These are specified at the beginning of the grammar file as
follows:

%options package=leg
%options file_prefix=LegParser
%options prefix=TK_

Since this is the “sym” file, the interface name and the file name are the same:
“LegParsersym”. Also shown here is the prefix option, used to prefix terminal symbol
names as explained below.

Next note that the symbols for special characters, such as “;” have been changed and all
symbols have been given the prefix “TK_”. You want to name the symbols in such a
way that they can be used as Java program identifiers, so special characters and Java
reserved words, such as “break”, must not be used to name symbols. LPG gives you
two ways to avoid trouble when naming terminal symbols. First, there is the prefix
option that lets you define a prefix (also a suffix) for the symbols that appear in the sym
file. Second, in the section in which terminal symbols are declared, “$Terminals” (or in
another section called “$Alias”) you can associate a terminal symbol name with another
name or sequence of characters. For example, the $Terminal section of the LEG
grammar is:

$Terminals
 SEMICOLON ::= ;
 ASSIGN ::= =
 LEFT_BRACKET ::= [
 RIGHT_BRACKET ::=]
 PLUS ::= +
 MINUS ::= -
 DIVIDE ::= /
 STAR ::= *
 LEFT_PARENTHESIS ::= (
 RIGHT_PARENTHESIS ::=)
 IDENTIFIER
 CONSTANT
 IF THEN ELSE END WHILE DO BREAK
 ERROR_SYMBOL
 EOF_SYMBOL
$End

Hopefully it is clear, for example, that “SEMICOLON” is the terminal symbol and “;” is
the alias. In a rule the alias symbol can be used in place of the terminal symbol. Even
non-terminal symbols can have aliases. You can have more than one alias for a given
symbol. You could put additional terminal symbol aliases (and non-terminal symbol
aliases) in the $Alias section as follows:

$Alias

 7

 eostmt ::= SEMICOLON
 identifier ::= IDENTIFIER
 expr ::= expression
$End

(By the way, it probably helps readability to enclose special characters with single
quotes, e.g., writing ‘[‘ instead of the square bracket alone).

Rule Actions
A LPG parser recognizes a syntactic class (represented by a non-terminal symbol) by
parsing the text for the right-hand side (rhs) of a rule defining that class and “reducing”
the rhs to the left-hand side (lhs) of that rule. The user can specify a “rule action”
(sometimes called a “semantic” or “syntactic” action) to be executed whenever the rule is
reduced. Rule actions typically produce an “abstract” representation of the source syntax.
Often this abstract syntax is expressed as a tree and so is called an “Abstract Syntax
Tree” or AST for short. In fact, the AST can be whatever you want it to be, and, indeed,
it can be completely absent. If you use LPG for a parser that does lexical analysis, as we
shall see below, your parser’s AST will not be a tree but rather a list of tokens . Here is
an example of how the AST is specified in the LEG grammar:

 block ::= $empty
 /.$BeginAction
 AstBlock block = new AstBlock();
 $setSym1(block);
 $EndAction
 ./

 block ::= block statement
 /.$BeginAction
 AstBlock block = (AstBlock) $getSym(1);
 block.statement.add($getSym(2));
 $EndAction
 ./

 statement ::= variable = expression ;
 /.$BeginAction

AstAssignmentStatement assignment =
 new AstAssignmentStatement();
assignment.lhs = $getSym(1);

 assignment.equal = $getToken(2);
 assignment.rhs = $getSym(3);
 assignment.semicolon = $getToken(4);

 $setSym1(assignment);
 $EndAction
 ./

A “block” consists of a sequence of “statements” (possibly empty) and its AST consists
essentially of a list of “statement” AST’s. Notice that “block” is the “Start” symbol of
the LEG grammar, so what the parser returns (assuming no errors) is the AST for the
input “block”. You may specify the start symbol in a “$Start” section or as the lhs of the

 8

first rule in the $Rule section. Also illustrated above is the AST generation for the LEG
assignment statement. The class “AstAssignmentStatement” extends the “Ast” class,
just as “AstBlock” does.

When specifying a rule action, you need to separate its text from the text of the rule. This
is done with a pair of delimiters you are free to choose (well almost). In the LEG
example the action delimiters are “/.” And “./”. These delimiters are specified using the
“action” option. For the LEG parser this option is:

 %options action=("LegParser.java", "/.", "./")

In addition to the action delimiters, the “action” option specifies the file containing the
rule action method (procedure or function) that the code for each action will be associated
with or folded into. For the LEG parser, this file defines the Java class, LegParser, which
implements the rule action method. This class and its specification is somewhat
complicated and will be described below.

To help specify the AST generating actions, we use two macros, $BeginAction and
$EndAction. These are defined in a special section called $Define. Here is the $Define
section for the LEG example:

 $Header
 /.
 //
 // Rule $rule_number: $rule_text
 //./

 $DefaultAction
 /. $Header
 case $rule_number: ./

 $BeginAction
 /.$DefaultAction
 {./

 $EndAction
 /. }
 break; ./

 $NoAction
 /. $Header
 case $rule_number:
 break; ./

 $BeginActions
 /.
 public void ruleAction(int ruleNumber)
 {
 switch(ruleNumber)
 {
 ./

 9

 $EndActions
 /.
 default:
 break;
 }
 return;
 }

 $setSym1 /.btParser.setSym1./
 $getSym /.(Ast)btParser.getSym./
 $getToken /.btParser.getToken./

 ./

The last two macros, $BeginActions and $EndActions, are used to define the beginning
and end of the ruleAction method. The method consists of a switch statement with a
case for each rule with actions. The $BeginActions and $EndActions macros essentially
bracket the action with a case alternative. The $Header macro provides the rule
number and text to document the action in the generated Java file. The use of the symbol
access macros, $setSym1, $getSym, and $getToken, is explained below. There are
also several LPG predefined macros that facilitate references to rule properties. In this
example we see the macros $rule_number and $rule_text.

Here is the Java code LPG generates for the actions shown above:

 public void ruleAction(int ruleNumber)
 {
 switch(ruleNumber)
 {
 . . .

 //
 // Rule 3: block ::=
 //
 case 3:
 {
 AstBlock block = new AstBlock();
 btParser.setSym1(block);
 }
 break;

 //
 // Rule 4: block ::= block statement
 //
 case 4:
 {
 AstBlock block = (AstBlock) (Ast)btParser.getSym(1);
 block.statement.add((Ast)btParser.getSym(2));
 }
 break;

 //
 // Rule 5: statement ::= variable ASSIGN expression SEMICOLON
 //

 10

 case 5:
 {
 AstAssignmentStatement assignment = new
 AstAssignmentStatement();
 assignment.lhs = (Ast)btParser.getSym(1);
 assignment.equal = btParser.getToken(2);
 assignment.rhs = (Ast)btParser.getSym(3);
 assignment.semicolon = btParser.getToken(4);

 btParser.setSym1(assignment);
 }
 break;
 . . .

 default:
 break;
 }
 return;
 }

When the parser recognizes the right hand side of a rule, the parser calls the rule action
method giving it the rule number as argument.

While parsing the input tokens, LPG maintains two stacks: a “symbol” stack, for non-
terminal symbol AST, and a “token” stack for the tokens not yet fully reduced. A parser
“shift” action pushes the current token onto the token stack, while a rule reduce action
effectively replaces the AST generated for the rule’s right hand side non-terminals with
the AST for the left hand side (i.e., the rule itself). The LPG parser (in our example
“btParser”) has methods to get symbols and tokens (getSym and getToken) from these
stacks and to set the symbol stack with the generated AST (setSym1). The macros,
$setSym1, $getSym, and $getToken, enable you to use these methods without
identifying the specific LPG parser being used (there are actually three of them).

The symbols in the right hand side of a rule are numbered from left to right starting with
one. If the ith symbol is a terminal symbol, its token is accessed by getToken(i). If the
ith symbol is a non-terminal symbol, its AST is accessed as getSym(i) and its
leftmost token getToken(i). To set the AST for the rule, use the method
setSym1(astObject). The getToken method returns an int value while the getSym1
method returns an instance of Object. The argument of setSym1 is also an instance of
Object. This generality is necessary since the AST class cannot be predefined (when you
get a symbol, you may need to cast it to your AST type).

The Action Class
The rule actions described above are contained in an “action class”, which in the LEG
example is called LegParser. The purpose of this class is to implement the LPG
RuleAction interface (which specifies the ruleAction method) and a parser method that
invokes an LPG parser on the token stream. The rule actions may be implemented by a
single method (as in the LEG example) or by an array of action methods (one for each
rule) defined in inner classes and accessed through an array of instances (we’ll not

 11

discuss this approach here). The action class is (incompletely) specified in a $Headers
section. Here is the LEG action class:

$Headers
 /.
 package leg;

 import lpg.*;
 import java.util.ArrayList;

 public class LegParser implements RuleAction
 {
 LexStream prsStream;
 ParseTable prs;
 BacktrackingParser btParser;

 public LegParser(LexStream prsStream)
 {
 this.prsStream = prsStream;
 this.prs = new LegParserprs();
 }

 public Ast parser()
 {
 try
 {
 btParser = new BacktrackingParser(
 (TokenStream)prsStream, prs,
 (RuleAction)this);
 }
 catch (BadParseSymFileException e)
 {
 prsStream.reportError(0,
 "BadParseSymFileException");
 return null;
 }
 try
 {
 return (Ast) btParser.parse();
 }
 catch (BadParseException e)
 {
 prsStream.reset(e.error_token);
 DiagnoseParser diagnoseParser = new
 DiagnoseParser(prsStream, prs);
 diagnoseParser.diagnose(e.error_token);
 }
 return null;
 }
 ./

$End

The LegParser class implements the LPG interface RuleAction whose ruleAction
method is called by the LPG parsers. The specification of this class in the $Headers

 12

section is incomplete since the body of the ruleAction method is woven throughout the
rules. As shown above, two macros, $BeginActions and $EndActions, are defined to
delimit the start and end of this method. The $BeginActions macro is called at the start of
the $Rules section and the $EndActions macro is placed in the $Trailers section (within
which the LegParser class is completed).

The LegParser class has three attributes needed for parsing. The token stream (here an
instance of the class LexStream), the parse table class (containing the tables and
constants needed for parsing the token stream) and the LPG parser itself (in this case the
LPG BacktrackingParser). The LegParser constructor is passed the token stream and
it creates an instance of the LPG generated parse table class, LegParserprs, that contains
the various parse tables, constants and access methods, thereby implementing the LPG
ParseTable interface. The method parser creates the backtracking parser and invokes it.
If the parser encounters a syntax error, it throws a BadParseException. The parser
method catches this exception and calls the LPG DiagnoseParser to find all syntax errors
in the input. If the diagnosing parser is called, no actions are executed and hence no AST
is generated.

The Token Stream
The input to the LPG parser is an array (or array list) of tokens. The token array is
produced by scanning and tokenizing an input array of characters. The LPG parsers
assume that the token array contains all of the tokens. This facilitates look-ahead
determination and syntactic error recovery. You can modify the deterministic parser to
get tokens on demand, but we do not recommend doing that. To the LPG parser a token
is simply an index into the token array. As for the token itself, there is only one attribute
that is relevant to parsing: the token kind. The kind is the identity of the token as a
terminal symbol. LPG associates with each terminal symbol its token kind, which is
written out to the “sym” interface file (in our example, LegParsersym.java).

Typically (though not always) you will create a token class containing the attributes you
need for parsing and semantic analysis. In addition to the “kind” attribute, token location
attributes, which specify input source and placement, are often necessary as well,
especially for error reporting. In the LEG example the Token class is written as follows:

class Token {
 int kind = 0;
 int startOffset = 0;
 int endOffset = 0;

 Token() {}
 Token(int startOffset, int endOffset, int kind)
 {
 this.startOffset = startOffset;
 this.endOffset = endOffset;
 this.kind = kind;
 }
 public int getKind()
 {
 return kind;

 13

 }
 public int getStartOffset()
 {
 return startOffset;
 }
 public int getEndOffset()
 {
 return endOffset;
 }
 public String getValue(char[] inputChars)
 {
 int len = endOffset - startOffset + 1;
 return new String(inputChars, startOffset, len);
 }
 ...
}

There are only three attributes in this class: the kind, the starting offset in the file (or
character array) and the ending offset. You might want to include a file attribute as well.
We did not do so because we think it better to place such information in a “token stream”
class. The LEG token stream class is called LexStream. It implements the LPG Java
interface, TokenStream, that specifies the operations on the token array the parser
requires, such as getToken(), getKind(i), getNext(), getPrevious(), etc. In addition ,
LexStream has methods to create and build the token array list and access token
attributes through a token array index. Here is part of the LexStream declaration:

class LexStream implements TokenStream
{
 private int index = 0;
 private int len = 0;
 List tokens;
 CharStream charStream;

 LexStream(CharStream charStream)
 {
 this.charStream = charStream;
 tokens = new ArrayList();
 addBadToken();
 }
 void addToken(Token token)
 {
 tokens.add(token);
 }
 . . .
 String getTokenText(int i)
 {
 Token t = (Token)tokens.get(i);
 return t.getValue(charStream.inputChars);
 }
 . . .
 int getTokenLength(int i)
 {
 Token t = (Token)tokens.get(i);
 return t.getEndOffset() - t.getStartOffset() + 1;
 }

 14

 int getLineNumberOfTokenAt(int i)
 {
 Token t = (Token)tokens.get(i);
 return charStream.getLineNumberOfCharAt(t.getEndOffset());
 }
 int getColumnOfTokenAt(int i)
 {
 Token t = (Token)tokens.get(i);
 return charStream.getColumnOfCharAt(t.getStartOffset());
 }
 Token getTokenAt(int i) { return (Token)tokens.get(i); }
 . . .
}

This class has methods for adding a token to the array list and for getting various token
attributes, such as its text, length and line and column position in the character stream.

Thus, we need another class, a character stream class, that accesses the array of
characters from which the tokens are drawn. Before discussing this class, you should
note that these stream classes are specified by the user – they are not part of the LPG
runtime. LPG has two interfaces the user must implement: the TokenStream interface
and the RuleAction interface. In the future we may provide the LPG runtime with token
and character stream implementations as well as a factory to create instances.

The Character Stream
The array of tokens is generated by scanning (or lexing) the input character stream. The
approach taken here is to read the entire input file into a character array and pass it to a
scanner class (which we call a character stream). Traditionally, scanners for LR parsers
tokenize the input using either hand written methods or a table driven deterministic finite
automaton (DFA) . For LL parser generator systems the scanner is sometimes specified
with an LL grammar so that parsing and lexing become indistinguishable – the parser
terminal symbols are tokens while the lexer’s are characters. Like these LL systems,
LPG allows you to specify your lexer with an LR grammar. You write your lexer in
much the same way as you write your parser – a lexer is just a parser with characters as
tokens. The AST produced by such a lexer-parser is the token array list for your parser.
The LEG character stream class is called CharStream. Here is a sample of its contents:

class CharStream implements TokenStream, LegLexersym,
 LegLexerTokenKindMap, ParseErrorCodes
{
 private int index = -1;
 private int len = 0;
 char[] inputChars;
 int line = -1;
 int[] lineOffsets;
 int newLength = 0;
 final static int INITIAL = 4000;
 Option option;

 CharStream() {}

 15

 CharStream(Option option)
 {
 this.option = option;
 inputChars = option.getInputChars();
 len = inputChars.length;
 index = -1;
 inputChars[len - 2] = '\n';
 inputChars[len - 1] = '\uffff';
 setLineOffset(-1);
 }

 . . .

 // Methods that implement the TokenStream Interface

 public int getToken()
 {
 index = next(index);
 char c = inputChars[index];
 if (c > 32) { return index; }
 if (c == 10) { setLineOffset(index); return index; }
 for (;;index = next(index))
 {
 c = inputChars[next(index)];
 if (c > 32 || c == 10) break;
 }
 return index;
 }

 public int getKind(int i)
 {
 char c = inputChars[i];

 if (c < 128) return tokenKind[c];
 else if (c == '\uffff') return Char_EOF;
 else return Char_AfterASCII;
 }

 . . .
}
The CharStream class implements several interfaces, most of which simply give access
to constants. Like the LexStream class, CharStream implements the LPG
TokenStream interface. This is because an LPG parser does the lexical analysis. You
can see that CharStream has required TokenStream methods, such as getToken() and
getKind(i). Note also that a token is just an index into the character array inputChars.

The LegLexerSym interface provides the values for the lexical tokens (actually
characters and character ranges) that are scanned. Here is a sample of that interface:

interface LegLexersym {
 public final static int
 Char_CtlCharNotNL = 1,
 Char_Blank = 2,
 Char_NL = 3,

 16

 Char_a = 17,
 Char_b = 36,
 Char_c = 37,
 . . .
 Char_0 = 26,
 Char_1 = 27,
 Char_2 = 28,
 Char_3 = 29,
 . . .
 Char_Plus = 7,
 Char_Minus = 8,
 Char_Slash = 5,
 Char_Star = 6,
 . . .
 Char_AfterASCII = 51,
 Char_EOF = 73,
 . . .
}

Notice that all control characters (except line feed) are represented by a single token as
are all characters above the ASCII range. Again, the int values for the tokens are
assigned by LPG in a way that optimizes the size of the parse tables.

The LegLexerTokenKindMap interface defines the mapping of character values to
token values. A small sample shows how this is done:

interface LegLexerTokenKindMap extends LegLexersym
{
 public final static int tokenKind[] =
 {
 . . .
 Char_CtlCharNotNL,
 Char_CtlCharNotNL,
 Char_NL,
 Char_CtlCharNotNL,
 Char_CtlCharNotNL,
 . . .
 Char_Blank,
 Char_Exclaimation,
 . . .
 Char_z,
 Char_LeftBrace,
 Char_VerticalBar,
 Char_RightBrace,
 Char_Tilde,
 Char_AfterASCII
 };

The map is an array indexed by the first 128 ASCII characters. The getKind(i) method
uses this array to classify the character as a token for the LPG parser.

The CharStream class needs to handle lexical errors. It does this by implementing the
reportError method specified in the LPG TokenStream interface. LPG lexers and
parsers report errors (lexical or syntactical) via the reportError method. The

 17

ParseErrorCodes interface enumerates the various kinds of errors and descriptive text
so that an appropriate message may be printed.

The LEG Lexer
The LEG lexer is actually an LPG parser much like the LEG parser but with some
important differences. First, it uses a CharStream for character input and produces a
LexStream containing an array list of lexed tokens as output. The LEG lexer uses a
slightly modified LPG parser because it is difficult to scan more than one token at a time
(especially key words which can be prefixes of identifiers) and because the desired error
recovery for a lexer is simply to skip (and report) unrecognized characters. We have a
special LPG parser for lexical analysis, the LexParser.

The LEG lexer has grammar rules for specifying tokens for the LEG parser. You should
peruse leglexer.g in detail, but here we illustrate some of the rules for identifiers and
keywords.

Identifier ::= Ident
 /.$DefaultAction
 makeToken($getToken(1), $getSym(1), $_IDENTIFIER);
 $EndAction
 ./

Ident ::= Letter
 /.$DefaultAction
 $setSym1($getToken(1));
 $EndAction
 ./
 | Ident Letter
 /.$DefaultAction
 $setSym1($getToken(2));
 $EndAction
 ./
 | Ident Digit
 /.$DefaultAction
 $setSym1($getToken(2));
 $EndAction
 ./

ReservedWord ::= b r e a k
 /.$DefaultAction
 keyWord($rule_size, $_BREAK);
 $EndAction
 ./
 | d o
 /.$DefaultAction
 keyWord($rule_size, $_DO);
 $EndAction
 ./

 . . .

 18

Here are the two methods, makeToken and keyWord, used in these rules:

 void makeToken(int startOffset, int endOffset, int kind)
 {
 Token t = new Token(startOffset, endOffset, kind);
 $prs_stream.addToken(t);
 printValue(t);
 }

 void keyWord(int size, int kind)
 {
 Token t = new Token($getToken(1), $getToken(size), kind);
 t.setStartOffset($getToken(1));
 $prs_stream.addToken(t);
 printValue(t);
 }

Both methods create a token (using the starting and ending offsets and kind) and add it to
the LexStream’s tokens list (note that the token stream is named by the macro
$prs_stream). (The printValue method prints out the value of the token under a
debugging option.)

The rules for Identifier and ReservedWord illustrate how an LPG lexer uses the “sym”
stack. In the LPG LexParser the “sym” stack holds integers, not Objects and no “AST”
is defined or returned. The integer our actions place on the sym stack (using the method
setSym1(i)) is the location of the rightmost character reduced to that left hand side.
Thus, invoking getSym(i) in a rule action retrieves the index in the character stream of
the rightmost character scanned for that non-terminal symbol. You may recall that
invoking getToken(i) on a non-terminal symbol obtains the index of the leftmost
character scanned for that symbol. The right hand side of the Identifier rule is the single
non-terminal Ident. Its start offset is given by $getToken(1) and its end offset by
$getSym(1).

The same is done for the reserved words. However, in this case, the right had side
consists in spelling out the letters of the word (whose characters are just tokens for this
lexer). Although it is easy enough to get the starting offset of the reserved word, we need
some help from LPG to get the ending offset. LPG has a predefined macro, $rulesize,
that gives the size (or length) of the right hand side of the current rule (the one in whose
action block the macro is used). Thus, $getToken($rulesize) gets the index of the last
terminal symbol in a rule, which, in this example, is the end offset of the reserved word.

It is important also to understand how we obtain the token kind. The LEG parser needs
the token kind in order to parse the token stream. We could get access to the token kind
in the following way. We run LPG on the LEG parser grammar which defines all the
terminal symbols – IDENTIFIER, PLUS, BREAK, etc. – and make available to the LEG
lexer the “sym” interface, LegParsersym, which contains all these symbols prefixed with
“TK_” with their integer values. Then the lexer actions could name the token kind
directly. For example, the lexer non-terminal symbol “Identifier” represents the parser
terminal symbol “TK_IDENTIFIER”.

 19

While this approach works, it is obviously not desirable since it is not easily maintainable
and very error prone. We have added to LPG an “export/import” capability somewhat
analogous to that found in ANTLR. A grammar file may have a $Export section in
which the terminal symbols to be exported to another grammar are enumerated. In
addition, there is an option “export_terminals” that specifies a “sym” file for the
exported terminals. The LEG lexer exports all of the terminal symbols that will be used
in the LEG parser. The export_terminals option tells LPG to create a Java “sym”
interface for the exported symbols using the specified prefix (if any) and assign values to
the symbol names in the order of appearance in the export section. In the LEG lexer this
option is stated as follows:

%options export_terminals=("LegParsersym.java", "TK_")

The LEG lexer has the following export section,

$Export
 ASSIGN LEFT_BRACKET RIGHT_BRACKET SEMICOLON
 PLUS MINUS DIVIDE STAR
 LEFT_PARENTHESIS RIGHT_PARENTHESIS
 IDENTIFIER CONSTANT EOF_SYMBOL
 IF THEN ELSE END WHILE DO BREAK
 IDENTIFIER
$End

for which the following interface is generated:

interface LegParsersym {
 public final static int
 TK_ASSIGN = 1,
 TK_LEFT_BRACKET = 2,
 TK_RIGHT_BRACKET = 3,
 TK_SEMICOLON = 4,
 TK_MINUS = 6,
 TK_DIVIDE = 7,
 TK_STAR = 8,
 TK_LEFT_PARENTHESIS = 9,
 TK_RIGHT_PARENTHESIS = 10,
 TK_IDENTIFIER = 11,
 TK_CONSTANT = 12,
 TK_EOF_SYMBOL = 13,
 TK_IF = 14,
 TK_THEN = 15,
 TK_ELSE = 16,
 TK_END = 17,
 TK_WHILE = 18,
 TK_DO = 19,
 TK_BREAK = 20,
 TK_IDENTIFIER = 21,

 NUM_TOKENS = 21;

 20

 public final static boolean isValidForParser = false;
}

This is not a sym file the LEG parser can use, because the LPG values for terminal
symbols are determined by the parse table compression algorithm. Thus, there is a
boolean constant isValidForParser to indicate that this sym interface is invalid.

Having names for the exported symbols enables you to assign kinds to the lexed tokens.
Unfortunately, using the prefix (“TK_” for the LEG example) makes the actions less
readable and can lead to errors should this prefix not agree with the one specified in the
parser file. To remedy this situation LPG introduces a macro for each exported symbol.
The form is simply “_<terminal>” and you reference the symbol with “$_<terminal>”.
Thus, $_IDENTIFIER and $_BREAK represent the kind of TK_IDENTIFIER and
TK_BREAK respectively. This makes references to exported names independent of the
prefix.

Just as the LEG lexer exports terminal symbols, the LEG parser imports them. The LEG
parser has the following option to import its terminals from the LEG lexer:

%options import_terminals=LegLexer.g

Notice that the lexer grammar file is indicated, not the symbol file, LegParsersym.java.
LPG reads the imported grammar file and takes all the terminals it exports as its own.
The importing grammar may include these (and other) terminal symbols in a $Terminals
section. However, you should ensure that it specifies the same symbol file and prefix as
the imported grammar file. When LPG generates the parser symbol file using the name
specified in the imported grammar file (LegParsersym.java), it includes the imported
token names (prefixed as specified in the imported file) but with their correct values. The
isValidForParser flag will be set true. The backtracking or deterministic parser
constructor throws the BadParseSymFileException if this flag is false. This guarantees
that the symbol file generated by the parser is used when compiling parser and lexer
together.

When terminal symbols are imported into a grammar file (as, for example, the exported
terminals of LegLexer.g are imported by LegParser.g), LPG effectively includes the
imported grammar file and processes it before processing the importing file. Thus, the
command,

C:\legexample\leg>lpg legparser.g

processes first the lexer and then the parser grammar files.

The lexer’s action class, LegLexer, is somewhat different from the parser’s class,
LegParser. Here is part of the Java declaration:

public class LegLexer implements RuleAction, LegParsersym
{

 21

 CharStream lexStream;
 LexStream prsStream;
 ParseTable prs;
 LexParser lexParser;

 public LegLexer(CharStream lexStream)
 {
 this.lexStream = lexStream;
 this.prsStream = new LexStream(lexStream);
 this.prs = new LegLexerprs();
 this.lexParser = new LexParser((TokenStream)lexStream,
 prs, (RuleAction)this);
 }

 public LexStream lexer()
 {
 lexParser.parseCharacters();
 prsStream.addEofToken(TK_EOF_SYMBOL);
 return prsStream;
 }

. . .

Notice that the constructor requires a CharStream and creates a LexParser passing it a
TokenStream, a ParseTable and a RuleAction. The lexer method, invoked from the
main or driver class, parses the character stream into a LexStream which is returned to
the driver.

Templates
No doubt you noticed that producing a parser or lexer involves specifying quite a bit
more than the symbols, the grammar rules and the rule actions. In addition to various
LPG options, you need a $Define section and a $Header section, both of which are
similar for each parser or lexer you write. To simplify your task LPG offers several
predefined grammar file templates. Using the template option you essentially include
the specified template file at the beginning of your grammar file. These are the presently
available template files for Java written parsers:

• btParserTemplate.g
• btParserTemplateA.g
• dtParserTemplate.g
• dtParserTemplateA.g
• LexerTemplate.g
• LexerTemplateA.g

Here “bt” denotes the backtracking parser and “dt” the deterministic parser. The lexer
template uses the lex parser. The letter “A” suffix indicates an alternative approach to
specifying rule actions. Instead of calling one action method consisting of a select
statement with a case alternative for each rule, an array of action class instances, one for
each rule and containing a single method, is indexed by the rule number and the rule

 22

action for that instance is invoked. LPG defined macros simplify the writing actions that
define a class with an action method and creating an instance of the class in the array of
action instances. In fact, with these templates you write you actions the same way,
regardless whether you use the “select” or the “class instance” style. The alternative
approach does not appear to be as efficient as the standard one. However, for grammars
with many rule actions you may need it since Java places a 64K restriction on compiled
object size.

You can modify these templates to suit the needs of your project.

The LEG lexer uses LexerTemplate.g. This is what that template contains:

-- An LPG Lexer Template Using lpg.jar
--
-- An instance of this template must have a $Export section and the
-- export_terminals option
--
-- Macros that must be defined in an instance of this template
--
-- $package_declaration
-- $import_classes
-- $action_class
-- $lex_stream_class
-- $prs_stream_class
-- $eof_token

%Options escape=$,table=java,margin=8,nobacktrack
%options action=("*.java", "/.", "./")
%options ParseTable=lpg.*

$Notice /.$copyright./

$Define

 $copyright
 /.
 /***
 *
 * COPYRIGHT:
 * (C) COPYRIGHT IBM CORPORATION 2002
 *
 * The source code for this program is not published or otherwise divested of
 * its trade secrets, irrespective of what has been deposited with the U.S.
 * Copyright Office.
 *
 * Source File Name: %W%
 * Version: %I%, %G%
 *
 * Descriptive Name:
 *
 * Function:
 *
 * Change Activity:
 *

 23

 ***/
 ./
--
-- Macros that may be needed in an instance of this template
--
 $setSym1 /.lexParser.setSym1./
 $getSym /.lexParser.getSym./
 $getToken /.lexParser.getToken./
 $lex_stream /.lexStream./
 $prs_stream /.prsStream./

 $Header
 /.
 //
 // Rule $rule_number: $rule_text
 //./

 $DefaultAction
 /. $Header
 case $rule_number:
 { ./

 $BeginAction
 /.$DefaultAction./

 $EndAction
 /.
 }
 break; ./

 --
 -- This macro is used to reset the parser's state stack
 -- after a Token has been reduced.
 $ResetStackAction
 /. $Header
 case $rule_number:
 lexParser.resetStateStack();
 break; ./

 $NoAction
 /. $Header
 case $rule_number:
 break; ./

 $BeginActions
 /.
 public void ruleAction(int ruleNumber)
 {
 switch(ruleNumber)
 {
 ./

 $EndActions
 /.
 default:
 break;
 }

 24

 return;
 }
 ./

$End

$Headers
 /.
 $copyright

 $package_declaration

 $import_classes
 import lpg.*;

 public class $action_class implements RuleAction, $exp_type
 {
 $lex_stream_class lexStream;
 $prs_stream_class prsStream;
 ParseTable prs;
 LexParser lexParser;

 public $action_class($lex_stream_class lexStream)
 {
 this.$lex_stream = lexStream;
 this.prsStream = new $prs_stream_class(lexStream);
 this.prs = new $prs_type();
 this.lexParser = new LexParser((TokenStream)lexStream,
 prs, (RuleAction)this);
 }

 public $prs_stream_class lexer()
 {
 lexParser.parseCharacters();
 prsStream.addEofToken($eof_token);
 return prsStream;
 }

 ./

$End

$Rules
 /.$BeginActions./

$End

$Trailers
 /.
 $EndActions
 }
 ./

$End

 25

The template contains a copyright notice that, thanks to the $Notice section, will be
placed at the head of each file LPG generates. You may wish to edit or remove the
$copyright macro. Notice that $copyright is the first macro invoked in the $Header
section of the template (to ensure that it appears in the action file). If you are not using
templates you may obtain the same effect by including a $Notice section in your
grammar file. This section has zero or more action blocks. Moreover you can have more
than one $Notice section.

In LegLexer.g this template is specified as follows:

%options template=LexerTemplate.g

The result are abbreviated $Define and $Headers sections. In fact, we only need to
define the macros used in the lexer template and specify additional methods for use in
LegLexer actions. Notice, that the various sections can appear in any order.
The LEG parser uses btParserTemplate.g. This is some of what the template contains:

--
-- An LPG Parser Template Using lpg.jar
--
-- In a parser using this template, define the following macros:
-- $package_declaration
-- $import_classes
-- $action_class
-- $prs_stream_class
-- $ast_class
--
%Options escape=$,table=java,margin=8,backtrack
%options action=("*.java", "/.", "./")
%options ParseTable=lpg.*

$Define

 $Header
 . . . (same as the lexer template above)
 --
 -- Macros that may be needed in a parser using this template
 --
 $setSym1 /.btParser.setSym1./
 $getSym /.($ast_class)btParser.getSym./
 $getToken /.btParser.getToken./
 $prs_stream /.prsStream./

$End

$Headers
 /.
 $package_declaration
 $import_classes
 import lpg.*;

 public class $action_class implements RuleAction
 {

 26

 $prs_stream_class prsStream;
 ParseTable prs;
 BacktrackingParser btParser;

 public $action_class($prs_stream_class prsStream)
 {
 . . . (already shown above)
 }

 public $ast_class parser()
 {
 . . . (already shown above)
 }
 ./

$End

. . .
In LegParser.g this template is specified as follows:

%options template=btParserTemplate.g

Using the template simplifies the $Define section and eliminates the $Headers and
$Trailers sections.

Putting the Pieces Together
The LEG example has a number of components. These are:

• The LEG grammar files (LegLexer.g and LegParser.g)
• The LPG template files (LexerTemplate.g and btParserTemplate.g)
• The LPG runtime (lpg.jar)
• The various AST classes (too many to enumerate here)
• The token stream classes (CharStream and LexStream)
• The Token class (Token)
• The Option class (Option)
• The main program (Main class)

The main program puts these parts together by determining the options, reading the input
file, creating the character stream, invoking the lexer and finally invoking the parser.
Here essentially is what it does:

 public static void main(String[] args)
 {
 Option option;
 LegLexer legLexer;
 LegParser legParser;
 CharStream charStream;
 LexStream lexStream;
 Ast root;

 27

 try
 {
 option = new Option(args);
 int rlen = option.readInputChars();
 charStream = new CharStream(option);
 legLexer = new LegLexer(charStream);
 lexStream = legLexer.lexer();
 legParser = new LegParser(lexStream);
 root = legParser.parser();
 return;
 }
 catch (Exception e)
 {
 System.err.println(e.getMessage());
 e.printStackTrace();
 }
 }

We hope that with the LEG example as a model you can build LPG lexers and parsers for
your own applications.

