
GPIO (1.1.0)

GPIO Library
The XMOS GPIO library allows you to access xCORE ports as low-speed GPIO.

Although xCORE ports can be directly accessed via the xC programming language this library allows
more flexible usage. In particular, it allows splitting a multi-pin output/input port to be able to use the
individual pins independently. It also allows accessing ports across separate XMOS tiles or separate XMOS
chips.

Features

• Abstract interface to GPIO functionality of XMOS ports
• Allow control of individual bits of multi-bit ports
• Allow access to ports across tiles

Operating modes

• Multi-bit output for individual access to the pins of a multi-bit output port
• Multi-bit input for individual access to the pins of a multi-bit input port
• Multi-bit input for individual access to the pins of a multi-bit input port allowing the application to

react to events on those pins

Software version and dependencies

This document pertains to version 1.1.0 of this library. It is known to work on version 14.2.3 of the
xTIMEcomposer tools suite, it may work on other versions.

This library depends on the following other libraries:

• lib_xassert (>=3.0.0)

Related application notes

Currently there are none.

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM010422



GPIO (1.1.0)

1 Connecting external signals to multi-bit ports

Multi-bit ports can be connected to independent signals in either an all output configuration (see Figure 2)
or an all input configuration (see Figure 1). This implies two important restrictions:

• Bi-directional signals cannot use this library
• The signals on the same port must go in the same direction

To use bi-directional signals, a dedicated 1-bit hardware port needs to be used.

n-bit
portxCORE device

...

Figure 1: Input configuration

n-bit
portxCORE device

...

Figure 2: Output configuration

1.1 Performance restrictions

This library allows independent access to the pins of mulit-bit ports by multiplexing the port output or
input in software. This means that there are some performance implications, namely:

• The internal buffering, serializing and de-serializing features of the xCORE port are not available.
• The software locking and multiplexing between individual bits of the port limits performance. As

such, toggling pins at speed above 1Mhz, for example, is not achievable (on a 62.5Mhz logical core).
The limit may be lower depending on the other code is running on the core and how the other pins
of the port are being driven.

As such, sharing multi-bit ports is most suitable for slow I/O such as LEDs, buttons and reset lines.

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM010422



GPIO (1.1.0)

2 Usage

2.1 Output GPIO usage

Output GPIO components are instantiated as parallel tasks that run in a par statement. These compo-
nents connect to the hardware ports of the xCORE device. The application can connect via an interface
connection using an array of the output_gpio_if interface type:

output
gpio
task

output
gpio
task

task1task1
output_gpio_if

task2task2

output_gpio_if

Figure 3: Output GPIO task diagram

For example, the following code instantiates an output GPIO component for the first 3 pins of a port and
connects to it:

port p = XS1_PORT_4C;

int main(void) {
output_gpio_if i_gpio[3];
par {
output_gpio(i_gpio, 3, p, null);
task1(i_gpio[0], i_gpio[1]);
task2(i_gpio[2]);

}
return 0;

}

Note that the connection is an array of interfaces, so several tasks can connect to the same component
instance, each controlling different pins of the port.

The application can use the client end of the interface connection to perform GPIO operations e.g.:

void task1(client output_gpio_if gpio1, client output_gpio_if gpio2)
{
...
gpio1.output(1);
gpio2.output(0);
delay_milliseconds(200);
gpio1.output(0);
gpio2.output(1);
...

}

More information on interfaces and tasks can be be found in the XMOS Programming Guide (see XM-

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM010422

http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide
http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide


GPIO (1.1.0)

004440-PC). By default the output GPIO component does not use any logical cores of its own. It is
a distributed task which means it will perform its function on the logical core of the application task
connected to it (provided the application task is on the same tile).

2.2 Input GPIO usage

There are two types of input GPIO component: those that support events and those that do not sup-
port events. In both cases, input GPIO components are instantiated as parallel tasks that run in a par
statement. These components connect to the hardware ports of the xCORE device. The application can
connect via an interface connection using an array of the input_gpio_if interface type:

input
gpio
task

input
gpio
task

task1task1
input_gpio_if

task2task2

input_gpio_if

Figure 4: Input GPIO task diagram

For example, the following code instantiates an input GPIO component for the first 3 pins of a port and
connects to it:

port p = XS1_PORT_4C;

int main(void) {
input_gpio_if i_gpio[3];
par {
input_gpio(i_gpio, 3, p, null);
task1(i_gpio[0], i_gpio[1]);
task2(i_gpio[2]);

}
return 0;

}

Note that the connection is an array of interfaces, so several tasks can connect to the same component
instance, each controlling different pins of the port.

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM010422

http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide
http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide


GPIO (1.1.0)

The application can use the client end of the interface connection to perform GPIO operations e.g.:

void task1(client input_gpio_if gpio1, client input_gpio_if gpio2)
{
...
val1 = gpio1.input();
val2 = gpio2.input();
...
...
val1 = gpio1.input();
val2 = gpio2.input();
...

}

More information on interfaces and tasks can be be found in the XMOS Programming Guide (see XM-
004440-PC). By default the output GPIIO component does not use any logical cores of its own. It is
a distributed task which means it will perform its function on the logical core of the application task
connected to it (provided the application task is on the same tile).

2.3 Using events

The input_gpio_with_events() and input_gpio_1bit_with_events() functions support the event based func-
tions of the input GPIO interface:

port p = XS1_PORT_4C;

int main(void) {
input_gpio_if i_gpio[3];
par {
input_gpio_with_events(i_gpio, 3, p, null);
task1(i_gpio[0], i_gpio[1]);
task2(i_gpio[2]);

}
return 0;

}

In this case the application can request an event on a pin change and then select on the event happening
e.g.:

gpio.event_when_pins_eq(1);
select {
case gpio.event():
// This event was caused by the pin value being 1
...
break;

}

Copyright 2016 XMOS Ltd. 5 www.xmos.com
XM010422

http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide
http://www.xmos.com/doc/XM-004440-PC/latest#programming-guide


GPIO (1.1.0)

2.4 Pin maps

The GPIO tasks all take a pin_map argument. If this is null then the elements of the inteface array will
correspond with the a bit of the port based on the array element index. So the first element of the array
will control bit 0, the second with control bit 1 and so on.

Alternatively an array can be provided mapping array elements to pins. For example, the following will
map the array indices to pins 3, 2 and 7 of the port:

char pin_map[3] = {3, 2, 7};

int main() {
...
par {
output_gpio(i_gpio, 3, p, pin_map);
...

Copyright 2016 XMOS Ltd. 6 www.xmos.com
XM010422



GPIO (1.1.0)

3 Output GPIO API

All gpio functions can be accessed via the gpio.h header:

#include <gpio.h>

You will also have to add lib_gpio to the USED_MODULES field of your application Makefile.

3.1 Output GPIO components

Function output_gpio

Description Task that splits a multi-bit port into several 1-bit GPIO interfaces.
This component allows other tasks to access the individual bits of a multi-bit output
port.

Type [[distributable]]
void
output_gpio(server output_gpio_if i[n],

static const size_t n,
out port p,
char(& ?pin_map)[n])

Parameters i The array of interfaces to connect to other tasks.

n The number of interfaces connected.

p The output port to be split.

pin_map This array maps the connected interfaces to the pin of the port. For
example, if 3 clients are connected to split a 8-bit port and the array
{2,5,3} is supplied. Then bit 2 will go to interface 0, bit 5 to inteface 1
and bit 3 to inteface 2. If null is supplied for this argument then the pin
map is assumed to be {0,1,2...}.

Copyright 2016 XMOS Ltd. 7 www.xmos.com
XM010422



GPIO (1.1.0)

3.2 Output GPIO interface

Type output_gpio_if

Description This interface provides access to a GPIO that can perform output operations only.
All GPIOs are single bit.

Functions
Function output

Description Perform an output on a GPIO.

Type void output(unsigned data)

Parameters data The value to be output. The least significant bit
represents the 1-bit value to be output.

Function output_and_timestamp

Description Perform an output on a GPIO and get a timestamp of when the
output occurs.

Type gpio_time_t output_and_timestamp(unsigned data)

Parameters data The value to be output. The least significant bit
represents the 1-bit value to be output.

Returns The time the value was input. This timestamp is the 16-bit port
timer value. The port timer is driven at the rate of the port
clock.

Copyright 2016 XMOS Ltd. 8 www.xmos.com
XM010422



GPIO (1.1.0)

4 Input GPIO API

4.1 Input GPIO components

Function input_gpio

Description Task that splits a multi-bit input port into several 1-bit GPIO interfaces (no events).
This component allows other tasks to access the individual bits of a multi-bit input
port. It does not support events but is distributable so requires no specific logical
core to run on. If the event_when_pins_eq() function is called then the component
will trap.

Type [[distributable]]
void
input_gpio(server input_gpio_if i[n],

static const size_t n,
in port p,
char(& ?pin_map)[n])

Parameters i The array of interfaces to connect to other tasks.

n The number of interfaces connected.

p The input port to be split.

pin_map This array maps the connected interfaces to the pin of the port. For
example, if 3 clients are connected to split a 8-bit port and the array
{2,5,3} is supplied. Then bit 2 will go to interface 0, bit 5 to inteface 1
and bit 3 to inteface 2. If null is supplied for this argument then the pin
map is assumed to be {0,1,2...}.

Function input_gpio_with_events

Description

Type [[combinable]]
void
input_gpio_with_events(server input_gpio_if i[n],

static const size_t n,
in port p,
char(& ?pin_map)[n])

Copyright 2016 XMOS Ltd. 9 www.xmos.com
XM010422



GPIO (1.1.0)

Function input_gpio_1bit_with_events

Description Convert a 1-bit port to a single 1-bit GPIO interface.
This component allows other tasks to access a 1-bit port as a GPIO interface. It is more
efficient that using input_gpio_with_events() for the restricted case where a 1-bit port
is used.

Type [[combinable]]
void
input_gpio_1bit_with_events(server input_gpio_if i,

in port p)

Parameters i The interface to connect to other tasks.

p The input port.

Copyright 2016 XMOS Ltd. 10 www.xmos.com
XM010422



GPIO (1.1.0)

4.2 Input GPIO interface

Type input_gpio_if

Description This interface provides access to a GPIO that can perform input operations only.
All GPIOs are single bit.

Functions
Function input

Description Perform an input on a GPIO.

Type unsigned input(void)

Returns The value input from the port in the least significant bit. The
rest of the value will be zero extended.

Function input_and_timestamp

Description Perform an input on a GPIO and get a timestamp.

Type unsigned
input_and_timestamp(gpio_time_t &timestamp)

Parameters timestamp This pass-by-reference parameter will be set to
the time the value was input. This timestamp
is the 16-bit port timer value. The port timer is
driven at the rate of the port clock.

Returns The value input from the port in the least significant bit. The
rest of the value will be zero extended.

Function event_when_pins_eq

Description Request an event when the pin is a certain value.
This function will cause a notification to occur when the pins
match the specified value.

Type [[clears_notification]]
void event_when_pins_eq(unsigned val)

Parameters val The least significant bit represents the 1-bit value
to match.

Continued on next page

Copyright 2016 XMOS Ltd. 11 www.xmos.com
XM010422



GPIO (1.1.0)

Type input_gpio_if (continued)

Function event

Description A pin event has occurred.
This notification will occur when a pin event has occurred.
Events can be requested using the event_when_pins_eq()
call.

Type [[notification]]
slave void event(void)

Copyright 2016 XMOS Ltd. 12 www.xmos.com
XM010422



GPIO (1.1.0)

APPENDIX A - Known Issues

No known issues.

Copyright 2016 XMOS Ltd. 13 www.xmos.com
XM010422



GPIO (1.1.0)

APPENDIX B - GPIO library change log

B.1 1.1.0

• CHANGE: Minor documentation clarifications
• CHANGE: Update to dependency (lib_xassert moved to 3.0.0)

B.2 1.0.1

• CHANGE: Update to source code license and copyright

B.3 1.0.0

• Initial version
• Changes to dependencies:

– lib_xassert: Added dependency 2.0.0

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 14 www.xmos.com
XM010422


	GPIO Library
	Connecting external signals to multi-bit ports
	Performance restrictions

	Usage
	Output GPIO usage
	Input GPIO usage
	Using events
	Pin maps

	Output GPIO API
	Output GPIO components
	Output GPIO interface

	Input GPIO API
	Input GPIO components
	Input GPIO interface

	Known Issues
	GPIO library change log
	1.1.0
	1.0.1
	1.0.0


