
I/O timings for xCORE200

IN THIS DOCUMENT

· Basics

· The xCORE200 IO circuitry

· Source-synchronous clocks

· Non source-synchronous clocks

· A worked example: master I2S

· Appendix - Timing components

In this document we show you how to estimate the IO timings for data input and
output by the xCORE200. Most interfaces are slow enough that the timings work
out in any case. Faster interfaces need their timings analysed to ensure operation
under all circumstances.

On reading this document you will see that there are a couple of circumstances
where it will “just work” because the clock timings are so forgiving:

· Application clocks of 15 MHz or slower typically just work

· For data and clock travelling in the same direction (ie, source-synchronous clock-
ing where both output by the xCORE or both input by the xCORE), frequencies
of up to 60 MHz can work (if they work electrically).

Faster clocks may also work, but an analysis is needed to show whether any
programmatic delays are necessary to cover all corners. In particular, some timings
depend on PVT variations (Process, Voltage, and Temperature). An analysis will
ensure that an interface will work under all possible corners, rather than the corners
that were tested.

1 Basics

IO refers to transferring digital data between devices. In this document, we are
concerned by transferring a single bit of data between an xCORE200 device and
some external device. We only consider synchronous IO, that is, we assume that
there is a clock, and the data is transferred synchronous to the clock. The limitation
to just use a single data-line is trivially generalised to multiple data lines, including
data valid lines.

We assume that the data is transferred in a specific direction. That is, there will be
two sides to the data transfer. One side will be outputting the data-bit by driving
the data-net, the other side will be inputting the data-bit by sampling the data-net.
The clock is generated by either side or by a third party. An example is shown in
Figure 1 where the xCORE is using an externally provided clock to sample a data

Publication Date: 2017/2/28 Document Number: XM010258A

XMOS © 2017, All Rights Reserved

I/O timings for xCORE200 2/19

signal, and the external device is generating the clock and the data. We assume
that data is clocked in by the input side on the rising edge of the clock, and that
the data is clocked out by the output side on the falling edge of the clock.

xCORE 200external device

Clock

Data

Clock

Data

Data driven on
falling clock edge

Data sampled on
rising clock edge

PCB traces
Figure 1:

Example:
external

device
transferring

data to
xCORE200

We use the term application clock to refer to the clock signal; this makes it clear
that it is different from other clock signals in the system, such as the Core clock
of the xCORE (typically 500 MHz), the Reference clock of the xCORE (typically 100
MHz), or the PLL input clock (typically 20-25 MHz).

There are three critical times in the analysis of the IO timings; one on the output
side, and two on the input side. Every digital device will specify those times in one
form or another, although terminology may differ:

Timing parameter Brief description

T(CLKtoDATA) Time at which output will change

T(setup) Time at which input must be stable

T(hold) Time until which input must be kept stable

On the output side, T(CLKtoDATA) refers to the time between the clock edge
falling and the data appearing on the data line. T(CLKtoDATA) normally has a
range of possible values that depend on environmental conditions, and we use the
minimum and maximum T(CLKtoDATA) to define the first possible time where the
data could become valid, and the last possible time where the data will be valid. In
between these times, the data may be old, new, or something undefined. Normally,
T(CLKtoDATA) has a positive value, indicating that the data will be valid after the
falling clock edge. A negative value indicates that the data may or will be valid
prior to the falling clock edge.

On the input side, T(setup) refers to the time at which the data must be valid for it
to be clocked in correctly. T(setup) is the length time before the rising application
clock edge. T(hold) refers to the amount of time that the data should stay valid
for, in order for it to be clocked in correctly. T(hold) is the length of time after the
rising edge of the application clock. Normally setup and hold times are positive
numbers. By convention, the setup-time is the time that the data has to be stable
before the clock edge, and the hold time is the time that the data has to remain
stable after the clock edge. We use a negative setup-time to indicate that the data

XM010258A

I/O timings for xCORE200 3/19

only has to be stable after the clock edge; and a negative hold time to indicate
that the data does not have to be held after the clock edge.

Application
Clock

Data

T(CLKtoDATA)

Data validData valid Data valid

T(CLKtoDATA)

Figure 2:

Definition of
clock-to-data

times for
xCORE

outputting
data.

Application
Clock

Data

T(setup) T(hold)

Data Capture Window
Data must be valid during this period

Figure 3:

Definition of
setup and

hold times
for xCORE
inputting

data.

These times are summarised in Figure 2 and Figure 3. The important consideration
is that the external device shall not change in the capture window of the xCORE (for
input on the xCORE), or that the xCORE shall not change the data in the capture
window of the external device (for output by the xCORE)

Note that this assumes an idealised setup - typically clock and data travel across
the PCB, and signals will not abruptly change from a zero to a one but take time to
rise and fall depending on the PCB characteristics. A discussion on this is outside
the scope of this document. In this document we assume an ideal setup where
there are no latencies incurred in PCB traces.

The ideal way to implement data transfer uses a source-synchronous clock. That
is, the device that drives the data also drives the clock. The alternative is that the
clock is driven by the device that inputs the data, or by some third party. Section 4
describes the timings of source-synchronous clocked systems; Section 5 describes
the timings of systems that are not source-synchronous.

XM010258A

I/O timings for xCORE200 4/19

2 The xCORE200 IO circuitry

IO circuitry comprises two sorts of components: logic that is running synchronous
to the core clock, and IO drivers that are asynchronous. These are shown in
Figure 4.

Clock
block

IO domain Core domain

xCORE 200external device

core clock

Input

Output

resynch
roniser

Data
capt

Data
launch

Figure 4:

xCORE200 IO
elements

On the output path, data is launched on a clock-edge, it then has to traverse the
IO drivers, which in turn have to drive the net, until the signal is stable. On the
input side, the external device has to drive the net, it then has to traverse the input
buffer, a resynchroniser which makes the signal synchronous to the core clock,
until it is captured on a clock edge. There are multiple clock blocks available to
deal with different application clocks.

The IO driver logic introduces a delay and uncertainty that is independent of the
core clock, but that does depend on environmental factors such as the core voltage,
IO voltage, temperature, and process variation (“PVT variation”). The timings
depend on the pins that you use; some pins are better matched and/or faster than
others. In the main body of this document we show how to calculate worst case
T(setup), T(hold), and T(CLKtoDATA) for xCORE200 devices. These calculations are
based on three device parameters, the input skew, output skew, and round trip
time. These three device parameters are characterised for xCORE200 devices as
follows:

Parameter Description Min Typ Max Units

T(iskew) Input skew 2.0 ns

T(oskew) Output skew 2.7 ns

T(RTT) Round trip time 3.0 11.3 ns

T(oskew) is defined as measuring the time difference between two signals that are
launched by the xCORE at the same time (Figure 5). T(iskew) is defined as the time
difference between two signals entering the xCORE at the same time (Figure 6).
T(RTT) finally is defined as the time difference between a signal being launched by
the xCORE, travelling through a loopback, and then back in (Figure 7). Note that
all three only relate to the IO domain, not to the core domain.

We will explain later how to use these parameters. The values above are worst-case
values assuming a very small external load of 2 pF. Appendix A lists tighter timings

XM010258A

I/O timings for xCORE200 5/19

Clock
block

IO domain Core domain
xCORE 200

Data
capture

Data1

Data
capture

Data0

Data
resync

Data
resync

core
clock

Figure 5:

Definition of
T(iskew)

Clock
block

IO domain Core domain

xCORE 200

Data
launch

Data1

Data
launch

Data0

Figure 6:

Definition of
T(oskew)

Clock
block

IO domain Core domain
xCORE 200

Data
capture

Data
launch

Data

core
clock

Data
resync

Clock
block

Figure 7:

Definition of
T(RTT)

for these parameters for specific groups of IO pins on specific tiles, and explains
in which situations the minimum and maximum values may be encountered. This
will enable you to make tighter designs, and guide you in using the pins that have
tighter IO timings. Appendix A also gives timings for higher loads.

In the rest of this document we use the above worst-case values for T(iskew),
T(oskew) and T(RTT) to calculate example IO timings.

XM010258A

I/O timings for xCORE200 6/19

3 Source-synchronous clocks

The timings of source-synchronous clocked systems depend on the skew between
pins only. The skew measures the difference in timings for signals that travel in
the same direction, and is up to T(oskew) (2.7 ns) depending on the conditions and
the direction of the signal.

When designing a source-synchronous clocked system, you can use the skew times
listed in this document as a start, but you should add the skew introduced by
external components. All nets (clock and data) should be matched for maximum
performance.

3.1 Input: Calculating setup and hold times for an external
application clock

This section describes how you can compute the setup and hold time for capturing
data relative to an external application clock. This is the situation where both clock
and data originate outside the xCORE200, as shown in Figure 8. The blue arrow is
the timing path of the clock, and the red arrow is the timing path of the data. The
difference between the two is the skew that governs the uncertainty of where the
data will be captured.

IO domain Core domain

xCORE 200external device

Clock

core clock

Data
resync

Clock
block

Data
capt

Data

core clock

Data
resync

Figure 8:

Conceptual
diagram of
input with

source-
synchronous

clock

The table below shows how to compute the setup and hold timings for the
xCORE200 processor. The setup- and hold-time depends on the input skew of
the xCORE200 and core clock frequency of the xCORE. and the table shows setup-
and hold-times for a 500 MHz device, and a formula for the general case. The
general formulas show that T(iskew) is required on both sides of the eye. An extra
T(coreclock) is required at the end of the eye because of resynchronisation. The
whole window is shifted one T(coreclock) to the right because the clock is delayed
by one T(coreclock). The signals are shown in Figure 9.

Parameter 500 MHz For any core-clock

T(setup) 0 ns T(iskew) - T(coreclock)

T(hold) 6 ns T(iskew) + 2 x T(coreclock)

XM010258A

I/O timings for xCORE200 7/19

T(iskew) is at most 2 ns. For specific sets of pins tighter T(iskew) can be found in
Appendix A, reducing the eye size.

For a part that runs on a 500 MHz core clock we show the setup and hold times in
the diagram below, in this example with a 50 MHz application clock. The capture
point is notionally 3 ns after the application clock edge, with 3 ns uncertainty either
way. This is the minimum required eye, and the data may be presented earlier, for
example before the clock edge. This will show a more familiar eye that straddles
the clock edge.

Application
Clock

Input
Data

T(setup) = 0 ns
T(hold) = 6 ns

Data valid

0 ns ns5 10 15 20 25

T(eye) = 6 ns

Figure 9:

Setup and
hold time for

a 50 MHz
external

clock.

We can calculate the eye by adding the setup-time and the hold-time. Given that
T(setup) is T(iskew) - T(coreclock) and that T(hold) is T(iskew) + 2 x T(coreclock),
the eye is T(iskew) - T(coreclock) + T(iskew) + 2 x T(coreclock) = 2 x T(iskew) +
T(coreclock) or at most 6 ns for an arbitrary pair of pins on a 500 MHz xCORE200
part.

3.1.1 Adjusting setup and hold timings

If the setup and hold times are too early or too late to reliably capture the data,
then they can be adjusted in increments of a single core-clock cycle, ie, in steps of
2 ns on a 500 MHz part. This is implemented by one of two mechanisms:

· The data signal can be delayed by up to five core-clock cycles by setting a delay
on the data port. Setting the delay to X on the data port, will subtract X core-
clock cycles from the hold-time, and add X core-clock cycles to the setup-time.
Use the set_pad_delay function.

· An external application clock signal can be delayed by up to 4096 core-clock
cycles by setting the rise-delay and fall-delay on the clock block. Setting the rise-
and fall-delays to X, will add X core-clock cycles to the hold-time, and subtract X
core-clock cycles from the setup-time. The application clock should never be
delayed by more than one application clock cycle. Use the set_clock_fall_delay
and set_clock_rise_delay functions. The delay is limited to half a clock cycle.

Setting the data-delay or the application-clock rise- and fall-delay brings the eye
forwards and backwards; it does not affect the size of the eye.

XM010258A

I/O timings for xCORE200 8/19

An example is shown in Figure 10 for an external clock, where the data is delayed
by one core-clock. As it is delayed in the chip, it needs to be presented on the
pads one core-clock-cycles, or 2 ns, earlier to meet the setup-time. The delay also
reduces the hold-time by 2 ns, effectively bringing the eye forward by 2 ns.

Application
Clock

Input
Data

T(setup) = 2 ns
T(hold) = 4 ns

Data valid

0 ns ns5 10 15 20 25

T(eye) = 6 ns

Data val

Figure 10:

Setup and
hold times

for data given
an external

clock, with a
delay of one

core-clock
cycles in the

data.

It is tempting to think that any device that meets this eye will meet the required
setup- and hold-times. However, given that the eye-window can only be moved in
steps of a single core-clock cycle, it is not possible to meet all setup- and hold-
time combinations that sum to the minimum eye opening. However, any device
that provides an eye-opening that is at least one core clock cycle longer than the
minimum eye, can always have its setup and hold times met.

3.1.2 Maximum clock rates

The application clock should never be faster than half the core-clock-frequency.
For example, if the xCORE is running at 100 MHz (rather than the normal 500 Mhz),
then the application clock is limited to 50 MHz.

The application clock is also limited by the speed at which signals can be supplied
to the xCORE. This is limited by the drive strength, the analogue characteristics
of the pad, and inductances, capacitances, and resistance of the PCB traces. In
addition, the data has to be stable during the eye.

For example, for a specific driver and PCB design, you may have calculated that 10
ns is sufficient for the data-signal to stabilise after an external clock. In that case
the minimum application clock period is 6 ns+10 ns, or 66 MHz (assuming a 500
MHz part, and assuming that the eye can be lined up with the application clock).
This is visualised in Figure 11.

3.1.3 Input window summary

Setup and hold times for an external clock for various data delays are shown below:

XM010258A

I/O timings for xCORE200 9/19

Clock

Data Data valid

0 ns ns5 10 15 20 25

T(eye) = 6 ns

Data validData signals are changed
externally and stabilise

T(ext) = 10 ns

T(minimum appplication clock period) = 16 ns

Figure 11:

Establishing
the minimum

externally
application

clock period.

Core freq Data delay T(setup) T(hold)

500 MHz 2 4 ns 2 ns

1 2 ns 4 ns

0 0 ns 6 ns

Assuming that the data is input on a port p, the second line can be achieved by
calling set_pad_delay(p, 1).

3.2 Output: Calculating clock-to-data times for an internal
application clock

The output timings of an xCORE are straightforward if an internal clock is used.
This is source-synchronous clocking where both data and clock will leave the
synchronous core at the same time, as shown in Figure 12. The blue arrow is the
timing path of the clock, and the red arrow is the timing path of the data. The
difference between the two is the skew that governs the uncertainty of where the
data will be launched.

Clock
block

IO domain Core domain

xCORE 200external device

Clock

Data
launch

Data

Figure 12:

Conceptual
diagram of
output with

source-
synchronous

clock

The only uncertainty is the output skew. The maximum output skew on an arbitrary
pair of pins on an xCORE200 is 2.7 ns, hence the Clock-to-data time is between
-2.7 ns and +2.7 ns. That is, the data may precede the clock by as much as 2.7

XM010258A

I/O timings for xCORE200 10/19

ns; and the data will be stable 2.7 ns after the falling clock edge, as shown in
Figure 13. Better timings can be achieved by picking a tile and bank with a lower
output skew, as listed in Appendix A.

Internal
Application

Clock

Output
Data

T(CLKtoDATA) = 2.7 ns

New data
valid

0 ns ns5 10 15 20 25

Old data
valid

T(CLKtoDATA) = -2.7 ns
max
min

Figure 13:

T(CLKtoDATA)
on an

internally
generated,

source-
synchronous

clock.

If open-drain outputs are used, then an extra 5 ns skew should be accounted for,
in addition to the extra times required by the external resistor to pull the signal
high.

XM010258A

I/O timings for xCORE200 11/19

4 Non source-synchronous clocks

For non source-synchronous clocks, the timings are governed by the round trip
time through an output pin and an input pin. We define the round trip time as the
sum of time taken by a signal to traverse the output path of the xCORE200, and
the time taken by a signal to traverse the input path of the xCORE200. Electrically,
this path will never be taken, but logically it will be taken as one signal (eg, the
clock) will travel out whereas the causally dependent signal (eg, the data) will travel
in. The round trip time is difficult to control tightly. Systems that need to work
under a set of environmental conditions need to be closed so that they work with
both the best case round trip time T(RTTmin), and worst case round trip time,
T(RTTmax).

When designing the system, you can use the round-trip times listed in this docu-
ment as a start, but you should add the time required to drive the input and output
net; taking into account the load on the net.

4.1 Input: Calculating setup and hold times for an internal
application clock

When data is input on an internal application clock, we have to contend with a
round-trip time out of the xCORE and back in, as shown in Figure 14. The blue
arrow shows the timing path of the clock causing the data to be driven by the
device; the red arrow shows the timing path of the clock sampling the data on
the xCORE. The capture window has to be aligned so that it captures the data late
enough to allow for the round trip delay; and the window has to be large enough
to deal with uncertainty of the minimum and the maximum round trip times.

Clock
block

IO domain Core domain

xCORE 200external device

core clock

Data

Clock

Data
resync

Data
capt

Figure 14:

Round trip of
clock and

data

The minimum and maximum round trip times for XCORE200 are 3.0 and 11.3 ns.
(See Appendix A for specific banks that have tighter round trip times.) In addition
we have a delay of between 4 and 5 core clocks for resynchronising the data and
capturing the data. For a 500 MHz part this brings us to a minimum round trip
time of 3.0 + 4 x 2 = 11.0 ns, and a maximum round trip time of 11.3 + 5 x 2 =
21.3 ns . That is an eye of 21.3 - 11.0 = 10.3 ns, that closes 11.0 ns before the
rising clock edge.

The general formulas for setup and hold timings are given in the table below. The
setup time is governed by the maximum round trip time, T(RTTmax), plus the time

XM010258A

I/O timings for xCORE200 12/19

for travelling through the resynchronisers assuming the signal arrives just after
the core-clock edge. The hold time is governed by the minimum round trip time,
T(RTTmin), plus the time for travelling through the synchronisers assuming the
signal arrives just before the core-clock edge. The hold time is negative because
the data can be released before the clock edge:

Parameter 500 MHz For any core-clock

T(setup) 21.3 ns T(RTTmax) + 5 x T(coreclock)

T(hold) -11.0 ns -T(RTTmin) - 4 x T(coreclock)

The resulting eye limits the clock to 97 MHz; at which point the data valid window
occupies the whole clock cycle, and there is no longer any time for the external
device to modify the data. In practice, the external device will have a clock-to-data
window, that will reduce the eye and the maximum frequency.

Application
Clock

Input
Data

T(setup) = 21.3 ns
T(hold) = -11 ns

Data
valid

0 ns ns5 10 15 20 25

T(eye) = 10.3 ns

Figure 15:

Setup and
hold times of
an XCORE on

an internal
application

clock

It is important to note that for clocks in excess of 1/(2 x 21.3 ns) = 23.4 MHz
the eye opening may overlap with the falling edge of the application clock. An
external device with a short clock-to-data timing will modify data in the eye. In
these cases, the data should either be delayed or sampled on the falling edge in
order to move the eye away from the window where the data changes. Figure 15
above has a clock period of 50 ns (20 MHz), if one imagines the falling edge of the
clock shifting closer to the rising edge, then it will end up in the data valid window,
which may cause the device that drives the data to update during the data valid
window.

4.2 Output: Calculating clock-to-data times for an external
application clock

When data is output on an external application clock, we have to contend with a
round-trip time in to the xCORE and back out, as shown in Figure 16. The blue
arrow shows the timing path of the clock causing the data to be driven by the
xCORE; the red arrow shows the timing path of the clock sampling the data inside
the device. The capture window has to be aligned so that it captures the data late
enough to allow for the round trip delay; and the window has to be large enough
to deal with uncertainty of the minimum and the maximum round trip times.

XM010258A

I/O timings for xCORE200 13/19

IO domain Core domain

xCORE 200external device

core clock

ClockClock
gen

Data
resync

Clock
block

Data
launch

Data
capt

Data

Figure 16:

Round trip of
clock and

data

The general formulas for setup and hold timings are as follow, and are illustrated
in Figure 17:

Parameter 500 MHz For any core-clock

T(CLKtoDATAmax) 21.3 ns T(RTTmax) + 5 x T(coreclock)

T(CLKtoDATAmin) 11.0 ns T(RTTmin) + 4 x T(coreclock)

Banks with tighter timings can be found in Appendix A. One can also use a source-
synchronous clock to achieve far superior timings.

External
Application

Clock

Output
Data

new data
valid

0 ns 5 10 15 20 25

Old data
valid

T(CLKtoDATA) = 21.3 nsmax

T(CLKtoDATA) = 11.0 nsmin

Figure 17:

T(CLKtoDATA)
on externally

generated
clocks.

If open-drain outputs are used, then an extra 2 ns margin on the max time should
be accounted for, and 3 ns should be subtracted from the min time; in addition to
any time required by the external resistor to pull the signal high

XM010258A

I/O timings for xCORE200 14/19

5 A worked example: master I2S

Below we show the timings of a worked example: I2S. I2S uses a bit-clock (signal
I2S_BCLK) to clock DAC-data out to the CODEC (signal I2S_DAC), to clock ADC-data
in from the CODEC (signal I2S_ADC), and to clock out a Left-Right clock (I2S_LRCLK)
that indicates whether the data transferred is a left-sample or a right sample. There
are a master and a slave, and in this example the xCORE will be the master that
produces I2S_BCLK and I2S_LRCLK (and I2S_DAC), and the external device will be
the slave. The bit-clock is produced by the xCORE from a master-clock (signal
I2S_MCLK). I2S transmits 2 x 32 bits of data for each audio-frame; a 32-bit left
value and a 32-bit right value.

We assume:

· On the xCORE there are five 1-bit ports connected to the I2S_MCLK, I2S_BLCK,
I2S_LRCLK, I2S_DAC and I2S_ADC signals.

· The LR-clock will operate at 192 KHz.

· The bit-clock will operate at 12.288 MHz (LR-clock x 64)

· The master-clock will operate at 24.576 MHz (LR-clock x 128)

CODEC

core clock

Input Data
capt

IO domain Core domain

xCORE 200

core clock

Clock

resynch
roniserI2S_MCLK

Output

Output

I2S_BCLK

I2S_ADC resynch
roniser

Output

Input Clock
block

core clock

resynch
roniser

Clock
block

Data
launch

Data
launchI2S_DAC

I2S_LRCLK

Figure 18:

I2S clock
block

organisation

XM010258A

I/O timings for xCORE200 15/19

We assume that the master-clock is sampled on a one bit port, this master clock
is divided down and drives the bit-clock, which in turn drives a clock-block that
is used to clock out the LRCLK and DAC data, and used to clock in the ADC data.
This is shown in Figure 18. From top to bottom note that:

· I2S_BCLK is not source-synchronous to I2S_MCLK (there is a long blue path from
the Clock generator into the xCORE and back out through I2S_BCLK, and a short
red path outside the xCORE).

· I2S_LRCLK is not source-synchronous with I2S_BCLK (the blue arrow is a long
path into and back out of the xCORE, the red arrow is a short path near the
device).

· I2S_DAC is not source-synchronous with I2S_BCLK (the blue arrow is a long path
into and back out of the xCORE, the red arrow is a short path near the device).

· I2S_ADC is source-synchronous to I2S_BCLK (the blue path is the clock path into
the xCORE, the red path is the data signal into the xCORE). Note that as the
clock does not eminate from the DAC, there is some delay caused by the CODEC
in the red path. Note that the reason it is source sychronous is because the BLCK
is in this setup resampled at the pin.

I2S_BCLK

0 ns ns20 40 60 80 100

I2S_LRCLK LRCLK data valid

T(setup) = 0 ns
T(hold) = 6 ns

I2S_ADC

I2S_ADC sampling window

I2S_MCLK

I2S_DAC DAC data valid

T(RTT) = 3..11.3 ns

T(CLKtoDATA) = 21.3 ns
T(CLKtoDATA) = 11.0 ns

max
min

Figure 19:

I2S signal
timings

Hence, I2S_BCLK is a round-trip-time behind I2S_MCLK. In addition, I2S_LRCLK and
I2S_DAC will be delayed relative to I2S_BCLK (Section 4.2), and I2S_ADC will incur
a small skew (Section 3.1). The time between the MCLK edge and the BCLK edge
is variable amongst voltage, process, and temperature, but constant in a given
environment.

The timings are shown in Figure 19. Since the external CODEC will typically sample
the I2S_DAC on the rising edge this will have a good margin (close to 20 ns); the

XM010258A

I/O timings for xCORE200 16/19

CODEC will typically present the ADC on the falling edge which has a larger margin
(around 40 ns).

Note also that as I2S_MCLK is resynchronised to the xCORE, I2S_BCLK will be
running at 12.288 MHz, but synchronous to the core-clock. That is, I2S_BCLK will
have a period of 81.380... ns, but this will be a sequence of clocks that are 80, 82,
82, 80, 82, 82, 80, ... ns apart to, on average, create a clock of exactly 12.288
MHz. This introduces jitter on the BCLK; this normally does not matter, but if
the CODEC is sensitive to jitter on I2S_BCLK then it can be resynchronised to the
master clock using a D-type flip flop clocked by I2S_MCLK. Note that doing so will
alter the setup, hold, and clock-to-data timings, because the clock edges of BCLK
are shifted.

XM010258A

I/O timings for xCORE200 17/19

6 Appendix - Timing components

The tables below show the expected worst case minimum and maximum Round-
Trip-Times for specific groups of pins and ports. In the case of 4-tile devices, tile 2
behaves the same as tile 0 and tile 3 the same as tile 1. All times are given in ns
(where 1 ns = 0.000,000,001 s).

The minimum round trip time is defined as the fastest possible input path plus
the fastest possible output path. The maximum round trip time is defined as the
slowest possible input path plus the slowest possible output path. Paths can be
slow or fast depending on the following parameters:

· Variation in the process will cause some devices to be slower and some devices
to be faster. The values shown in the tables below assume the fastest possible
silicon, and the slowest possible silicon. “Typical silicon” will have RTTmin and
max times of 4 and 8 ns.

· Variation in temperature will cause a device to run slower or faster. For the IO
measurements, hot devices will run slowest, and cold devices will run fastest.
Designs that run in a controlled temperature (for example, always hot, or always
cold) will have RTTmin and RTTmax times that are closer together.

· Variation in core voltage and (to a much lesser degree) IO voltage will cause
a device to run slower or faster. The minimum time is for 0.9V core and 3.0V
IO, and the maximum time is for 1.1V core and 3.6V IO. Designs with tightly
controlled voltages (eg, 1.0V +/- 2%) will have RTTmin and RTTmax times that
are closer together.

· By design, some IO pins are systematically faster than others. For example,
using pins X0D12..X0D23 to input data using an internal clock will result in an
eye that is 2.7 ns smaller than picking random pins from X1D00..X1D71.

· Driving rising edges and falling edges have different timings.

Extra time should be allowed for external loads, and this will add to both minimum
and maximum Round-Trip-Times. Skew may also increase with an increased
external load. Note that six IO pins (X1D26/27/40/41/42/43) have notionally 8
mA drivers and will respond faster to higher loads than the other IO pins (that are
notionally 4 mA drivers).

XM010258A

I/O timings for xCORE200 18/19

The following tables assume a 2 pF external load.

Overall timings:

Pins Ports RTTmin RTTmax Tiskew Toskew

Any IO pin 3.0 11.3 2.0 2.7

Timings per tile:

Pins Ports RTTmin RTTmax Tiskew Toskew

X0D00..X0D71 All 3.0 10.8 2.0 2.1

X1D00..X1D71 All 3.0 11.3 1.8 2.7

Timings of pairs of banks, each pair comprising eight 1-bit ports and a 16-bit port:

Pins Ports RTTmin RTTmax Tiskew Toskew

X0D00..X0D23 1A..H 16A 3.0 10.3 1.8 1.6

X0D24..X0D43 1I..P 16B 3.2 10.8 1.8 1.8

X1D00..X1D23 1A..H 16A 3.1 11.3 1.8 2.4

X1D24..X1D43 1I..P 16B 3.1 9.8 1.3 1.5

Timings of individual banks, each bank comprising four 1-bit ports and an 8-bit
port (two 4-bit ports):

Pins Ports RTTmin RTTmax Tiskew Toskew

X0D00..X0D11 1A..D 4A..B 8A 3.5 10.3 1.0 1.3

X0D12..X0D23 1E..H 4C..D 8B 3.0 8.7 0.6 1.2

X0D24..X0D35 1I..L 4E..F 8C 3.2 9.7 0.8 1.7

X0D36..X0D43 1M..P 8D 3.7 10.8 1.1 1.3

X1D00..X1D11 1A..D 4A..B 8A 3.8 11.3 1.2 1.3

X1D12..X1D23 1E..H 4C..D 8B 3.1 9.1 0.8 1.3

X1D24..X1D35 1I..L 4E..F 8C 3.1 9.8 1.3 1.4

X1D36..X1D43 1M..P 8D 3.1 9.6 1.1 1.5

XM010258A

I/O timings for xCORE200 19/19

The following tables assume a 30 pF load

Overall timings:

Pins Ports RTTmin RTTmax Tiskew Toskew

Any IO pin All 3.8 13.8 2.0 3.5

Timings per tile:

Pins Ports RTTmin RTTmax Tiskew Toskew

X0D00..X0D71 All 4.4 13.3 2.0 1.9

X1D00..X1D71 All 3.8 13.8 1.8 3.5

Timings of pairs of banks, each pair comprising eight 1-bit ports and a 16-bit port:

Pins Ports RTTmin RTTmax Tiskew Toskew

X0D00..X0D23 1A..H 16A 4.5 12.9 1.8 1.5

X0D24..X0D43 1I..P 16B 4.7 13.3 1.8 1.6

X1D00..X1D23 1A..H 16A 4.6 13.8 1.8 2.2

X1D24..X1D43 1I..P 16B 3.8 12.4 1.3 2.6

Timings of individual banks, each bank comprising four 1-bit ports and an 8-bit
port (two 4-bit ports):

Pins Ports RTTmin RTTmax Tiskew Toskew

X0D00..X0D11 1A..D 4A..B 8A 5.0 12.9 1.0 1.2

X0D12..X0D23 1E..H 4C..D 8B 4.5 11.1 0.7 0.9

X0D24..X0D35 1I..L 4E..F 8C 4.7 12.3 0.8 1.6

X0D36..X0D43 1M..P 8D 5.1 13.3 1.1 1.3

X1D00..X1D11 1A..D 4A..B 8A 5.3 13.8 1.2 1.2

X1D12..X1D23 1E..H 4C..D 8B 4.6 11.7 0.8 1.1

X1D24..X1D35 1I..L 4E..F 8C 3.8 12.4 1.3 2.5

X1D36..X1D43 1M..P 8D 3.8 12.1 1.1 2.6

Copyright © 2017, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XM010258A

	Basics
	The xCORE200 IO circuitry
	Source-synchronous clocks
	Non source-synchronous clocks
	A worked example: master I2S
	Appendix - Timing components

