
XVF3615 Voice Processor - User Guide
Release: 5.7.2
Publication Date: 2023/01/23

Table of Contents

1 Introduction 2
1.1 Overview . 2
1.2 Audio processing . 4
1.3 System Interfaces . 4
1.4 Booting and Initial configuration . 4
1.5 Default operation . 5

2 Audio Processing Pipeline 6
2.1 Signal flow and processing . 6
2.2 Signal Routing and Scaling . 7

2.2.1 Routing commands . 7
2.2.2 Destinations . 8
2.2.3 Sources . 8
2.2.4 Example Routing Commands . 9
2.2.5 PACKED_ALL signals . 10

2.3 General Purpose Filter . 11
2.4 PDM microphone interface . 13
2.5 Automatic Echo Cancellation (AEC) . 15
2.6 Automatic Delay Estimation Control (ADEC) . 17
2.7 Interference canceller . 20
2.8 Noise Suppressor (NS) . 21
2.9 Automatic Gain Control (AGC) and Loss Control . 22
2.10 Alternative Architecture mode (ALT_ARCH) . 24

3 System Interfaces 29
3.1 General Purpose Input and Output and Peripheral Bridging . 29
3.2 GPIO . 30
3.3 General Purpose Inputs . 30
3.4 General Purpose Outputs . 32
3.5 I2C Master peripheral interface (XVF3615-UA Only) . 34
3.6 I2C Slave Control interface (XVF3615-INT only) . 38
3.7 Using I2C Master to write to a device . 38
3.8 Using the I2C master to read from a device . 38
3.9 SPI Master . 39

4 System Boot and Initial Configuration 42
4.1 Boot process . 42
4.2 Flash storage structure . 42
4.3 Programming the Factory Boot image and Data Partition . 43
4.4 Upgrade Images and Data Partitions . 44
4.5 Generation of Binary Upgrade image . 44
4.6 Addition of DFU Suffix to Binary files . 45
4.7 Performing Firmware Updates . 46
4.8 Factory restore . 47
4.9 Boot Image and Data Partition Compatibility checks . 47
4.10 Custom flash memory devices . 48

4.10.1 Custom flash definition for factory programming . 48
4.10.2 Custom flash definition for Data Partition generation . 48

iiiiii

4.11 SPI Slave Boot . 48
4.11.1 SPI Boot of XVF3615-INT . 49
4.11.2 SPI Boot of XVF3615-UA . 49
4.11.3 Implementing a SPI Boot host application . 50

4.12 Configuration and the Data Partition . 52
4.12.1 Data Partition file structure . 52
4.12.2 Item files . 53
4.12.3 Generating a Data Partition for custom applications . 53

5 Device operation 55
5.1 Host Utilities . 55

5.1.1 Building the host utilities from source code . 55
5.2 Command-line interface (vfctrl) . 56
5.3 vfctrl Installation . 56
5.4 vfctrl syntax . 57
5.5 Configuration via Control interface . 58

5.5.1 Control operation . 59
5.5.2 Host Application . 59
5.5.3 Device Application . 59

5.6 Configuration via Data Partition . 59

6 USB Interface - (XVF3615-UA and XVF3615-UA-HYBRID only) 61
6.1 USB Interface . 61
6.2 USB Configuration . 61
6.3 USB HID interface . 62
6.4 HID Report configuration . 62
6.5 USB HID report format . 63
6.6 HID report generation . 64
6.7 Serial Number . 66
6.8 USB device enumeration . 66

7 Wake Word Feature Description 67
7.1 Management of Wake Word Models . 67

7.1.1 Use of the Amazon Wake Word Engine . 67
7.1.2 Adding a wake word model in the data partition . 68
7.1.3 Replace model in SPI boot mode . 68

7.2 Wake Word Configuration . 69
7.2.1 DIGITAL OUTPUT . 69
7.2.2 Wake Word Counter . 70
7.2.3 USB HID . 70

7.3 Wake word specific control commands . 70
7.4 Wake Word Integration . 71

7.4.1 Wake word start and end index values . 72
7.4.2 Wake word metadata blob . 73

8 Reference information 75
8.1 Base vfctrl command list . 75
8.2 Advanced vfctrl command list . 76
8.3 Boot status codes (RUN_STATUS) . 82
8.4 Example .SPISPEC file format . 84
8.5 USB enumeration . 84
8.6 General purpose filter example . 86

8.6.1 Specification . 86
8.6.2 Worked Example . 86

8.7 Command transport protocol . 87

iiiiiiiii

8.7.1 Transport protocol for control parameters . 87
8.7.2 Transporting control parameters over I2C . 88
8.7.3 Transporting control parameters over USB . 88
8.7.4 Floating point to fixed point (Q format) conversion . 88

8.8 Flash programming and update flow . 89
8.9 Capturing packed samples . 90

8.9.1 Capturing all pipeline input and output signals over a 48kHz USB interface 90
8.9.2 Capturing all pipeline input and output signals over a 48kHz I2S interface 94
8.9.3 Packing specific signals . 95

8.10 Direct access to DSP Pipeline . 95
8.10.1 Injecting a 4-channel, 16kHz test vector into the DSP pipeline over USB 95
8.10.2 Injecting a 4-channel, 16kHz test vector into the DSP pipeline over I2S 97
8.10.3 Injecting a 4-channel packed input and capturing a 6-channel packed output 99

Steps for XVF3615-UA . 100
Steps for XVF3615-UA-HYBRID . 100
Steps for XVF3615-INT . 101

iviviv

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The XMOS VocalFusion® XVF3615 User Guide is written for system architects and engineers designing Far-field
voice systems using the XVF3615 voice processor. The document describes typical usagemodels, the processor
architecture, key feature operation, and interface definitions. In conjunction with the product datasheet, these
two documents provide all the information required for system design, from concept to production testing and
verification.

It is expected that this document is read in conjunction with the relevant datasheet and that the user is familiar
with basic voice processing terminology.

Note: This issue of the user guide covers the functionality supported by version 5.7 and release 5.7.2 of the
VocalFusion® XVF3615 application firmware.

111

1 Introduction

The XMOS VocalFusion® XVF3615 voice processor uses microphone array processing to capture clear, high-
quality audio from anywhere in the room. XVF3615 processors use highly optimised digital signal processing
algorithms to implement ‘barge-in’, suppress point noise sources and reduce ambient noise levels increasing the
effective Signal to Noise Ratio (SNR) to achieve a reliable voice interface whatever the environment.

1.1 Overview

The processor is designed for seamless integration into consumer electronic products requiring voice interfaces
for Automatic Speech Recognition (ASR), or communication and conferencing. In addition to the class-leading
voice processing, XVF3615 processor implements specific features and interfaces required for use in closely
integrated applications such and incorporated into a TV or set-top box.

Three variants of the XVF3615 are available:

• XVF3615-UA (U-SB A-ccessory) - Audio and control via a USB2.0 interface

• XVF3615-UA-HYBRID (U-SB A-ccessory HYBRID) - Audio from the host via I2S and audio to the host, and
control via a USB2.0 interface

• XVF3615-INT (INT-egrated) - Audio via I2S and control over I2C interfaces

The functional block diagram of the XVF3615 is shown in the figures below:

Fig. 1.1: Functional block diagram of XVF3615 in UA and UA-HYBRID configurations

222

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Fig. 1.2: Functional block diagram of XVF3615 in UA-HYBRID configuration

Fig. 1.3: Functional block diagram of XVF3615 in INT configuration

333

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

1.2 Audio processing

The VocalFusion® XVF3615 voice processor converts and enhances audio captured using a pair of low-cost
digital microphones. Processed audio streams are suitable for use in Automatic Speech Recognition (ASR) or
voice communications applications and benefit from a range of configurable audio processing techniques to
allow customisation to the use case. The embedded audio processing provides the following features:

• 2 microphone far-field operation.

• Full 360-degree operation in “coffee table” applications or 180-degree for operation in edge-of-room prod-
ucts such as smart TVs.

• 16kHz voice processing, with optional 16kHz and 48kHz interface sample rates.

• Full duplex, Stereo, Acoustic Echo cancellationwith amaximum tail length of 225ms accommodating highly
reverberant environments. The Reference audio for cancellation can be provided via an I2S Slave interface
(INT variant), or I2S Master interface (UA-HYBRID variant) or via USB (UA variant).

• Automatic bulk delay insertion, of up to 150ms, to account for positive or negative reference audio delays
ensuring optimal echo cancellation with all audio output paths.

• Cancellation of point noise sources via a 256-frequency band Interference Canceller.

• Switchable stationary noise suppressor.

• Adjustable gain over a 60dB range with automatic gain control.

• Audio output filtering and range limiter.

• Independent audio processing paths and control of parameters for communications and ASR audio.

1.3 System Interfaces

The VocalFusion® XVF3615 voice processor provides the following additional interfaces to increase usability and
reduce total system cost:

• 4 General Purpose Output pins. These can be configured as simple digital I/O pins, Pulse Width Modulated
(PWM) outputs and rate adjustable LED flashers.

• 4 General Purpose Input pins. These can be used as simple logic inputs or event capture (edge detection).

• SPImaster interface to control and interrogate an SPI slave device, such as ADCs, DACs or external keyword
detection devices.

1.4 Booting and Initial configuration

The VocalFusion® XVF3615 voice processor can be booted over SPI by a local host processor or from a sepa-
rate, user-supplied, QSPI Flash memory. When operating with flash, the memory can be used for the following
functions:

• A default firmware image for power-on operation.

• An upgrade image. Upgrades are provided via I2C or USB providing a host-controlled upgrade process for
over-the-air device management.

• A persistent user information space to allow user-configured data such as board identifiers and serial num-
bers to be maintained across multiple firmware upgrade cycles.

444

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

• An upgradable user command space. Commands stored in this space are executed at boot time allow-
ing the definition of start-up behaviour, VocalFusion® XVF3615 configuration and setup of SPI peripheral
devices connected to it.

With the exception of the persistent user information the contents of the flash, and therefore the configuration
of the system can be upgraded and configured using the Device Firmware Upgrade (DFU) mechanism from the
host processor.

Note: The three XVF3615 variants; one providing I2S/I2C interface (XVF3615-INT) and two providing a USB inter-
face (XVF3615-UA and XVF3615-UA-HYBRID) are delivered as separate sets of firmware.

Note: Unless otherwise stated, throughout the remainder of this document, the term XVF3615-UA will refer to
both the UA and UA-HYBRID variants.

1.5 Default operation

The following table details the default configuration for the XVF3615-UA and XVF3615-INT firmware version 5.7
after firmware update to the default configuration.

Table 1.1: Default configuration of XVF3615

Parameter Default UA and UA-
HYBRID

Default INT Can Configure?

Version (x=patch version) 5.7.x 5.7.x N
Reference input FROM host USB UAC 1.0 48k sam-

ples/s PCM 16-bit resolu-
tion

I2S slave 48k samples/s
PCM 32-bit resolution

Y (prior to micro-
phone and I2S
start up

Reference format 1 or 2 channel (Mono /
Stereo)

1 or 2 channel (Mono /
Stereo)

N

Processed audio output TOhost USB UAC 1.0 48k sam-
ples/s PCM 16-bit resolu-
tion

I2S bus 48k samples/s
PCM 32-bit resolution

Y (prior to micro-
phone and I2S
start up

Audio format to host 2 channel - two differ-
ent streams CH[0] - ASR
CH[1] - Comms

2 channel - two differ-
ent streams CH[0] - ASR
CH[1] - Comms

Y

USB Product String XVF3615 (UAC1.0) Adap-
tive

N/A Y

USB Vendor ID 0x20B1 (8369) N/A Y
USB Product ID 0x0018 (24) N/A Y
USB Vendor String XMOS N/A Y
USB Serial Number null N/A Y
I2C address N/A 0X2C N
MCLK 24.576MHz OUTPUT 24.576MHz INPUT Y
Acoustic Echo Canceller Enabled Enabled Y
Automatic Delay Estimator Activated once on

startup
Activated once on
startup

Y

Interference Canceller Enabled Enabled Y
Noise suppressor Enabled Enabled Y

555

2 Audio Processing Pipeline

The core of the XVF3615 voice processor is a high-performance audio processing pipeline that takes its input
from a pair of the microphone and executes a series of signal processing algorithms to extract a voice signal
from a complex soundscape. The audio pipeline can accept a reference signal from a host system which is
used to perform Acoustic Echo Cancellation (AEC) to remove audio being played by the host. The audio pipeline
provides two different output channels - one that is optimized for Automatic Speech Recognition systems and
the other for voice communications.

A flexible audio signal routing infrastructure and a range of digital inputs and outputs enables the XVF3615 to be
integrated into a wide range of system configurations, that can be configured at start up and during operation
through a set of control registers.

2.1 Signal flow and processing

The arrangement of the blocks, with respect to the device Input & Output and the XVF3615 audio processing
pipeline, is shown below:

Fig. 2.1: XVF3615 input, output and audio signal routing

666

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The blocks supported are as follows:

• Signal Multiplexers. These allow dynamic selection (switching) of signals. The signals available depend on
the multiplexer position.

• Gain Blocks. These are blocks that apply a variable bit shift (left or right) and, in the case of left shift, saturate
in the case of overflow. Because they are shifters, the gain applied is a power of two.

• Filter Blocks. The filter blocks consist of two cascaded biquad units. Each of the five coefficients per stage
is directly manipulated via the control utility.

The commands to control the audio multiplexes (Mux) blocks and the source and destination index numbers are
listed in the following sections.

The XVF3615 provides a flexible routing control scheme to configure signal routing through the pipeline itself,
providing flexibility useful in:

• Hardware testing of microphones by monitoring the raw microphone signal.

• Improving pipeline performance by filtering known noise sources at the raw microphone input.

• Monitoring and debugging of reference signals and microphone signals during development.

• Compensating for gain offset in the reference signal.

• Supporting specific audio connectivity requirements such as obtaining the reference signal from I2S.

• Inserting audio filtering where a loudspeaker is connected downstream of the XVF3615 via I2S.

2.2 Signal Routing and Scaling

2.2.1 Routing commands

The following controls are provided for configuring the signal control blocks.

Table 2.1: IO Mapping commands

Command Type Args Definition

SET_IO_MAP uint8 2 Configures the two input switches and four output
switches. See Destination and Source index table for
valid argument options. arg1 <Destination Index> - arg2
<Source Index>

SET_OUTPUT_SHIFT int32 2 Sets the gain for eachmux block. Selectmux block Desti-
nation Index followed by shift (+ve is left -ve is right shift).
arg1 <Destination Index> - arg2 <shift value>

GET_OUTPUT_SHIFT uint32 8 x 3 Get all IO_MAP and OUTPUT_SHIFT values for all desti-
nations.

SET_MIC_SHIFT_SATURATE /
GET_MIC_SHIFT_SATURATE

uint32 2 Sets the gain on the raw mic signals before entering the
Pipeline. arg1 <shift value (left shift)> - arg2 <saturate -
enable if =1>

777

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

2.2.2 Destinations

The Destination channels available to be mapped are referenced as follows:

Table 2.2: Mapping Destination Indexes

Channel (Destination) Value Definition

USB_FROM_DEVICE_0 0 USB channel 0 output from device to host
USB_FROM_DEVICE_1 1 USB channel 1 output from device to host
I2S_FROM_DEVICE_0 2 I2S channel 0 output from device
I2S_FROM_DEVICE_1 3 I2S channel 1 output from device
REF_TO_PIPELINE_0 4 reference channel 0 going into the pipeline
REF_TO_PIPELINE_1 5 reference channel 1 going into the pipeline
MIC_TO_PIPELINE_0 6 microphone channel 0 going into the pipeline
MIC_TO_PIPELINE_1 7 microphone channel 1 going into the pipeline

2.2.3 Sources

Sources available to be mapped to destinations are referenced as follows:

Table 2.3: I/O Mapping Source Indexes

Channel (Source) Value Definition

MUTE 0 Zeros are sent to the destination if this value is selected -
which mutes the channel

USB_TO_DEVICE_AVERAGE 1 Average of USB input from host to device
USB_TO_DEVICE_DIFFERENCE 2 Half of the difference between ch0 and ch1 of USB input from

host to device
I2S_TO_DEVICE_AVERAGE 3 Average of I2S input to device
I2S_TO_DEVICE_DIFFERENCE 4 Half of the difference between ch0 and ch1 of I2S input to de-

vice
PIPELINE_OUT_0 5 Pipeline output channel 0
PIPELINE_OUT_1 6 Pipeline output channel 1
USB_TO_DEVICE_0 7 USB input channel 0 from host to device
USB_TO_DEVICE_1 8 USB input channel 1 from host to device
I2S_TO_DEVICE_0 9 I2S input channel 0 to device
I2S_TO_DEVICE_1 10 I2S input channel 1 to device
MIC_IN_0 11 Ch0 Microphone input seen by the pipeline
MIC_IN_1 12 Ch1 Microphone input seen by the pipeline
PACKED_PIPELINE_OUTPUT 13 pack 16kHz pipeline output on 48kHz output
PACKED_MIC 14 pack 16kHz mic input to pipeline on 48kHz output
PACKED_REF 15 pack 16kHz reference input to pipeline on 48kHz output
PACKED_ALL 16 pack 1 channel of 16kHz mic - reference input and pipeline.

When this option is used the other channel of the sameoutput
also gets PACKED_ALL set in its IO map

PACKED_ALL_INPUT_USB 17 pack 16kHz mic and reference into a 48kHz USB input
PACKED_ALL_INPUT_I2S 18 pack 16kHz mic and reference into a 48kHz I2S input

888

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Note: The MIC_IN_0 and MIC_IN_1 signals are at 16kHz. If they are routed to a 48kHz output they will be sample
repeated three times. No antialiasing filter is applied.

2.2.4 Example Routing Commands

The following section illustrates how to use the IO mapping and scaling commands.

Using the SET_IO_MAP command, the user can choose the sources that get routed to the following 3 destinations:

• the USB output from device to host

• the I2S output from the device

• the reference going into the device

For instance, to route I2S channel 0 (= 9 as shown in the Source table) input to the device to USB channel 1 output
from the device (= 1 as shown in the destination table), the command is:

vfctrl_usb SET_IO_MAP 1 9

where the first argument “1” refers to USB_FROM_DEVICE_1 as shown in the destination table and the second
argument “9” refers to I2S_TO_DEVICE_0 in the source table.

Signal routing is also useful for hardware debugging of microphone or reference signal connection. As an exam-
ple, the following command routes USB reference channel 0 from host to the USB audio output channel 0 of the
XVF3615:

vfctrl_usb SET_IO_MAP 0 7

This command sets a loopback of the reference signal given to the XVF3615 to its audio output. By playing a
simple reference signal, e.g., a sine wave, the user can verify if the XVF3615 has received the signal properly
through its audio output. If the audio signal recorded at host is different from the reference output, the user may
check if the problem is caused by hardware connection failure or wrong data format.

Signal routing can also be used for debugging microphone signal:

vfctrl_usb SET_IO_MAP 1 12

The above command routes microphone channel 1 as the direct signal to the USB audio output of the XVF3615.
Microphone signals can the be verified by recording the audio output from the XVF3615.

For XVF3615-UA, its I2S master interface can be used for sending out different signals as shown in the source
channel table while having the USB output processed audio. For example, the following command configures the
XVF3615 to send microphone, reference and pipeline outputs in 16kHz sampling frequency packed to 48kHz I2S
output:

vfctrl_usb SET_IO_MAP 2 16

vfctrl_usb SET_IO_MAP 3 16

By using Raspberry Pi with I2S slave interface configured, the user can then capture synchronized signals of
microphone, reference and pipeline output. Observing these signals can be very useful for debugging. The packed
signal can be unpacked to mic, reference and pipeline signal with 2 channels in each of them by using a Python
script provided in the Release Package.

999

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The SET_OUTPUT_SHIFT command can be used to specify a bit shift that is applied to all samples of a given
target. For example, specifying:

vfctrl_usb SET_OUTPUT_SHIFT 2 4

applies a left shift of 4 bits on all samples output from the device on I2S channel 0 as 24=16x of gain. A negative
shift value would imply a right bit shift for attenuation.

The GET_IO_MAP_AND_SHIFT command displays the IO mapping and the shift values for all targets.

Executing a GET_IO_MAP_AND_SHIFT command without having set any mapping or shifts explicitly shows the
default mapping that is configured in firmware.

vfctrl_usb GET_IO_MAP_AND_SHIFT

GET_IO_MAP_AND_SHIFT:

target: USB_FROM_DEVICE_0, source: PIPELINE_OUT_0 output shift: NONE

target: USB_FROM_DEVICE_1, source: PIPELINE_OUT_1 output shift: NONE

target: I2S_FROM_DEVICE_0, source: PIPELINE_OUT_0 output shift: NONE

target: I2S_FROM_DEVICE_1, source: FAR_END_IN_0 output shift: NONE

target: REF_TO_PIPELINE_0, source: USB_TO_DEVICE_0 output shift: NONE

target: REF_TO_PIPELINE_1, source: USB_TO_DEVICE_1 output shift: NONE

2.2.5 PACKED_ALL signals

PACKED_ALL packs up to six 16kHz channels into a 48kHz stereo signal. When using USB (UA) firmware it uses
the bit resolution of the USB output interface (even if you output to I2S on the UA device) and always assumes
32b it you are using I2S since the I2S interface uses a fixed 32b bit width. The packing sequence is as follows:

Table 2.4: Packed audio channels

16kHz channel PACKED_ALL input PACKED_ALL output

0 MIC 1 MIC 1
1 MIC 0 MIC 0
2 REF left REF left
3 REF right REF right
4 unused (ignored) ASR pipeline output
5 unused (ignored) Comms pipeline output

101010

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Fig. 2.2: Packing sequence

1. Microphone samples with marker ‘1’ in least significant bit

2. Reference samples with marker ‘0’ in least significant bit

3. Pipeline out sample with marker ‘0’ in least significant bit

The packer_packed_all.py script masks off the least significant bit and inserts the packing marker sequence, as
well as changing the output format to 48kHz stereo. It can support 16, 24 or 32b resolution although 24b files are
saved and read as 32b with 8b LSB padding. It can work on aMac if you use a 16b or 24b output resolution on the
USB interface. Sincemicrophone signal levels are quite low from the output of the decimators, it is recommended
to use at least 24b resolution to keep the quantisation noise floor down with respect to signal.

The unpacker_packed_all.pyscript looks for 0, 0, 1 for the LS bit to check for a PACKED_ALL sequence, else it will
report an error. It will try to recover from sequence errors if present. The packing will work with 16b, 24b and 32b
sample bit widths although <=24b is recommended.

For more information and use cases for the packed audio please refer to Capturing Packed Samples and Direct
access to DSP Pipeline sections.

2.3 General Purpose Filter

The General Purpose filter blocks each comprise of two cascade biquad filters permitting configuration as band-
pass, notch, low-pass, high-pass filters etc. By default, all filters are disabled (bypassed).

Note: A maximum of two output filters may be enabled simultaneously. E.g. Two channels of USB filtering or
one I2S and one USB output. Exceeding this may cause audio glitching.

There is no restriction on input filters (microphone and reference filters).

The filter coefficients are accepted in a floating-point format in a1, a2, b0, b1, b2 order directly from filter design
tools such as https://arachnoid.com/BiQuadDesigner/index.html.

Support for the raw 32bit integer write/read is offered which directly accesses the internal representation. When
using the raw control method, coefficients should be converted to Q28.4 format first and a1 and a2 need to be
negated. See configuration parameters for more information.

111111

https://arachnoid.com/BiQuadDesigner/index.html

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The sample rate for filters on the input to the pipeline are always 16kHz whereas the output filters match the
selected rate which may be either 16kHz or 48kHz, depending on system configuration. Ensure that the filter
coefficients have been designed with the correct rate.

Note that, although potential numerical overflows are handled as a saturation, it is up to the designer to ensure
no saturation occurs from the coefficients chosen to avoid non-linear behaviour of the filter. The implementation
offers three bits of headroom (Q28.4) which is more than sufficient for most filters.

The coefficients are cleared to zero on boot.

The following table describes the commands for the configuration of the filters.

Table 2.5: Filter configuration parameters

Command Type Argu-
ments

Definition

SET_FILTER_INDEX uint8 1 Used as an index to point to which filter block that will
be manipulated. output_filter_map_t below defines the
filter block IDs.

GET_FILTER_INDEX uint8 1 Retrieve the current filter index.
SET_FITER_BYPASS uint8 1 Bypass (1) means filter pointed to by the index is not en-

abled (default) - 0 means enable the filter.
GET_FILTER_BYPASS uint8 1 Retrieve the bypass status.
SET_FILTER_COEFF float 10 (5x2) Set 5 x 2 biquad coefficients in a floating-point format in

the order a1 a2 b0 b1 b2. Coefficient a0 is assumed to
be 1.0. If it is not - divide all coefficients by a0.

GET_FILTER_COEFF float 10 (5x2) Retrieve the floating-point representation of the coeffi-
cients in the order a1 a2 b0 b1 b2.

SET_FILTER_COEFF_RAW int32 10 (5x2) Set 5 x 2 biquad coefficients in Q28.4 format for the filter
pointed to by the index. See note above in Filter Blocks
section about the format.

GET_FILTER_COEFF_RAW int32 10 (5x2) Retrieve the Q28.4 representation of the coefficients.
See note above in Filter Blocks section about the for-
mat.

Filter output indexes available to be used with filter setting commands (output_filter_map_t):

Table 2.6: Output Indexes

Channel Value Definition

FILTER_USB_FROM_DEVICE_0 0 USB channel 0 from device to host (Left)
FILTER_USB_FROM_DEVICE_1 1 USB channel 1 from device to host (Right)
FILTER_I2S_FROM_DEVICE_0 2 I2S channel 0 from device (Left)
FILTER_I2S_FROM_DEVICE_1 3 I2S channel 1 output from device (Right)
FILTER_MIC_TO_PIPELINE_0 4 16kHz mic channel 0 going into the pipeline
FILTER_MIC_TO_PIPELINE_1 5 16kHz mic channel 1 going into the pipeline
FILTER_REF_TO_PIPELINE_1 6 16kHz reference channel 0 going into the pipeline (Left)
FILTER_REF_TO_PIPELINE_1 7 16kHz reference channel 1 going into the pipeline (Right)

While setting the index or bypass control will always be safe, there is a small chance that the coefficients may
be partially updated halfway through a filter operation. For this reason, the filter state is also cleared following

121212

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

updating to ensure that any possibility of instability is reduced. It is up to the user to ensure that the coefficients
provided result in a stable filter configuration.

A worked example is provided in the reference section.

2.4 PDM microphone interface

The PDM microphone interface converts Pulse Density Modulation (PDM) audio input from the microphones to
Pulse Code Modulation (PCM) format allowing further processing. The PDM microphone interface consists of
the physical pins connecting to the twomicrophones and a series of filters resulting in a 16kHz PCM, two-channel
output stream suitable for far-field voice processing. Please refer to the datasheet for the physical and electrical
details of the PDM pins.

The processing consists of four filter stages:

• Decimate by 8 FIR filter to 384kHz

• Decimate by 4 FIR filter to 96kHz

• Decimate by 6 FIR filter to 16kHz

• DC Blocking, single-pole IIR filter

Fig. 2.3: PDM microphone processing steps

The PDM microphone interface uses 32-bit internal processing to provide very low distortion with a specification
exceeding -110dB THD+N with a 140dB dynamic range.

The frequency response of the FIR filter has a stopband attenuation of at least 70dB with a passband ripple of
less than 0.9dB and a passband of 6.8kHz. The total group delay from pin to the XVF3615 audio pipeline input is
1.125 milliseconds.

A DC blocking filter is placed at the end of the PDMmicrophone interface pipeline and is tuned to have a 5Hz -6dB
point and removes any DC offset present in the PDM input.

The output from the PDMmicrophone interfacemay optionally be shifted or attenuated providing a ‘power of two’
gain control. Saturation may be applied in the case that the gain is greater than one.

By default, the gain block shift is set to zero (a gain of 20 = 1) and this is the recommended setting for normal use.

131313

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The PDM interface control parameters are shown below:

Table 2.7: Microphone commands

Command Type Value Description

SET_MIC_SHIFT_SATURATE uint32 arg1 <shift value (left shift)> arg2
<saturate - enable if !=0>

Write the gain (power of
2) on the raw mic signals
before entering the audio
pipeline.

GET_MIC_SHIFT_SATURATE uint32 Read the gain (power of 2)
on the raw mic and Saturate
Enable signals before enter-
ing the audio pipeline.

141414

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

2.5 Automatic Echo Cancellation (AEC)

This process uses the stereo audio from the product as a reference signal to model the echo characteristics
between each loudspeaker and microphone, caused by the acoustic environment of the device and room.

The AEC uses four models to continuously remove echoes in the microphone audio input created in the room by
the loudspeakers. The models continually adapt to the acoustic environment to accommodate changes in the
room created by events such as doors opening or closing and people moving about.

An illustration of echo paths in two sizes of room are shown below.

Fig. 2.4: Echo paths from the speakers to the microphones

After reset, or when echo paths change due to a change in the environment, the AECwill re-converge. Echo Return
Loss Enhancement (ERLE) can be used to indicate the degree of convergence on the AEC filters as shown below.

151515

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Fig. 2.5: Settling time of the AEC shown using an ERLE plot

161616

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

For optimal AEC settling-time performance, the volume of the loudspeakers must be linearly proportional to the
level of the reference audio sent to the XVF3615. If the volume of the loudspeakers changes without the level of
the reference changing by the same linear factor, the AEC will respond as if the environment has changed such
that all echo paths have increased/decreased energy. The AEC and therefore incur a settling time.

The Alternative Architecture (described in the Alternative Architecture mode (ALT_ARCH) section) selectively ex-
tends the AEC filters to accommodate highly reverberant environments.

The configuration parameters for the AEC are shown below:

Table 2.8: Useful Automatic Echo Canceller (AEC) commands

Command Type Value Description Notes

GET_BYPASS_AEC / SET_BYPASS_AEC uint32 [0 - 1] Get / set AEC bypass parame-
ter. If set to one AEC process-
ing is disabled

A

GET_ADAPTATION_CONFIG_AEC /
SET_ADAPTATION_CONFIG_AEC

uint32 [0 - 2] Get / set AEC adaptation con-
figuration: 0 = Auto adapt (de-
fault) 1 = Force adaptation ON
2 = Force adaptation OFF. If
AEC is set to bypass then set-
ting the adaptation config has
no effect

B

GET_ERLE_CH0_AEC float Get AEC ERLE for channel 0
GET_ERLE_CH1_AEC float Get AEC ERLE for channel 1 C
RESET_FILTER_AEC This command resets all AEC

filters
C

Notes:

[A]When the Alternative Architecture (ALT_ARCH)mode is enabled (default), AEC bypass state will be overwritten
and so should not be used. The GET command remains functional. For more information see the Alternative
Architecture (ALT_ARCH) section.

[B] If Automatic Delay Estimation is enabled, these parameters will be overwritten and so should not be used.
The GET commands remain functional. For more information see the Automatic Delay Estimation Control (ADEC)
section.

[C] When the ALT_ARCH mode is enabled, there is only valid ERLE data available on CH0. In this mode the
GET_ERLE_CH1_AEC will report NaN.

Note: The AEC operates on acoustic paths modelled in the AEC tail length. The Automatic Delay Estimation
Control module handles delays between microphone and loudspeaker introduced by the equipment, for instance
receiving the reference ahead of it actually being played out of the loudspeakers.

2.6 Automatic Delay Estimation Control (ADEC)

The ADECmodule automatically corrects for possible delay offsets between the reference and the loudspeakers.

Echo cancellation is an adaptive filtering process which compares the reference audio to that received from the
microphones. It models the reverberant time of a room, i.e. the time it takes for acoustic reflections to decay to
insignificance. This is shown in the figure below (the red “Acoustic echo path delay”).

171717

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Fig. 2.6: ADEC use case diagram

The time window modelled by the Acoustic Echo Canceller (AEC) is finite (filter tail length), and to maximise its
performance it is important to ensure that the reference audio is presented to the AEC time aligned to the audio
being reproduced by the loudspeakers. The diagram below highlights how the reference audio path delay and the
audio reproduction path may be significantly different, therefore requiring additional delay to be inserted into one
of the two paths, correcting this delay difference.

The functional blocks in the ADEC are shown below:

The ADEC may apply a delay to either the microphone or the reference path. When the loudspeaker signal lags
behind the reference signal, the ADEC places a delay into the reference channel. When the reference signal lags
behind the loudspeaker speaker, the ADEC places a delay into the microphone channel.

Automatic delay estimation is triggered at power-up, or if the host system configuration changes. The process
will not begin until the reference signal is present and has sufficient energy.

The delay estimation process re-purposes the AEC to detect larger delays. During estimation, the AEC does not
perform cancellation. Once the delay is detected and delay correction made, the AEC restarts and converges
based on the delayed signals.

Possible causes that may trigger an estimation cycle (where automatic mode is enabled):

• Host changing applications causing a delay change between loudspeakers and reference.

• Large volume changes between the reference and the loudspeaker play-back.

• User equipment changes, such as switching from TV audio output to playing the audio through a sound
bar.

The characteristics and specification of the ADEC function is shown below:

181818

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Fig. 2.7: ADEC block diagram

Table 2.9: ADEC characteristics

Name Value Description

Maximum delay
correction

± 150ms The maximum delay that can be added to either the micro-
phone channel or the reference channel

Estimation time With good reference
SNR: 2-5 seconds

During this time AEC is disabled. Note that estimation will
not start unless reference is available and loudspeakers are
playing back

191919

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The configuration commands are shown below:

Table 2.10: Automatic Delay Estimator parameters

Command Type Value Description Notes

GET_DELAY_SAMPLES
SET_DELAY_SAMPLES

uint32 [0 - 2399] Change the number of samples of input delay
at the sample rate 16kHz. The delay is applied
to either the reference or the microphone in-
put according to the delay direction. This pro-
vides a maximum delay of +/- 150mS.

A

GET_DELAY_DIRECTION
SET_DELAY_DIRECTION

uint32 [0 - 1] Select the direction of input delay. 0: Delay the
reference input (default) - 1: Delay the micro-
phone input.

A

GET_DELAY_ESTIMATE uint32 [0 - 7200] Get an estimate of the number of samples of
delay on the reference input at a sample rate
of 16kHz. This value is valid only when a de-
lay estimation is in progress and is offset by
themaximum length of the delay buffer (2400
samples). Add 2400 samples to this value to
get the absolute delay estimate.

SET_ADEC_ENABLED
GET_ADEC_ENABLED

uint32 [0 - 1] Enable automatic delay control: 0: ADEC dis-
abled - 1: ADEC enabled.

GET_ADEC_MODE uint32 [0 - 1] Get the status of delay estimation: 0: Normal
AEC mode - 1: delay estimation in progress.

SET_ADEC_INITIAL_CYCLE
_ENABLED

uint32 [0 - 1] Trigger a delay estimation cycle at startup.
The default behavior in firmware is to trigger a
delay estimation cycle when the far end refer-
ence is detected for the first time after device
reset. This is done irrespective of whether
automatic delay control is enabled or dis-
abled. To disable this initial delay estimation
set SET_ADEC_INITIAL_CYCLE_ENABLED = 0
in the data partition.

SET_MANUAL_ADEC_CYCLE
_TRIGGER

uint32 [0 - 1] Trigger a delay estimation cycle.
If delay estimation is disabled the
SET_MANUAL_ADEC_CYCLE_TRIGGER
can be used to force a delay estimation cycle
at any time.

NOTES:

[A] When the ADEC is enabled, this value will be overwritten, therefore the SET commands should not be used.
GET commands remain valid.

2.7 Interference canceller

The Interference Canceller (IC) suppresses static noise from point sources such as cooker hoods, washing ma-
chines, or radios for which there is no reference audio signal available. When an internal Voice Activity Detector
(VAD) indicates the absence of voice, the IC adapts to remove noise from point sources in the environment. When
the VAD detects voice, the IC suspends adaptation which maintains suppression of the interfering noise sources
previously adapted to.

202020

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The IC only operates on the ASR channel from the pipeline output.

The following table describes the configuration parameters for the Interference Canceller.

Table 2.11: Interference Canceller (IC) parameters

Command Type Value Description Notes

SET_BYPASS_IC GET_BYPASS_IC uint32 [0 - 1] Set IC bypass parameter: 0 =
IC bypass disabled (default) - 1
= IC bypass enabled

A

SET_CH1_BEAMFORM_ENABLE
GET_CH1_BEAMFORM_ENABLE

uint32 [0 - 1] Enable beamformed output on
IC output channel index 1 - 0 =
Passthrough IC input channel 1
onto IC output channel 1 - 1 =
Beamformed output on IC out-
put channel 1 (default)

RESET_FILTER_IC This command resets the IC fil-
ter

[A] If Alternative architecture mode (ALT_ARCH) is enabled (default), the IC bypass state will be dynamically
changed by the firmware. Do not use the SET_ commands. The GET_ commands remains functional.

2.8 Noise Suppressor (NS)

The Noise Suppressor (NS) suppresses noise from sources whose frequency characteristics do not change
rapidly over time. This includes diffuse background noise and stationary noise sources.

The following table describes the settings for the Noise Suppressor.

Table 2.12: Noise Suppressor (NS) commands

Command Type Value Description

GET_BYPASS_SUP
SET_BYPASS_SUP

uint32 [0 - 1] Get / set suppressor bypass parame-
ter. If set to one the suppressor which
contains the noise suppression stages
is bypassed. 0: suppressor bypass dis-
abled (default) 1: suppressor bypass en-
abled

GET_ENABLED_NS
SET_ENABLED_NS

uint32 [0 - 1] Get / set noise suppression enabled pa-
rameter within the suppressor. If set to
one - the noise suppression stagewithin
suppressor is enabled. Changing this
parameter only takes effect if the sup-
pressor is not bypassed. 0: noise sup-
pression disabled - 1: noise suppression
enabled (default)

212121

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

2.9 Automatic Gain Control (AGC) and Loss Control

The Automatic Gain Control (AGC) can dynamically adapt the audio gain, or apply a fixed gain such that voice
content maintains a desired output level. The AGC uses an internal Voice Activity Detector to normalise voice
content and avoid amplifying noise sources and applies a soft limiter to avoid clipping on the output. The design
is based on standard modern AGC techniques as detailed in ‘Acoustic Echo and Noise Control’, by Hansler and
Schmidt.

The desired output level of voice content is defined by an upper and lower threshold. If a voice signal is outside
of the upper and lower threshold then the gain will adapt accordingly. If the voice signal is within the upper and
lower threshold then the gain will remain constant.

The rate at which the gain increases or decreases per audio frame can also be configured. The gain increment
value must be greater than 1, whilst the gain decrement value must be below 1. When the gain is adapting, the
current gain value ismultiplied by either the increment or decrement value to calculate the gain value to be applied
on the next audio frame. Voice activity is monitored and included in the algorithm to avoid the noise floor being
amplified during silent periods. In addition, maximum and minimum levels may be set to keep the gain within a
certain range.

222222

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The following table details the configuration parameters for the AGC. Both GET_ and SET_ operations are sup-
ported for these parameters.

Table 2.13: Automatic Gain Control (AGC) parameters

Parameter Type Value Description

LC_ENABLED_CH0_AGC
LC_ENABLED_CH1_AGC

uint32 [0 - 1] Set Loss Control to be enabled in the AGC
for channel 0 or 1. 0 - Loss Control dis-
abled for the channel 1 - Loss Control en-
abled for the channel

LC_GAINS_CH0_AGC
LC_GAINS_CH1_AGC

Q16.16 [0..32767] Loss control gains: arg1: max arg2:
double-talk arg3: silence arg4: min

LC_N_FRAMES_CH0_AGC
LC_N_FRAMES_CH1_AGC

Q16.16 [0..32767] Number of frames in loss control for
nearend and far-end activity arg1: near-
end arg2: far-end

LC_GAMMAS_CH0_AGC
LC_GAMMAS_CH1_AGC

Q16.16 [0..32767] Loss control gamma coefficients: back-
ground power increment and decrement
arg1: background power arg2: increment
arg3: decrement

LC_DELTAS_CH0_AGC
LC_DELTAS_CH1_AGC

Q16.16 [0..32767] Loss control delta coefficients: arg1: far-
end only arg2: near-end only arg3: both
far-end and near-end

LC_CORR_THRESHOLD_CH0_AGC
LC_CORR_THRESHOLD_CH1_AGC

Q1.31 [0..1] Loss control correlation threshold for
channel. Values are linear. Default: 1000

MIN_GAIN_CH0_AGC
MIN_GAIN_CH1_AGC

Q16.16 [0..32767] Set the minimum gain threshold in the
AGC for channel 0 or 1. Values are linear.
Default: 0

SOFT_CLIPPING_CH0_AGC
SOFT_CLIPPING_CH1_AGC

uint32 [0 - 1] Enable soft clipping on the output of chan-
nel 0 or 1. 0: Soft clipping disabled for the
channel - 1: Soft clipping enabled for the
channel

UPPER_THRESHOLD_CH0_AGC UP-
PER_THRESHOLD_CH1_AGC

Q1.31 [0..1] Set the upper threshold for desired voice
level. Values are in range 0 to 1 (full-scale)
andmust be greater than the lower thresh-
old of the channel

LOWER_THRESHOLD_CH0_AGC
LOWER_THRESHOLD_CH1_AGC

Q1.31 [0..1] Set the lower threshold for desired voice
level. Values are in range 0 to 1 (full-scale)
and must be lower than the upper thresh-
old of the channel

INCREMENT_GAIN_STEPSIZE_CH0_AGC
INCREMENT_GAIN_STEPSIZE_CH1_AGC

Q16.16 [0..32767] Set the rate at which the gain increases.
This value is applied on a per-frame basis
when voice content is detected

DECREMENT_GAIN_STEPSIZE_CH0_AGC
DECREMENT_GAIN_STEPSIZE_CH1_AGC

Q16.16 [0..32767] Set the rate at which the gain decreases.
This value is: applied on a per-frame basis
when voice content is detected

The Loss Control process improves the subjective audio quality by attenuating any residual echo of the reference
far-end audio. It is designed to be used on the communications channel. In cases where there is both far-end
echo and near-end audio then the attenuation is reduced, allowing listeners to interrupt each other. The Loss
Control relies on the Automatic Echo Canceller to classify and attenuate residual far-end echo.

232323

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The following table details the configuration parameters for the Loss Control process. Both GET_ and SET_ op-
erations are supported for these parameters.

Table 2.14: Loss Control (LC) parameters

Parameter Type Value Description

LC_ENABLED_CH0_AGC
LC_ENABLED_CH1_AGC

uint32 [0 - 1] Set Loss Control to be enabled in the AGC
for channel 0 or 1. 0: Loss Control disabled
for the channel 1: Loss Control enabled for
the channel

LC_GAINS_CH0_AGC
LC_GAINS_CH1_AGC

Q16.16 [0 - 32767] Loss control gains: arg1: max arg2: double-
talk arg3: silence arg4: min

LC_N_FRAMES_CH0_AGC
LC_N_FRAMES_CH1_AGC

Q16.16 [0 - 32767] Number of frames in loss control for near-
end and far-end activity arg1: near-end
arg2: far-end

LC_GAMMAS_CH0_AGC
LC_GAMMAS_CH1_AGC

Q16.16 [0 - 32767] Loss control gamma coefficients: back-
ground power increment and decrement
arg1: background power arg2: increment
arg3: decrement

LC_DELTAS_CH0_AGC
LC_DELTAS_CH1_AGC

Q16.16 [0 - 32767] Loss control delta coefficients: arg1: far-
end only arg2: near-end only arg3: both far-
end and near-end

LC_CORR_THRESHOLD_CH0_AGC
LC_CORR_THRESHOLD_CH1_AGC

Q1.31 [0-1] Loss control correlation threshold for chan-
nel

2.10 Alternative Architecture mode (ALT_ARCH)

The Alternative Architecture mode, when enabled, improves Echo Cancellation performance in reverberate en-
vironments. It operates by re-configuring the audio pipeline by switching out either the Acoustic Echo Canceller
(AEC) or the Interference Canceller (IC), depending on the energy in the AEC reference signal, to recover resources
for use by the rest of the pipeline.

The two audio pipeline configurations are summarised below:

• ALT_ARCH disabled ALWAYS apply echo-cancelling AND interference cancelling; or

• ALT_ARCH enabled apply ONLY echo-cancelling when a reference signal is available, otherwise ONLY apply
interference cancelling.

Multiplexers permit the AEC and/or the IC to be bypassed. When bypassing the IC, the XVF3615 reconfigures the
AEC to use a single channel which results in the AEC cancelling echos received later in time. An internal mod-
ule which collects statistics about the reference is used to dynamically control these multiplexers and memory
allocation during runtime.

Note: Manually bypassing the IC using the Control Interface does not apply the memory reallocation.

242424

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The figure below highlights the audio signal path when the Alternative Architecture is disabled (ie. standard op-
eration).

Fig. 2.8: Audio pipeline configuration, [ALT_ARCH=0] mode

252525

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Whenever ALT_ARCH=1, then the pipeline dynamically switches between AEC alone, or IC alone. In this condition
the AEC is able to make use of additional memory increasing the echo cancelling period, and making it more
resilient to echo in highly reverberant conditions.

Fig. 2.9: Audio pipeline configuration, [ALT_ARCH=1] when reference signal is present

262626

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The dynamic switching uses statistics collected from the reference signal to establish if echo cancelling is re-
quired.

Fig. 2.10: Audio pipeline configuration, [ALT_ARCH=1] when reference signal is absent

272727

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The following table summarises the audio characteristics for standard and alternative architectures.

Table 2.15: Alternative pipeline mode characteristics

Pipeline configura-
tion

Far-end audio (AEC Ref) status Pipeline functionality AEC characteristics

ALT_ARCH = 0 With and without Far-end audio
present

IC enabled / AEC en-
abled

Max echo delay =
150ms

ALT_ARCH = 1 No far-end audio IC enabled / AEC dis-
abled

No cancellation

ALT_ARCH = 1 Far-end audio present IC disabled / AEC en-
abled

Max echo delay =
225ms

The following table describes the configuration parameters for the Alternative Architecture.

Table 2.16: Alternative pipeline mode configuration parameters

Command Type Value Description

SET_ALT_ARCH_ENABLED uint32 [0 - 1] Enable or disable alternate architecture (alt arch). 0:
Alt arch is disabled - 1: Alt arch is enabled. When
alt arch is enabled. The system works in either AEC
mode (when far end signal is detected) or IC mode
(when far end signal is not detected). When in AEC
mode in Alt arch AEC processing happens on only one
Mic channel with 15 phases per mic-ref AEC filter.

282828

3 System Interfaces

The XVF3615 voice processor provides the following additional interfaces to increase usability and reduce total
system cost:

• 4 General Purpose Output pins. These can be configured as simple digital I/O pins, Pulse Width Modulated
(PWM) outputs and rate adjustable LED flashers.

• 4 General Purpose Input pins. These can be used as simple logic inputs or event capture (edge detection).

• I2C and SPI master to control external devices such as ADCs, DACs or external keyword detection devices.

3.1 General Purpose Input and Output and Peripheral Bridging

The XVF3615 supports I/O expansion and protocol bridging over USB and I2C for the XVF3615-UA and XVF3615-
INT respectively. This allows peripheral devices such as audio hardware connected to XVF3615 to be configured
and monitored by the host.

Fig. 3.1: Device GPIO interfaces

• Four GPI channels (pins)

• Direct read of port value

• Rising, falling or both edge capture with “sticky” bit which is cleared on read

• Mode configurable per pin

• Four GPO channels (pins)

• Direct write of entire port or pin

• Active high or Active low

• 500Hz PWM configurable between 0 and 100% duty cycle

• Blinking control supporting a sequence of 32, 100ms states

• SPI Master

• 1Mbps SPI clock

• Up to 128 Bytes SPI write

292929

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

• Up to 56 Bytes SPI read

• I2C Master (XVF3615-UA only)

• 100kbps SCL clock speed

• Register read/write (byte)

• Up to 56 byte I2C read/write

The following sections describe the configuration and usage of each peripheral interface.

3.2 GPIO

There are four general input and four general output pins provided on the XVF3615.

Table 3.1: GPIO pin table

Name Description I/O

IP_0 General purpose input I
IP_1 General purpose input I
IP_2 General purpose input I
IP_3 General purpose input I
OP_0 General purpose output O
OP_1 General purpose output O
OP_2 General purpose output O
OP_3 General purpose output O

3.3 General Purpose Inputs

The following commands are available to read and control GPIs. Some read commands use the
SET_GPI_READ_HEADER command to select the GPI port and pin.

Note that interrupt registers are set to 1 when an edge has been detected and 0 when no event has occurred. All
interrupt registers are initialised to 0 on boot.

303030

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The following parameters are available to interrogate and configure the GPI behaviour.

Table 3.2: General Purpose Input commands

Command Type Dir Args Description

GET_GPI_PORT uint32 READ 1 Read current state of all pins in the se-
lected GPI port

GET_GPI_PIN uint32 READ 1 Read current state of the selected GPI pin
GET_GPI_INT_PENDING _PIN uint32 READ 1 Read whether interrupt was triggered for

selected pin. The interrupt pending regis-
ter for the selected pin is cleared by this
command

GET_GPI_INT_PENDING
_PORT

uint32 READ 1 Read whether interrupt was triggered for
all pins on selected port. The interrupt
pending register for the whole port is
cleared by this command

SET_GPI_PIN_ACTIVE _LEVEL uint8 WRITE 3 Set the active level for a specific GPI pin.
Arguments are <Port Index> <Pin Index>
<Level> - 0=active low - 1=active high. By
default - all GPI pins are set to active high

SET_GPI_INT_CONFIG uint8 WRITE 3 Sets the interrupt config for a specific
pin. Arguments are <Port Index> <Pin In-
dex> <Interrupt type> - 0=None - 1=Falling
- 2=Rising - 3=Both

SET_GPI_READ_HEADER uint8 WRITE 2 Sets the selected port and pin for the next
GPI read. Arguments are <Port Index>
<Pin Index>

GET_GPI_READ_HEADER uint8 READ 2 Gets the currently selected
port and pin set by a previous
SET_GPI_READ_HEADER command

SET_KWD_INTERRUPT_PIN uint8 WRITE 1 Set gpi pin index to receive kwd interrupt
on

GET_KWD_INTERRUPT_PIN uint8 READ 1 Read gpi pin index to receive kwd interrupt
on

313131

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

3.4 General Purpose Outputs

The following commands are available to write and control GPOs:

Table 3.3: General Purpose output commands

Command Type Args Description

SET_GPO_PORT uint32 2 Write a value to all pins of a GPO port. Argu-
ments are <Port Index> <Value>

SET_GPO_PIN uint8 3 Write to a specific GPO pin. Arguments are
<Port Index> <Pin Index> <Value>

SET_GPO_PIN_ACTIVE_LEVEL uint8 3 Set the active logic level for a specific GPO pin.
Arguments are <Port Index> <Pin Index> <Level>
- 0=active low - 1=active high. By default all GPO
pins are active high

SET_GPO_PWM_DUTY uint8 3 Set the PWM duty for a specific pin. Value given
as an integer percentage. Arguments are <Port
Index> <Pin Index> <Duty in percent>

SET_GPO_FLASHING uint32 3 Set the serial flash mask for a specific pin. Each
bit in the mask describes the GPO state for a
100ms interval. Arguments are <Port Index>
<Pin Index> <Flash mask>

Note: All GPOs have aweak pull-down (~30kΩ) during reset, initialised to logic low on device boot andwill always
drive the pin thereafter.

To illustrate usage of the GPOs the following section considers four common examples. Writing to a GPO pin,
configuring a PWM output, generating a blink sequence and driving a three colour (RGB) LED.

The following commands toggle OP_2 high then low (XVF3615-UA shown for example):

vfctrl_usb SET_GPO_PIN 0 2 1

vfctrl_usb SET_GPO_PIN 0 2 0

To set all GPOs high and then low:

vfctrl_usb SET_GPO_PORT 0 15

vfctrl_usb SET_GPO_PORT 0 0

The PWM runs at a fixed 500Hz frequency designed tominimise visible flicker when dimming LEDs and supports
100 discrete duty settings to permit gradual off to fully-on control.

The following commands illustrate setting individual PWM frequencies on each output by setting GPO pins 0, 1,
2 and 3 to output 25%, 50%, 75% and 100% duty cycles respectively:

vfctrl_usb SET_GPO_PWM_DUTY 0 0 25

vfctrl_usb SET_GPO_PWM_DUTY 0 1 50

vfctrl_usb SET_GPO_PWM_DUTY 0 2 75

vfctrl_usb SET_GPO_PWM_DUTY 0 3 100

Setting a pin duty to 100% is the same as setting that pin to high.

Each GPO is driven from the LSB of an internal 32bit register, which is rotated by one bit every 100mS.

323232

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The figure below shows how the blinking sequence works:

Fig. 3.2: Use of 32 bit word is used to define the blinking function of GPO

333333

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The following commands generate these LED effects:

• GPO pin 0 blinking, ON for 1.6 seconds, then OFF for 1.6 seconds, i.e. a period of 3.2 seconds;

• GPO pin 1 blinking, ON for 0.8 seconds, then OFF for 0.8 seconds, i.e. a period of 1.6 seconds;

• GPO pin 2 blinking, ON for 0.1 seconds, then OFF for 0.1 seconds, i.e. a period of 0.2 seconds;

vfctrl_usb SET_GPO_FLASHING 0 0 4294901760 # equivalent to pattern: xFFFF0000

vfctrl_usb SET_GPO_FLASHING 0 1 4042322160 # equivalent to pattern: xFF00FF00

vfctrl_usb SET_GPO_FLASHING 0 2 2863311530 # equivalent to pattern: xAAAAAAAA

Note: A GPO pin can be set to both a PWM duty cycle, and to flashing by issuing both a GPO_SET_PWM_DUTY
instruction and a SET_GPO_FLASHING instruction for the same port and pin.

Where RGB LEDs are connected to three GPO pins (0 = Red, 1 = Green, 2 = Blue) automated colour sequencing
can be programmed. For example, to colour cycle between Red-Yellow-Green-Cyan-Blue every 3.2 seconds:

vfctrl_usb SET_GPO_FLASHING 0 0 65535 # 0 x0000FFFF

vfctrl_usb SET_GPO_FLASHING 0 1 16776960 # 0 x00FFFF00

vfctrl_usb SET_GPO_FLASHING 0 2 4294901760 # 0 xFFFF0000

3.5 I2C Master peripheral interface (XVF3615-UA Only)

The XVF3615-UA variants provide an I2C master interface which can be used as:

• A bridge from the USB interface, i.e. VFCTRL_USB commands can be used from the host to read and write
devices connected to the I2C Peripheral Port;

• Amechanism to initialise devices connected to the I2C Peripheral Port by incorporating commands into the
Data Partition (in the external flash), which are executed at boot time.

The interface supports:

• 100kbps fixed speed

• 7bit addressing only

• Byte I2C register read/writes

343434

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The following table shows the commands for the configuration of the I2C Master interface:

Table 3.4: I2C peripheral interface commands

Command Type Num
args

Num
val-
ues

Definition

SET_I2C_READ_HEADER uint8 3 0 Set the parameters to be used by the next GET_I2C
or GET_I2C_WITH_REG command. Arguments: 1:
The 7-bit I2C slave device address. 2: The register
address within the device. 3: The number of bytes
to read.

GET_I2C_READ _HEADER uint8 0 3 Get the parameters to be used by the next GET_I2C
or GET_I2C_WITH_REG command. Returned val-
ues: 1: The 7-bit I2C slave device address. 2: The
register address within the device. 3: The number
of bytes to read.

GET_I2C uint8 0 56 Read from an I2C device defined by the
SET_I2C_READ_HEADER command. Returned val-
ues: 1 to 56: The number of bytes read as defined
by the SET_I2C_READ_HEADER command fol-
lowed by additional undefined values. The number
of bytes read from the I2C device when executing
GET_I2C is set using SET_I2C_READ_HEADER.

GET_I2C_WITH_REG uint8 0 56 Read from the register of an I2C device as defined
by the SET_I2C_READ_HEADER command. Re-
turned values: 1 to 56: The number of bytes read as
defined by the SET_I2C_READ_HEADER command
followed by additional undefined values. The num-
ber of bytes read from the I2C device when execut-
ing GET_I2C is set using SET_I2C_READ_HEADER.

SET_I2C uint8 56 0 Write to an I2C slave device. Arguments: 1: The 7-
bit I2C slave device address. 2: The number of data
bytes to write (n). 3 to 56: Data bytes. All 54 values
must be given but only n will be sent.

SET_I2C_WITH_REG uint8 56 0 Write to a specific register of an I2C slave device.
Arguments: 1: The 7-bit I2C slave device address. 2:
The register address within the device. 3: The num-
ber of data bytes to write (n). 4 to 56: Data bytes.
All 53 values must be given but only n will be sent.

353535

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The figures below shows the signals and messages for reading and writing registers. Raw I2C read/writes may
be performed.

Fig. 3.3: I2C protocol for register reads

363636

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Fig. 3.4: I2C protocol for register writes

Fig. 3.5: I2C protocol for raw reads and writes

373737

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

3.6 I2C Slave Control interface (XVF3615-INT only)

The XVF3615-INT implements an I2C slave interface for Control and Setup of the device. The interface conforms
to the following specifications.

Table 3.5: I2C interface specification

Specification Value

Maximum I2C operation speed 100kbps
I2C Slave Address 0x2C

3.7 Using I2C Master to write to a device

Typically byte register read/writes are used to configure external I2C controlled hardware.

As an example, assume there is a device connected at address 0x40 (64) with three, single byte, registers. The
following commands will write 77 to register 0, 48 to register 1 and 33 to register 2.

vfctrl_usb SET_I2C_WITH_REG 64 0 1 77 0␣

→˓0 0

vfctrl_usb SET_I2C_WITH_REG 64 1 1 48 0␣

→˓0 0

vfctrl_usb SET_I2C_WITH_REG 64 2 1 33 0␣

→˓0 0

Note: The control protocol does not support variadic (variable number of) arguments. Hence, even when writing
a single byte, the full number of arguments must be passed. Unwritten values are ignored.

3.8 Using the I2C master to read from a device

To verify the previous I2C register write to register number 0 at address 0x40 (64), an I2C register read can be
performed as follows:

vfctrl_usb SET_I2C_READ_HEADER 64 0 1

vfctrl_usb GET_I2C_WITH_REG

> 77 0

0 0

The byte read is the first of the 56 return values, which in this case, is 77. The following 55 values are undefined
since the command only performed a read of 1 register.

383838

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

3.9 SPI Master

The XVF3615-UA and XVF3615-INT variants provide an SPI master interface which can be used as:

• A bridge from the USB interface, i.e. vfctrl_usb commands can be used from the host to read and write
devices connected to the SPI Peripheral Port; and

• Amechanism to initialise devices connected to the SPI Peripheral Port by incorporating commands into the
Data Partition (in the external flash), which are executed at boot time.

Note: From Version 4.1 the SPI Master peripheral interface is not available on XVF3615-UA and XVF3615-INT
devices that have been SPI booted to prevent possible bus contention issues.

The SPI master peripheral supports the following fixed specifications:

• Single chip select line

• 1Mbps fixed clock speed

• Supports either reads or writes. Duplex read/writes are not supported.

• Most significant bit transferred first

• Mode 0 transfer (CPOL = 0, CPHA = 0)

Note: The chip select is asserted aminimum of 20ns before the start of the transfer and de-asserted aminimum
of 20ns after the transfer ends.

393939

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The SPI Master is controlled using the following commands.

Table 3.6: SPI peripheral interface commands

Command Type Args Description

GET_SPI uint8 56 Gets the contents of the SPI read buffer.
GET_SPI_READ_HEADER uint8 2 Get the address and count of next SPI read.
SET_SPI_PUSH uint8 56 Push SPI command data onto the execution queue.
SET_SPI_PUSH_AND_EXEC uint8 56 Push SPI command data and execute the command

from the stack. Data will then be sent to SPI device.
SET_SPI_READ_HEADER uint8 2 Set address and count of next SPI read.

Reads of up to 56 Bytes at a time may be performed but writes of 128 Bytes at a time can be made by pushing
multiple commands into a command stack and executing them in one go. The transaction is performed within a
single chip select assertion.

Fig. 3.6: SPI peripheral, read sequence

Fig. 3.7: SPI peripheral, write sequence

The control protocol does not support variadic (variable number of) arguments. Hence, evenwhenwriting a single
byte, the total number of arguments passed must be the maximum. Unwritten values are ignored.

See below examples.

The following example writes one byte of data (with value 122) to a control register as address 6.

vfctrl_i2c SET_SPI_PUSH_AND_EXEC 0␣

→˓0 6 1 122

Note: All numbers are decimal. It is necessary to pad the payload to 56 bytes, which includes the address, length
and data values. This is a requirement of the vfctrl tool, the SPI interface itself will only transmit the valid data.

Transmitting more than 54 bytes of data is possible using the SET_SPI_PUSH command to queue up data, using
multiple commands before the push is executed. The following example writes values 0 to 69 to address 100 (70
bytes in total) using command to push 56 data values into the queue, followed by a push the remaining 14 data
words and then execute the transfer:

404040

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

vfctrl_i2c SET_SPI_PUSH 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34␣

→˓33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1␣

→˓0

vfctrl_i2c SET_SPI_PUSH_AND_EXEC 0␣

→˓0 0 0 0 0 0 0 0 0 0 0 100 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56

To read one byte at address 6, which contains the value 122, do the following:

vfctrl SET_SPI_READ_HEADER 6 1

vfctrl GET_SPI

> GET_SPI: 122 0

-> 0

To read 16 bytes from address 0, which all contain the value 33, do the following:

vfctrl SET_SPI_READ_HEADER 0 16

vfctrl GET_SPI

> GET_SPI: 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 0 0 0 0

-> 0

414141

4 System Boot and Initial Configuration

The standard mechanism for booting the XVF3615 is from an attached QSPI Flash device. This provides stan-
dalone operation, and persistent storage for configuration data. The XVF3615 supports device firmware upgrade
(DFU) over USB (UA product variants) and I2C (INT product variant).

Pre-compiled host utilities, and source code for reference, are supplied for performing DFU operations.

In addition, when using flash to boot the XVF3615 processor, a Data Partition in the flash memory can be used to
store commands which are executed immediately after boot-up to configure and define the functionality of the
device.

An alternative boot mode, using a executable image supplied by a host processor over a SPI interface is also
available for the XVF3615.

The following sections describe the boot process and the Data Partition, including customisation for specific
applications.

4.1 Boot process

The standardmechanism for booting is from an attached QSPI Flash device. This provides standalone operation,
and persistent storage for configuration data. VocalFusion® XVF3615 supports device firmware upgrade (DFU)
over USB (UA product variants) and I2C (INT product variant). Pre-compiled host utilities, and source code for
reference, are supplied for performing DFU operations.

The following sections discuss the structure of data within the flash memory, and operation of DFU.

Warning: While the functionality of the DFU is similar to the USB DFU specification, it has diverged to accom-
modate both USB and I2C operation and therefore is not compatible with compliant USB DFU tools.

4.2 Flash storage structure

The structure of data within the VocalFusion® XVF3615 is arranged to contain a factory image, a single upgrade
image, device serial numbers and Data Partitions for both the factory and upgrade image. This is shown below.

424242

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Fig. 4.1: Flash data structure for VocalFusion® XVF3615

• The factory boot image is the executable code for VocalFusion® and is supplied in the Release Package in
the bin directory. The file format is xe, which refers to XMOS Executable. This is written to the device via
the XTAG debugger or through a bulk flash programming operation.

• The upgrade boot image, if present, is the executable code written to the flashmemory via a DFU operation.
Generation of the upgrade boot image is covered below.

• TheHW build info is specified in the .json Data Partition file for the factory image and is written at the same
time as the factory image and Data Partition. It is a unique identifier which is unaffected by subsequent
DFU upgrade operations.

• The Serial Number is a custom field which can be programmed via USB and I2S control interfaces and
remains untouched by the subsequent DFU operations.

• The Factory and Upgrade Data Partitions are the associated Data Partitions for the Factory and Upgrade
images (where upgrade is present). They are written to flash in the same operation as the boot images.
For more information on the generation and usage of Data Partitions see the Configuration and the Data
Partition section.

Warning: Storage of only a single upgrade boot image and Data Partition pair is supported. Therefore, any
Upgrade image applied will overwrite any existing upgrade image present.

A summary of the factory programming and field update process for flash-based systems is shown in the refer-
ence section.

4.3 Programming the Factory Boot image and Data Partition

The XVF3615 Voice Processor is provided in two pre-compiled builds (UA and INT) and as such only requires the
usage of the XTC Tools programming tools, specifically xFLASH. This operates as a command-line application,
to create the boot image, and if using flash, program the boot image to the attached device.

An XTAG debugger must be connected to the XVF3615 for flash programming operations. Refer to the Develop-
ment Kit User Guide for information on using XTAG connections to the XVF3615 development kits.

The basic form of the xFLASH command for flash image creation and programming with a data partition is as
follows.

434343

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

xflash --boot-partition-size 0x100000 --factory [Application executable (.xe)] --data [Data␣

→˓partition description (.bin)]

where

• Application executable (.xe) The .xe file is a boot image provided with a VocalFusion® release package in
one of the supported configurations (UA or INT product variants).

• Data partition description (.bin) The .bin file is a Data Partition description either supplied in the release
package (UA or INT) or customised as described later in this section.

Note: Boot over SPI from a host processor uses a specific image which is supplied in the release package. No
data partition is included as configuration command are assumed to be supplied by the host controller used.

4.4 Upgrade Images and Data Partitions

In order to be able to apply an Upgrade image to the device it must be programmed with a Factory Image and
Data Partition.

The Device Firmware Update (DFU) process requires the use of two utilities, dfu_usb or dfu_i2c, depending on
the firmware variant, and dfu_suffix_generator.

Precompiled versions of these utilities are provided as part of the Release Package in the appropriate platform
directory in \host (eg. \host\Win32\bin), and the source code for the DFU utility is provided in the \host\src\
dfu directory.

For more information on building the host applications refer to the build instructions in \host\

how_to_build_host_apps.rst in the Release Package.

In addition to the DFU utilities, the Upgrade image and Data Partition are required. These are provided in the
Release Package in the \bin and \data-partition\images directories.

Generation of custom Data Partitions is detailed in the Data Partition section.

There are a number of stages required to prepare and execute a DFU to ensure a safe and successful update.
These are detailed in the next section.

4.5 Generation of Binary Upgrade image

The Upgrade Image (.xe) needs to be converted to a binary format. Use xflash and the following command to
convert the .xe image into a binary form:

xflash --noinq --factory-version 15.0 --upgrade [UPGRADE_VERSION] [UPGRADE_EXECUTABLE] -o␣

→˓[OUTPUT_BINARY_NAME]

Specify --factory-version value of 15.0 for all 15.x.x releases of the XTC tools. (The 15.0 value refers to boot
loader API for the XTC tool chain).

Note: Should a different version of the XTC tools be used in a future firmware release, the version number should
be noted such that an update image of compatible format can be created.

444444

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The upgrade version number is specified with --upgrade <version>. Use the 16-bit format``0xJJMP`` where

• J is major

• M is minor

• P is patch

For example, to create an upgrade Binary image for a UA system, from the v5.7.2 Release Package use the fol-
lowing command:

xflash --noinq --factory-version 15.0 --upgrade 0x0570 app_xvf3615_ua_v5.7.2.xe -o app_

→˓xvf3615_ua_v5.7.2.bin

4.6 Addition of DFU Suffix to Binary files

To prevent accidental upgrade of an incompatible image both the binary Upgrade image and the Data Partition
binary must be signed using the provided dfu_suffix_generator which can be found pre-compiled in the host
platform directory of the release package eg. /host/MAC/bin.

This mechanism embeds a structure into the binary files which can be read by the Device Firmware Update (DFU)
tool to check that the binary data is appropriate for the connected device, prior to executing.

The general form of usage for the dfu_suffix_generator is as follows:

dfu_suffix_generator VENDOR_ID PRODUCT_ID [BCD_DEVICE] BINARY_INPUT_FILE BINARY_OUTPUT_FILE

VENDOR_ID, PRODUCT_ID and BCD_DEVICE are non-zero 16bit values in decimal or hexadecimal format, with the
value of 0xFFFF bypassing verification of this field.

When building Upgrade images for XVF3615-UA devices, the USB Vendor Identifier (VID) and USB Product Iden-
tifier (PID) are added to the header and then checked by the DFU utility to ensure that the connected device
matches. An error is reported by the tool if there is no match with the connected device.

For XVF3615-INT devices both Vendor ID and Product ID fields should be set to 0xFFFF for the generation of the
Upgrade image and Data Partition binary. This instructs the DFU to bypass the checking as there is no equivalent
to the USB identifiers for I2C systems. However, even though the checking is bypassed for the XVF3615-INT the
suffixmust be added to both Upgrade and Data partition files as the DFU utility checks the integrity of the binaries
based on this information.

The following examples show how to add DFU Suffix to Update binaries for both XVF3615-INT and XVF3615-UA
products.

For XVF3615-UA (default XMOS Vendor and XVF3615-UA product identifiers are used for illustration):

dfu_suffix_generator.exe 0x20B1 0x0018 app_xvf3615_ua_v<release_version>.bin boot.dfu

dfu_suffix_generator.exe 0x20B1 0x0018 data_partition_upgrade_ua_v<release_version>.bin␣

→˓data.dfu

For XVF3615-INT:

dfu_suffix_generator.exe 0xFFFF 0xFFFF app_xvf3615_int_v<release_version>.bin boot.dfu

dfu_suffix_generator.exe 0xFFFF 0xFFFF data_partition_upgrade_int_v<release_version>.bin␣

→˓data.dfu

454545

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Warning: Extreme care must be taken if modifying the default Vendor ID or default Product ID through a Data
Partition. If configuration from Data Partition fails, the USB VID and PID will remain at their default values
(VID=0x20B1, PID=0x0018) and DFU requests with the modified ID’s will not be allowed.

4.7 Performing Firmware Updates

The pre-compiled firmware update utility is provided in the Release Package in the host architecture directory
eg. /host/Linux/bin. For MAC, Linux and Windows the DFU_USB is provided, and for Raspberry Pi DFU_I2C is
provided. The source code can be used to rebuild either version on the required platform.

The general form of dfu_usb utility is as follows:

dfu_usb [OPTIONS] write_upgrade BOOT_IMAGE_BINARY DATA_PARTITION_BIN

OPTIONS: --quiet

--vendor-id 0x20B1 (default)

--product-id 0x0018 (default)

--bcd-device 0xFFFF (default)

--block-size 128 (default)

and the general form of the dfu_i2c utility is shown below:

dfu_i2c [OPTIONS] write_upgrade BOOT_IMAGE_BINARY DATA_PARTITION_BIN

OPTIONS: --quiet

--i2c-address 0x2c (default)

--block-size 128 (default)

The two binary files passed to the utility, the boot image and Data Partition, must have the DFU suffix present
otherwise the DFU utility will generate an error. Example DFU utility usage is shown for both XVF3615-UA and
XVF3615-INT below.

For XVF3615-UA:

dfu_usb --vendor-id <USB_VENDOR_ID> --product-id <USB_PRODUCT_ID> write_upgrade boot.dfu␣

→˓data.dfu

where the default values of <USB_VENDOR_ID> and <USB_PRODUCT_ID> are 0x20B1 and 0x0018, and for XVF3615-
INT:

dfu_i2c write_upgrade boot.dfu data.dfu

Once complete the following message will be returned and the device will reboot. In the case of XVF3615-UA the
device will re-enumerate.

write upgrade successful

For verification that DFU has succeeded as planned, the vfctrl utility can be used to query the firmware version
before and after update. For example, to query the version of XVF3615-UA the following command is used:

464646

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

vfctrl_usb GET_VERSION

Note: The vfctrl utilities check the version number of the connected device to ensure correct operation. To
suppress an error caused by a disparity in the version of vfctrl and upgraded firmware the --no-check-version
option can be used with the utility.

4.8 Factory restore

To restore the device to its factory configuration, effectively discarding any upgrades made, the same process as
outlined above is followed but using a blank Boot Image and Data Partition.

This is the only way a restore can be initiated as the device does not have the ability to restore itself.

The same blank file can be used for both Boot Image and Data partition and can be generated using dd on MAC
and Linux, and fsutil onWindows. A blank image can be created with a file of zeroes the size of one flash sector.
In the normal case of 4KB sectors on a UNIX-compatible platform, this can be created as follows:

dd bs=4096 count=1 < /dev/zero 2>/dev/null blank.dfu

and for Windows systems:

fsutil file createNew blank.dfu 4096

The process outlined in the Generation Upgrade Image and Data Partition section can now be followed using the
blank.dfu file for both Boot Image and Data Partition.

4.9 Boot Image and Data Partition Compatibility checks

The format of Data Partitions and Boot Images may change between version increments. Therefore to prevent
incompatible Boot and Data Partitions from running and causing undefined behaviour, a field called compatibility
version is embedded into the Data Partition. A running Boot Image checks its own version, against the compati-
bility version in the Data Partition before reading the partition data.

The version of the firmware should also be specified in the --upgrade argument of xflash when generating the
Upgrade Image as described previously.

If the compatibility check fails the booted image, which could be a factory image or an upgrade image, will not
read the Data Partition and will operate with its default settings (described in Default Operation section above).
The Boot status is reported in the RUN_STATUS register which can be accessed via the vfctrl utility, for example:

vfctrl_usb.exe GET_RUN_STATUS

Successful Boot status is reported by either FACTORY_DATA_SUCCESS or UPGRADE_DATA_SUCCESS depending on
which Boot Image was executed.

If unsuccessful the device will revert to a fail-safe mode of operation. The RUN_STATUS register can be queried for
further debug information. The full list of RUN_STATUS codes are described in the the reference section.

474747

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Note: Fail safe mode uses the default vendor ID of 0x20B1 (XMOS) and product ID of 0x0018. In this event, host
needs to be equipped with the ability to locate USB device under different IDs.

4.10 Custom flash memory devices

The majority of QSPI flash devices conform to the same set of parameters which define the access and usage
of flash devices. However, to support instances when the flash interface parameters are different, the following
section explains how to define a custom flash interface.

Details of the flash device used to store the Boot Image and Data Partition data must be specified in both the
factory Boot Image and in any Data Partition files to ensure successful Factory programming and the ability to
execute a Device Firmware Upgrade (DFU) to upgrade the firmware.

4.10.1 Custom flash definition for factory programming

During the Factory programming procedure, using the XMOS XTAG debugger, the specification of the flash device
is used to create the loader which is responsible for downloading the Boot Image from flash and to the device.

The flash specification is provided to xflash, as described in theUpdating the Firmware section, using a .spispec
file. A representative .spispec file, which supports the majority of QSPI flash devices and the Development Kits,
is provided in the Release Package here:

\data-partition\16mbit_12.5mhz_sector_4kb.spispec

This is a text file and must be modified with any differing parameters. An example .spispec file is shown in the
reference section.

4.10.2 Custom flash definition for Data Partition generation

The .spispec file must also be included in the Data Partition, along with the sector size, so that DFU operations
can be executed correctly.

Warning: Due to the nature of the DFU function, it is critically important to test the execution of the DFU
process in a target system prior to production manufacturing.

4.11 SPI Slave Boot

Both UA and INT configurations of XVF3615 have a SPI slave boot mode, in addition to the boot from flashmode.
The SPI slave boot downloads the boot image in binary form. The release package includes the necessary SPI
boot images for all the variants.

Following an SPI boot the XVF3615 will not read any Data Partition that may be present in flash memory. If the
default values set in the SPI boot image must be updated, the necessary parameters must be configured using
the vfctrl host application after the device is booted.

The following section illustrates the use of the SPI boot files provided in the release packages.

484848

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

4.11.1 SPI Boot of XVF3615-INT

When the XVF3615-INT boots via SPI, some parameters must be configured using the vfctrl_i2c application. Two
of these parameters are the divider between the MCLK_IN to PDM clock and the I2S sample rate. These values
must be set before the audio processing is started, and this can be done using a special configuration, called
delayed mode.

When using the delayedmode, the BOOTSEL pin is released before the firmware image is transferred to the device.
After the XVF3615-INT boots up, it checks the status of the BOOTSEL pin, if the pin is enabled it proceeds with
initialising the audio pipelines, if it is not, it waits for some specific control messages before starting the audio
processing. The messages to be used in delayed mode to start the audio processing and interfaces are:

• SET_MIC_START_STATUS

• SET_I2S_START_STATUS

Below you can find an example of booting in delayed mode using the XVF3615-INT Release Package available on
the Raspberry Pi:

1. Using a terminal console on the Raspberry Pi, navigate to the location of the XVF3615-INT Release Package.

2. Use the following command to transfer to the device the image of the XVF3615-INT firmware in the Release
Package (replacing vX_X_X with the appropriate version number):

python3 host/Pi/scripts/send_image_from_rpi.py bin/spi_boot/app_xvf3615_int_spi_boot_

→˓vX_X_X.bin --delay

The device should be ready within 3 seconds.

3. Update the divider from input master clock to 6.144MHz DDR PDM microphone clock using the Control
Utility vfctrl_i2c:

./host/Pi/bin/vfctrl_i2c SET_MCLK_IN_TO_PDM_CLK_DIVIDER 1

4. Update the I2S rate if necessary, default value is 48000 Hz, using the Control Utility vfctrl_i2c:

./host/Pi/bin/vfctrl_i2c SET_I2S_RATE 16000

5. Configure any system specific settings using the Control Utility vfctrl_i2c.

6. Start the audio processing and interfaces by issuing the following commands over the VocalFusion® control
utility:

./host/Pi/bin/vfctrl_i2c SET_MIC_START_STATUS 1

./host/Pi/bin/vfctrl_i2c SET_I2S_START_STATUS 1

4.11.2 SPI Boot of XVF3615-UA

Using the XVF3615-UA Release Package available on the Raspberry Pi, a SPI boot can be executed by following
the steps below:

1. Using a terminal console on the Raspberry Pi, navigate to the location of the XVF3615-UA Release Package.

2. Use the following command to execute the SPI boot process booting the XVF3615-UA firmware in the Re-
lease Package (replacing vX_X_X with the appropriate version number):

python3 host/Pi/scripts/send_image_from_rpi.py bin/spi_boot/app_xvf3615_ua_spi_boot_vX_

→˓X_X.bin

494949

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The device should be ready within 3 seconds.

Note: The delayed mode is not available for XVF3615-UA. This means that settings pertaining to the USB inter-
faces, such as sample rates, bit widths, HID report descriptor and endpoint descriptor, cannot be modified.

4.11.3 Implementing a SPI Boot host application

The SPI boot process shown in the diagram below should be adhered to:

505050

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Fig. 4.2: SPI Boot process and timing requirements

515151

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Note: The phase locked loop (PLL) and netword setup needs enough time to settle after sending the first block
over SPI.

4.12 Configuration and the Data Partition

When using flash to boot the XVF3615 processor, the Data Partition can be used to store commands which are
executed immediately after boot-up to configure and define the functionality of the device. The following sections
describe the definition of the Data Partition, how to generate, and the customisation for specific applications.

4.12.1 Data Partition file structure

The contents of a Data Partition are defined in a .json file which is passed to a generation script which forms the
binary files used when flashing the device. The generation process is described below, after the definition .json
file is described.

For the purpose of explanation consider the following example for a custom XVF3615-UA Data Partition:

{

"comment": "Example data partition definition",

"spispec_path": "16mbit_12.5mhz_sector_4kb.spispec",

"regular_sector_size": "4096",

"hardware_build": "0xFFFFFFFF",

"item_files": [

{ "path": "input/usb_to_device_rate_48k.txt", "comment": "" },

{ "path": "input/device_to_usb_rate_48k.txt", "comment": "" },

{ "path": "input/usb_mclk_divider.txt", "comment": "" },

{ "path": "input/xmos_usb_params.txt", "comment": "" },

{ "path": "input/i2s_rate_16k.txt", "comment": "" },

{ "path": "input/led_after_boot.txt", "comment":"" }

]

}

Comment pairs are provided for the .json configuration, but also the individual item files:

{ "comment": "Example Comment" }

A running VocalFusion® device needs to know size and geometry of its external QSPI flash in order to write
firmware upgrades to it. This is added to a Data Partition in the form of a flash specification or SPI specification.

{ "spispec_path": "16mbit_12.5mhz_sector_4kb.spispec" }

The Data Partition generation process aligns various sections onto flash sectors, and needs to know the sector
size (this can be found in the flash device datasheet):

{ "regular_sector_size": "4096" }

Hardware build is a custom-defined, 32bit identifier written to flash along with the application firmware. It can be
used to define a unique identifier for the hardware revision or other information which cannot be overwritten by
subsequent updates:

525252

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

{ "hardware_build": "0xFFFFFFFF" }

Item files which contain the commands to execute (format of item files described below). An optional comment
field is provided:

{ "path": "input/usb_to_device_rate_48k.txt", "comment": "" }

Note: Because the generator is a Python script, the paths use forward slashes irrespective of platform.

4.12.2 Item files

The item files contain the commands used to configure the system. The commands are simply added to the
file in the same format as the command line control utility. For clarity, multiple item files can be included in the
.json definition, each specifying a sub-set of commands relating to a particular function or aspect. Example item
files for common configurations are provided in the data-partition/input directory of the release package. For
example, the agc_bypass.txt item file bypasses the AGC for both output channels and contains the following
commands:

SET_ADAPT_CH0_AGC 0

SET_ADAPT_CH1_AGC 0

SET_GAIN_CH0_AGC 1

SET_GAIN_CH1_AGC 1

4.12.3 Generating a Data Partition for custom applications

It is recommended that in order to create a custom Data Partition, an existing set of .json and item files is used as
a template andmodified as required. The release package contains example .json and item files for this purpose.

The required additional control commands should be stored in an appropriately named text file inside the
data-partition/input subdirectory. For example, a file named aec_bypass.txt could be added containing
the collected commands:

SET_BYPASS_AEC 1

Note: Only commands which are required to be set with non-default values need to be included in the item file
list.

These text files are then included in the custom JSON description.

In the above example, the aec_bypass.txt is added to a JSON description, bypass_AEC.json as shown below:

...

"item_files": [

...

{

"path": "input/aec_bypass.txt",

"comment": ""

}

(continues on next page)

535353

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

(continued from previous page)

...

]

...

Note: The execution order of the commands and input files can affect the behaviour of the device. Commands
to configure USB and I2S should be added at the beginning of the data image.

Finally, to generate the customdata partition, the command below should be run from the data-partition directory:

python3 xvf361x_data_partition_generator.py <build_type>.json

The generator script produces two data image files; one for factory programming and one for device upgrade in
a directory named output.

For the above example these files will be called:

data_partition_<build_type>_factory_v<release_version>.bin

and

data_partition_<build_type>_upgrade_v<release_version>.bin

These two binary files can be used to factory program or upgrade as described in Updating the firmware and
Generation of Upgrade Image sections respectively.

A .json file is also produced for debugging purposes.

545454

5 Device operation

To facilitate control of the XVF3615 and to allow the specification of the default behaviour, the XVF3615 imple-
ments two mechanisms for control and parameterisation. The first is the Control Interface which is a direct
connection between the host and the XVF3615 and is operational at runtime. The second is the Data Partition
which is held in flash and contains configuration data to parameterise the XVF3615 on boot up. Bothmechanisms
can be used by a host application to control the behaviour of the device.

5.1 Host Utilities

There are seven host utilities provided in the XVF3615 Release Package as pre-compiled utilities and also as
source code to allow rebuilding for other system architectures. The utilities are summarised below:

vfctrl_usb, vfctrl_i2c - Vocal Fusion Control Utilities for the XVF3615-UA, XVF3615-INT respectively

data_partition_generator, vfctrl_json - Uses .json configuration definition and generates binary Data Partitions for
download to flash memory. vfctrl_json is used internally by the data_partition_generator but is referenced here for
completeness.

dfu_suffix_generator - Adds DFU suffix to binary Boot Images and binary Data Partitions to protect the device from
accidental DFU of incompatible image partition pair.

dfu_usb, dfu_i2c - DFU utilities for XVF3615-UA, XVF3615-INT respectively

The pre-compiled versions are found in the following platform sub-directories within the ‘host’ directory of the
Firmware Release Package:

• ./Linux for Linux based systems

• ./MAC for macOS

• ./Pi for Raspbian based Raspberry Pi systems

• .\Win32 for Windows platforms

Note: For cross-platform support vfctrl_usb uses libusb. While this is natively supported in macOS and most
Linux distributions, it requires the installation of a driver for use on a Windows host. Driver installation should be
done using a third-party installation tool like Zadig (https://zadig.akeo.ie/).

5.1.1 Building the host utilities from source code

The source code for these utilities is provided in the following directory:

/host/src

The steps to build each utility are described in the Release Package here:

/host/how_to_build_host_apps.rst

555555

https://zadig.akeo.ie/

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

5.2 Command-line interface (vfctrl)

Toallowcommand-line access to the control interface on theXVF3615 processor, the vfctrl (VocalFusionControl)
utility is provided as part of the release package.

Two versions of this utility are provided for control of the device (a third is used internally by the Data Partition
generation process):

Table 5.1: vfctrl versions and platforms

Version Function Host platforms supported

vfctrl_usb Control of XVF3615-UA over a USB interface Windows - MacOS - Linux - Raspberry Pi OS
vfctrl_i2c Control of XVF3615-INT over I2C interface Raspberry Pi OS

Source code for the utility is also provided for compilation for other host devices if required.

5.3 vfctrl Installation

Control and configuration of the XVF3615-UA are achieved via the control interface implemented over USB. A
VocalFusion® Host Control application, vfctrl_usb, is provided pre-compiled and as source code for this purpose.

For cross-platform support vfctrl_usb uses libusb. While this is natively supported in macOS and most Linux
distributions, it requires the installation of a driver for use on a Windows host. Driver installation should be done
using a third-party installation tool like Zadig (https://zadig.akeo.ie/).

The following steps show how to install the libusb driver using Zadig:

1. Connect the XVF3615 board to the host PC using a USB cable.

2. Open Zadig and select XMOSControl (Interface 3) from the list of devices. If the device is not present, ensure
Options -> List All Devices is checked.

3. Select libusb-win32 from the list of drivers.

4. Click the Reinstall Driver button

565656

https://zadig.akeo.ie/

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Fig. 5.1: Selecting the libusb driver in Zadig

Once installed the vfctrl_usb utility is ready to use. The following steps explain how to use the host control utility.

1. Copy the host directory of the Firmware Release Pack to the host platform.

2. Navigate, from a terminal window, to the copied host directory and execute one of the commands, depend-
ing on the specific platform, as described in the next section.

5.4 vfctrl syntax

Note: The examples below are written for the UA variants, if using the INT variant, please replace vfctrl_usb with
vfctrl_i2c

The general syntax of the command line tool, when used for device control, is as follows:

vfctrl_usb <COMMAND> [arg 1] [arg 2]....[arg N] ['# Comment']

The <COMMAND> is required and is used to control the parameters of the device. Each command either reads or
writes parameters to the XVF3615 device. Commands that read parameters begin with GET_. Commands that
write parameters begin with SET_.

Note: The <COMMAND> verb is case insensitve, e.g. GET_VERSION and get_version are equivalent and both
supported

The available commands are described in detail in the command reference section of the user guide, and a sum-
mary table of all the parameters is provided.

If the <COMMAND> is a GET_ command, the output of the operation is printed to the terminal as in the example
below:

575757

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

vfctrl_usb GET_GPI

GET_GPI: 13

The number and type of arguments, [arg 1]..[arg N], depend on the command and these are detailed in the com-
mand tables. All arguments are integer or floating-point numbers separated by a space. All the values are trans-
ferred to the device as integers and the host utility converts the floating-point values to the appropriate Q format.

The specification of the Q format for representing floating-point numbers is given in Q format conversion section
section of the User Guide.

A secondary form of vfctrl_usb is also available which provides information for developers:

vfctrl_usb [options]

Where [options] can be:

-h, --help : Print help menu

-H, --help-params: Print help menu and the list of all available commands

-d, --dump-params : Print the values of the parameters configured in the device

-n, --no-check-version : Do not check version of firmware image

-f, --cmd-list <filename> : Execute the commands in the given <filename>

Note: For the last option the filename should be a text file with one command per line. The format is the same
as the data partition generator input files.

5.5 Configuration via Control interface

The XVF3615 Voice Processor contains parameters which can be read and written by the host processor at run
time. For information about writing parameters at boot time for initial configuration, please see Configuration via
Data Partition

The XVF3615 firmware is provided as two pre-compiled builds, UA and INT, which provide a parameter control
mechanism over USB endpoint 0 and I2C respectively.

Device functions have controllable parameters for the audio pipeline, GPIO, sample rate settings, audio muxing,
timing and general device setup and adjustment. Commands support either read using the GET_ prefix or write
using the SET_ prefix. Controllable parameters may either be readable and writeable, read-only or write-only. Var-
ious data types are supported including signed/unsigned integer of either 8b or 32b, fixed point signed/unsigned
and floating-point.

In addition, the UA and UA-HYBRID builds include volume controls for input (processed microphone from
XVF3615). The UA build has similar controls for the output (far-end reference signal) too. These are USB Audio
Class 1.0 compliant controls and are accessed via the host OS audio control panel instead of the XVF3615 control
interface. The volumes are initialised to 100% (0dB attenuation) on device power up, which is the recommended
setting.

It is recommended that the USB Audio input and output volume controls on the host are set to 100% (no attenua-
tion) to ensure proper operation of the device. Some host OS (eg. Windows) may store volume setting in between
device connections.

585858

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

For a comprehensive list of parameters, their data types and an understanding of their function within the device
please consult the User Guide section relevant to the function of interest, or the command list in the command
reference section of this guide which summarises all the commands.

The full list of commands can also be obtained through the use of the -H or –help-params option of the control
utility.

vfctrl_usb --help-params

This dumps a list of commands to the console along with a brief description of the function of each command.
The remainder of this section will cover the generic operation of the control interface.

5.5.1 Control operation

The control interfaceworks by sending amessage from the host to the control processwithin the XVF3615 device.
The time required to execute commands can vary, but most will respond within 30ms. Since the commands are
fully acknowledged, by design, the control utility blocks until completion. This interface is designed to allow real-
time tuning and adjustment but may stall due to bus access or data retrieval.

The control interface consists of two parts, a host side application and the device application. These are briefly
summarised below.

5.5.2 Host Application

The example host applications, found in the /host directory in the Release Package, are command-line utilities
that accept text commands and, in the case of a read, provides a text response containing the read parameter(s).
Full acknowledgement is included in the protocol and an error is returned in the case of the command not being
executed properly or handled correctly by the device.

Example host source code andmakefiles are provided in the release package for x86 Linux, ARMLinux (Raspberry
Pi), Windows and Mac platforms along with pre-compiled executables to allow fast evaluation and integration.
For more information refer to the Building the host utilities from source code section.

5.5.3 Device Application

The device is always ready to receive commands. The device includes command buffering and an asynchronous
mechanism which means that Endpoint 0, NACKing for USB or clock stretching for I2C is not required. This
simplifies the host requirements particularly in the cases where clock stretching is not supported by the host I2C
peripheral.

5.6 Configuration via Data Partition

The XVF3615 device flash firmware configuration comprises a Boot image and a Data Partition.

• TheBoot image in the form of an .xe archive is the executable code. It is provided as part of the XVF3615-UA
or XVF3615-INT Release Package. This configures the underlying operation of the device.

• The Data Partition configures a running Boot image instance at startup with a set of commands which
are customisable for the specific application. This contains any command that can be issued at run-time
via USB or I2C, plus some more that are boot-time only. Pre-configured Data Partitions are supplied in the
release packages for default operation.

595959

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

This combination of Boot image and Data Partition allow the functionality of the processor to be configured and
defined without requiring any modification or recompilation of base firmware. The commands stored in the Data
Partition are executed at startup redefining the default operation of the device. More information about the data
partition can be found in Configuration and the Data Partition.

606060

6 USB Interface - (XVF3615-UA and XVF3615-UA-HYBRID only)

The XVF3615-UA variants support a standard USB PHY interface which supports a UAC1.0 audio device and
device control over USB.

In addition the product supports a standard USB HID (Human Interface Device) that can be used to signal the
host device when events are detected on the XVF3615 device inputs.

6.1 USB Interface

The following section details aspects that relate to the USB interface configuration and usage. This section only
pertains to the XVF3615-UA and XVF3615-UA-HYBRID variants of the processor.

The USB interface provides the host three end points:

• Adaptive USB Audio Class 1.0 endpoint for the transfer of far-field voice to the host (for both XVF3615-UA
and XVF3615-UA-HYBRID variants) and AEC reference audio from the host (for XVF3615-UA only).

• Vendor Specific Control allowing the host to control and parameterise the processor.

• Human Interface Device (HID) interrupt endpoint to signal the detection of events which have occurred on
the GPIOs.

The USB Audio interface supports class compliant volume controls on both the input (processed microphone
from XVF3615) and output (AEC reference) interfaces. These controls are accessed via the host OS audio control
panels. They are initialised to 100% (0dB attenuation) on boot and this is the recommended setting for normal
device operation.

By default the device will enumerate with the VID and PID shown below, but these can be configured using the
Data Partition.

Table 6.1: Default XVF3615 USB Identification

USB Identification Value

Vendor Identification (VID) 0x20B1
Product Identification (PID) 0x0018

Warning: If XVF3615 users change the PID value in the data partition, they must also change the XMOS VID
to their own VID to avoid clashes with other XMOS products.

The following section describes the parameters available to configure the USB interface behaviour.

6.2 USB Configuration

Due to the nature of the USB enumeration process, USB setup must be done using a Data Partition so that the
configuration is complete prior to enumeration. The following table summarises the USB interface parameters
which can be configured.

616161

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Table 6.2: USB configuration parameters

Command Type Argu-
ments

Definition

GET_USB_VENDOR_ID
SET_USB_VENDOR_ID

uint32 1 Get / set USB Vendor ID. See notes A and B

GET_USB_PRODUCT_ID
SET_USB_PRODUCT_ID

uint32 1 Get / set USB Product ID. See notes A and B

GET_USB_BCD_DEVICE
SET_USB_BCD_DEVICE

uint32 1 Get / set USB Device Release Number (bcdDe-
vice). See notes A and B

GET_USB_VENDOR_STRING
SET_USB_VENDOR_STRING

uint8 25 Get / set USB Vendor string. See notes A and B

GET_USB_PRODUCT_STRING
SET_USB_PRODUCT_STRING

uint8 25 Get / set USB Product string. See notes A and B

GET_USB_SERIAL_NUMBER
SET_USB_SERIAL_NUMBER

uint32 1 Get / set write-only register to set the behaviour
of iSerialNumber field in USB descriptor. See
notes A and B

GET_USB_TO_DEVICE_RATE
SET_USB_TO_DEVICE_RATE

uint32 1 Get / set sampling frequency of USB reference
from USB host. Default usb_to_device_rate is
48000 samples/sec. See notes A and B

GET_DEVICE_TO_USB_RATE
SET_DEVICE_TO_USB_RATE

uint32 1 Get / set sampling frequency of audio output to
USB host. Default device_to_usb_rate is 48000
samples/sec. See notes A and B

GET_USB_TO_DEVICE_BIT_RES
SET_USB_TO_DEVICE_BIT_RES

uint32 1 Get / set bit depth of USB reference from USB
host. Default usb_to_device_bit_res is 16 bits.
See notes A and B

GET_DEVICE_TO_USB_BIT_RES
SET_DEVICE_TO_USB_BIT_RES

uint32 1 Get / set bit depth of audio output to USB host.
Default device_to_usb_bit_res is 16 bits. See
notes A and B

GET_USB_START_STATUS
SET_USB_START_STATUS

uint8 1 Get / set start USB flag. Set as 1 as the last USB
item in Data Partition. See note A

A: Command supported for Data Partition use only

B: Command must occur before SET_USB_START_STATUS 1

6.3 USB HID interface

A Human Interface Device (HID) is an electronic device with an interface which a human can use for control.
Examples include a Personal Computer with a keyboard andmouse or a consumer appliance with control knobs,
push buttons or a voice interface.

The XVF3615-UA uses the HID interface to inform the host system of events which have occurred on the General
Purpose Inputs (GPI). The following section describes the setup of the GPI HID triggers.

6.4 HID Report configuration

The XVF3615 can send a HID Report when a GPI pin detects an interrupt (logic edge transition event). The HID
features are described below:

626262

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

• The XVF3615 supports three HID Reports, one each for keyboard, consumer and telephony events

• Each HID Report supports detection and reporting of multiple events

• Control commands allow configurable mapping between each GPI pin and each non-reserved HID Report
bit

• Control commands allow boot-time configuration of the meaning (USB HID usage) assigned to each non-
reserved HID Report bit

Table 6.3: USB HID Report 1

USB HID
Usage
Page

Bit
Byte

7 6 5 4 3 2 1 0

Keyboard 0 Rsvd Rsvd Rsvd Rsvd F24 F23 Rsvd ‘t’

Table 6.4: USB HID Report 2

USB HID
Usage
Page

Bit
Byte

7 6 5 4 3 2 1 0

Con-
sumer

0 Volume- Vol-
ume+

Rsvd Voice
Com-
mand

Rsvd Mute AC
Search

AC Stop

Table 6.5: USB HID Report 3

USB HID
Usage
Page

Bit
Byte

7 6 5 4 3 2 1 0

Tele-
phony

0 Rsvd Rsvd Rsvd Rsvd Rsvd Rsvd Phone
mute

Hook
switch

6.5 USB HID report format

A USB HID device describes each field in each HID Report by sending a HID Report Descriptor to the USB host
when requested. Information sent to the USB host for each field establishes the field’s contents and its method
of operation. This information includes a code, known as the Usage ID, which defines the field’s exact meaning.
To allow for reuse of the limited number of code values across many different types of devices, the information
also includes another code, known as the Usage Page ID, which qualifies the meaning of the Usage ID.

The XVF3615 defines a default Usage Page ID and Usage ID for each bit in the HID Report as seen in the default
HID Report tables. It also supports changes to the Usage ID for each non-reserved bit at boot-time via the Data
Partition. Changes to the Usage Page ID are not supported, and each byte in a HID Report pertains to a specific
Usage Page ID as shown in the table below.

636363

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Table 6.6: USB HID report usage page

HID Report Id Usage Page Usage Page ID

1 Keyboard 7
2 Consumer Control 12
3 Telephony 11

To change the meaning of a bit in a HID Report, include the SET_HID_USAGE_HEADER` and SET_HID_USAGE com-
mands in the Data Partition. For example, the following commands issued from the Data Partition change the
meaning of byte 0 bit 1 in HID Report 2 from Application Control (AC) Search to Media Select Telephone:

vfctrl_usb SET_HID_USAGE_HEADER 2 0 1 12

vfctrl_usb SET_HID_USAGE 9 140

The SET_HID_USAGE_HEADER command establishes HID Report 2, byte 0, bit 1 as the target location for the sub-
sequent operation. Its first, second and third arguments make the subsequent SET_HID_USAGE command target
HID Report 2, byte 0 and bit 1, respectively. Its fourth argument specifies the Consumer Control Usage Page as the
qualifier for the subsequent SET_HID_USAGE command. The SET_HID_USAGE command changes the meaning of
the HID Report byte and bit targeted by themost recent SET_HID_USAGE_HEADER command, byte 0 and bit 1 in this
example. Its first argument determines the number of bytes required to store the second argument. The value
9 specifies a one-byte value (less than 256). The number 10 specifies a two-byte value (less than 65536). The
XVF3615 does not support length values greater than two bytes. The second argument to the SET_HID_USAGE

command specifies the Usage ID to associate with the targeted HID Report byte and bit. In this example, the
one-byte value 140 (0x8C) changes the meaning of HID Report 2, byte 0, bit 1 to Media Select Telephone.

Note: Changes to HID usage can occur only at boot-time via the Data Partition. The SET_HID_USAGE command
has no effect when received after the boot process completes and USB operation begins.

6.6 HID report generation

The XVF3615 can send a HID Report when a GPI pin detects an interrupt (logic edge transition event). When
interrupts are enabled using SET_GPI_INT_CONFIG, the HID Report generator automatically services the interrupt
generating a new report. The HID generation features are listed below:

• The HID Report changes upon assertion (positive edge) or de-assertion (negative edge) of a GPI pin

• Each HID Report supports detection and reporting of multiple events

• Control commands allow configurable mapping between each GPI pin and each non-reserved HID Report
bit

• Each GPI pin positive edge asserts a bit in a HID Report; each negative edge enables de-assertion of the bit;
sending the HID Report to the USB host de-asserts each bit previously enabled for de-assertion

• When no event has occurred, depending on “set idle” configuration by the host, the XVF3615 will either reply
with a de-assert report (default) or NAK (set to idle by the host)

Note: HID idle behaviour is platform-specific and rarely does the high-level application code have any control
over the settings. Linux, for example, typically silences the devices by issuing an indefinite idle (NAK report if

646464

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

no change). Other platforms such as MacOS, on the other hand, leave the device verbose by not issuing an idle
(report always sent).

TheHID Report generator requires configuration of eachGPI pinmapped to aHID Report bit to generate interrupts
on both edges.

The default mapping between GPI pins and HID Report bits is:

Table 6.7: GPI pins and HID Report bits mapping

GPI Pin HID Report bit

0 F23
1 F24
2 None
3 None

Use the SET_GPI_INT_CONFIG command to configure a GPI pin that triggers a change in a HID Report. For ex-
ample, the following command configures GPI pin 0 to generate interrupts on both edges, which enables the HID
Report logic:

vfctrl_usb SET_GPI_INT_CONFIG 0 0 3

The first argument is a reserved value and should be set to 0. The second argument makes the command target
pin IP_0. The third argument selects both edges for the interrupt.

Use the SET_GPI_PIN_ACTIVE_LEVEL command to configure the interpretation of signal edges for the GPI pin.
For example, the following command configures GPI pin 0 so that the XVF3615 interprets a falling edge as the
positive (asserting) edge and a raising edge the negative (de-asserting) edge:

vfctrl_usb SET_GPI_PIN_ACTIVE_LEVEL 0 0 0

The first argument is a reserved value and should be set to 0. The second argument makes the command target
pin IP_0. The third argument configures the XVF3615 to treat IP_0 as active low (use 1 to configure as active high).

The Data Partition allows changes to the mapping of GPI pins to HID Report bits at boot-time using the
SET_HID_MAP_HEADER and SET_HID_MAP commands. They may also be used with vfctrl to change the mapping
after the boot process completes and USB operation begins. For example, the following commands change the
mapping so that an interrupt on pin IP_1 results in the XVF3615 reporting a Voice Command instead of an F24:

vfctrl_usb SET_HID_MAP_HEADER 0 1

vfctrl_usb SET_HID_MAP 2 0 4

The SET_HID_MAP_HEADER command establishes the GPI pin for subsequent mapping operations. Its first argu-
ment is reserved and should be set to 0. Its second argument makes the subsequent SET_HID_MAP command
target pin IP_1. The SET_HID_MAP command changes the association between the GPI pin targeted by the most
recent SET_HID_MAP_HEADER command, IP_1 in this example, and the control bits in a HID Report. Its three argu-
ments identify the HID Report and state the byte and bit within that report, to associate with the targeted GPI pin.
In this example, HID Report 2, byte 0, bit 4 associates the Voice Command control bit with IP_1 as can be seen in
the default HID Report table.

Note: The XVF3615 will ignore a SET_HID_MAP command that specifies a reserved bit in the HID Report.

656565

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

6.7 Serial Number

The XVF3615 allows a 24 ASCII character long serial number to be stored in the external flash memory. This
can be accessed using the VocalFusion Control application using the following commands. To write to the
SERIAL_NUMBER field use:

vfctrl_usb SET_SERIAL_NUMBER "DEADBEEF"

and to read use:

vfctrl_usb GET_SERIAL_NUMBER

6.8 USB device enumeration

The XVF3615-UA additionally allows the Serial Number to be copied into the iSerialNumber field of the USB de-
scriptor. As the host reads the USB descriptor on enumeration the command to copy the serial number must be
present in the Data Partition. To illustrate this process the following commandsmust be incorporated into a Data
Partition in the specified order (example assumes SERIAL_NUMBER field is already populated).

To set the USB configuration to use the serial number in the descriptor add the following lines, in this order, to the
Data Partition:

SET_USB_SERIAL_NUMBER 1

To set the USB configuration, then to start enumeration:

SET_USB_START_STATUS 1

666666

7 Wake Word Feature Description

The XVF3615 includes an Amazon wake word engine (WWE) and a corresponding wake word model of up to
250kB. TheWWE is connected to the output from the audio processing pipeline, and it monitors the audio stream
for the “Alexa” wake word.

In normal operation the AVS client on the host will be reading the audio data from the XVF3615 and storing the
data locally in the standard Shared Data Service ring buffer included in the AVS client SDK. The figure below shows
the integration points between the XVF3615 and a standard AVS Client.

Fig. 7.1: Connection between XVF3615 and AVS client

When a wake word is detected the AVS client on the host will be notified of the wake word detection through
either a USB HID report or an interrupt from a output pin on the device.

This guarantees that the host is notified of the wake word in a specific latency window without requiring polling
of the XVF3615.

Once the host has been notified of the wake word detection it should immediately read the wake word start/end
index values and the metadata blob via the vfctrl interface.

7.1 Management of Wake Word Models

7.1.1 Use of the Amazon Wake Word Engine

The XVF3615 firmware contains an executable copy of the Amazon “Pryon Lite” wake word engine. This engine
executes a voice model trained for a specific language. The wake word model must be obtained directly from
Amazon.

This engine, and the voice models associated with it, are licensed as “Restricted Program Materials” under the
Program Materials License Agreement (the “Agreement”) in connection with the Alexa Voice Service Program.
The Agreement is available at https://developer.amazon.com/support/legal/pml.

See the Agreement for the specific terms and conditions of the Agreement.

676767

https://developer.amazon.com/support/legal/pml

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The use of the wake word engine requires implementation of either (i) AVS SDK Adapter for Wake Word or Wake
Word Lite; or (ii) your own implementation of the AVS SDK Adapter for Wake Word or Wake Word Lite, including
sending Wake Word Diagnostics Information (WWDI) or Wake Word detection metadata as a part of the Alexa
Service API calls.

Please contact your AVS Solution Architect for more details.

7.1.2 Adding a wake word model in the data partition

As noted above, the XVF3615 device firmware package does not contain a wake word model. The distributed
application will operate as a voice processor with the wake word detection feature disabled.

To enable the wake word detector the user must obtain the wake word model from their Amazon SP representa-
tive.

This wake word model will be supplied as a binary .bin file which needs to be copied onto the system that is
being used to build the new data partition.

To load a wake word model for XVF3615 via the data partition, you need to generate a new data image for
XVF3615. You can use one of the JSON configs in the directory data-partition which contains the name wwe.
You must choose the JSON file that matches your product, for example ua_wwe.json or int_wwe.json.

To include the model follow the steps below:

1. Request the necessary model from Amazon and download it in your local machine

2. In the JSON file find the entry for the wake word model, for example in ua_wwe.json

{

"path": "ww_models/WR_250k.en-US.alexa.bin",

"comment": "Wakeword model. Keyword is Alexa"

}

3. Replace the value of path with the path to your model, relative to the JSON file.

4. Generate and load the new data partition with the process described in Configuration and the Data Partition.

The device supports models up to 250kB. In the default data partitions, there are several settings to configure
and tune the wake word engine. These settings have been found to give the optimal performance of the wake
word engine on the XMOS dev kits.

If the device is booting from flash, the model is stored in the data partition. The XVF3615 only supports execution
of one wake word model at any time.

Models can be changed by rebuilding the data partition in the same way as described in Configuration and the
Data Partition.

The path to the wake word model is in the JSON config file in data-partition. After updating the path, the data
partition binary must be regenerated and it can be flashed to the device.

7.1.3 Replace model in SPI boot mode

The XVF3615 can be booted from an attached QSPI flash device or configured as an SPI slave device allowing
the image to be transferred directly from the host processor. This second option allows the host system to store
multiple firmware images with different language models to allow dynamic changes of language models while
the host is operational.

The necessary Wake word models must be requested from Amazon.

686868

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

If you are booting from flash, the model is updated in the data partition.

If you are booting via SPI boot, the model must be embedded in the boot binary.

The model is updated by using the script update_spi_boot_ww_model.py stored in the host directory. The com-
mand to update the model in the SPI bootable binary is:

python3 update_spi_boot_ww_model.py original_bin_file ww_model_bin_file modified_bin_file

where original_bin_file is the binary with the model to update (or without a model), ww_model_bin_file is
the model to use in the new binary and modified_bin_file is the name of the new binary with the updated
model.

To restart the device to load a new model or to recover from error conditions the host controller should be con-
nected to and assert the RES_N input signal to the XVF3615, as described in Implementing a SPI Boot host appli-
cation.

7.2 Wake Word Configuration

The Wake Word Engine (WWE) implemented in the XVF3615 comprises two components:

1. Core wake word engine – (executable) This component is responsible for processing the audio stream and
it contains a Neural Network that can identify the wake word in the audio stream. This component is a fixed
part of the standard XVF3615 firmware image.

2. Alexa Model – (binary data) The binary data contains the network parameters for the Neural Network and
can be changed to allow support of different wake words, e.g. for support of different languages.

The XVF3615 release package does not contain a wake word model. Wake word models can be obtained from
Amazon directly - please contact your AVS Solution Architect at Amazon.

A standard XVF3615 firmware image comprises an integrated binary executable containing both these compo-
nents and the audio processing executable. The release package also contains a utility that allows a developer
to change the binary model in the firmware image to incorporate a language model. The WWE can only execute
one model in the device at any time.

TheWWE integrated in the XVF3615 continuouslymonitors the audio streamat the output of the audio processing
pipeline. When the WWE detects the presence of the wake word in the audio stream the XVF3615 device signals
the host processor.

The XVF3615 provides three mechanisms to inform the host of the detection. These mechanism can be individ-
ually enabled via the control interface.

7.2.1 DIGITAL OUTPUT

When a wake word (WW) is detected the XVF3615 can generate a pulse on one of the four General Purpose
Output(GPO) pins on the device. The specific pin used and the duration of the pulse can be configured via the
control interface.

This digital output can be used to trigger a host interrupt, or it can be polled by the host.

The GPO pin used to signal the detection must be configured via the vfctrl interface or in the XVF3615 data
partition.

For example the following commands set GPO_0 to emit a 50ms pulse following detection of a wake word.

696969

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

vfctrl_usb SET_WWE_DETECTED_PIN 0

vfctrl_usb SET_WWE_DETECTED_PERIOD 5

7.2.2 Wake Word Counter

The XVF3615 maintains a count of the number of WW detections and this counter can be polled by a host, and
reset as required. This feature in useful for system testing and tuning as it allows the WWE to be characterised
independently of running a full AVS client.

The sequence below will reset the counter and then, after some time report the number of wake words detected
since that reset event.

vfctrl_usb SET_WWE_COUNT 0

:

:

.. Some time later

:

:

vfctrl_usb GET_WWE_COUNT

7.2.3 USB HID

When the WWE detects a wake word the XVF3615 can send a HID Report. The XVF3615 supports three HID
Reports, one each for keyboard, consumer and telephony events.

With the default data partition the XVF3615 reports awakeword event via aHID report. The report can bemodified
at boot-time to report detection as another event. The default event is KEY_T as described in the table below:

Table 7.1: USB HID Report - With KEY_T

USB HID
Usage
Page

Bit
Byte

7 6 5 4 3 2 1 0

Keyboard 0 Rsvd Rsvd Rsvd Rsvd F24 F23 Rsvd ‘t’

Please see the HID report generation section for further details on configuration of the USB HID.

The report is triggered when the WWE detects a wake word. Following receipt of the HID report the host can use
a vfctrl command to read the start and end index to identify the position of the wake word.

7.3 Wake word specific control commands

The XVF3615 implements a control protocol (the vfctrl interface) which supports all of the control commands in
Vfctrl Control Interface. The command set of the XVF3615 includes a set of extra commands to control the wake
word engine. The XVF3615 version 5.7 supports the following additional commands for wake word configuration
and diagnostics.

707070

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Table 7.2: Wake Word Control Commands

Parameter Name Read /
Write

Number
of Val-
ues

Description

SET_WWE_DETECTED_PIN WRITE 1 Set which GPO pins are used to output wake-
word detected signal. Pins defined using a bit
mask. -1 disables this function

GET_WWE_DETECTED_PIN READ 1 Get which GPO pins are used to output wake-
word detected signal. Pins defined using a bit
mask. -1 disables this function

SET_WWE_THRESHOLD WRITE 1 Set wakeword detection threshold with integer
in range [1 - 1000] with 1 being most permissive
and 1000 being least permissive

GET_WWE_THRESHOLD READ 1 Get wakeword detection threshold with integer
in range [1 - 1000] with 1 being most permissive
and 1000 being least permissive

GET_WWE_VAD READ 1 Get the Voice Activity Detected (VAD) signal as
generated by the wakeword engine. 0=no VAD -
1=VAD

GET_WWE_COUNT READ 1 Get the number of wakewords detected since
last check

SET_WWE_COUNT WRITE 1 Set the number of wakewords detected. Use
this command to reset the count

GET_WW_MODEL_STATUS READ 1 Get the wakewords model load status. 0:INIT
1:DATA_FOUND 2:LOADED 3:ERROR

GET_WWE_DETECTED_PERIOD READ 1 Get the period of the wakeword detected GPO
signal in 10 millisecond units

SET_WWE_DETECTED_PERIOD WRITE 1 Set the period of the wakeword detected GPO
signal in 10 millisecond units

GET_WWE_INDEXES READ 3 Get sample indexes of WWE: 0: current index -
1: WW begin index - 2: WW end index

GET_WWE_VERSION READ 20 Get version of WW engine
GET_WW_MODEL_VERSION READ 50 Get version of WW model
GET_WWE_DETECTED _KEYWORD READ 20 Get string of detected WW
GET_WWE_DETECTED _META-
DATA_BLOB_SIZE

READ 1 Get size of detected WW metadata blob

GET_WWE_DETECTED _META-
DATA_BLOB

READ 63 Get data of detected WW metadata blob

SET_WWE_DETECTED _META-
DATA_BLOB _INDEX

WRITE 1 Set read index of WWE of detected WW meta-
data blob

The XVF3615-INT provides the interface via I2C and the XVF3615-UA provides it via a USB Endpoint.

7.4 Wake Word Integration

The client has to transmit some additional data to the AVS cloud when a wake word is detected: the wake word
indexes and the metadata blob.

717171

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

7.4.1 Wake word start and end index values

Note: The wake word start and end indexes are reported by the XVF3615 with respect to the audio samples that
it is streaming. The AVS client has to take into account any processing delay in the host.

vfctrl_usb GET_WWE_INDEXES

This command returns three 64bit values as shown in the table below.

Table 7.3: Returned WW index values

Index Value Note

0 Current_index Free running. Host can read current value at any time
1 WW_start_index WWE index for the start of the wake word
2 WW_end_index WWE index for the end of the wake word

Note: The WW_start_index and WW_end_index values are only updated following a wake word detection. The
host can execute the GET_WWE_INDEXES at anytime to read the current value of the XVF3615 counter.

These two WW index values can be used by the AVS client to compute the appropriate offset into the Shared-
DataStream (SDS) ring buffer to allow the AVS client to start sending data from that buffer, including the required
0.5 second pre-roll data, to the AVS cloud service for second stage validation and command processing.

Fig. 7.2: Calculation of start of buffer to stream to AVS

Depending on the design of the client on the host there may be an offset between the time that the host receives
a wake word notification and the time the client processes the notification, as shown in the figure above.

727272

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

In order to compute this offset, the XVF3615 supports amechanism that enables the host tomeasure the latency.
If the host issues a GET_WWE_INDEXES vfctrl command the XVF3615 will respond with the current value of the
sample counter. The offset can then be calculated as the difference between the returned XVF3615 wake word
counter and the SDS buffer write pointer value at time the client reads the sample counter.

The AVS client can also synchronise periodically to correct for any drift due to latency or other timing variations
in the host.

Both the synchronisation process and the wake word detection process are shown in the following diagram.

Fig. 7.3: Interaction between AVS client and XVF3615

Note: If the XVF3615 is used in the INT configuration, the send HID report function in the diagramwill be replaced
with the XVF3615 sending an interrupt pulse via the GPO to the host, but the mechanism to read the WW index
from the device is the same, using the vfctrl_i2c interface.

7.4.2 Wake word metadata blob

The wake word metadata blob can be retrieved using the following commands:

vfctrl_usb GET_WWE_DETECTED_METADATA_BLOB_SIZE

vfctrl_usb GET_WWE_DETECTED_METADATA_BLOB

vfctrl_usb SET_WWE_DETECTED_METADATA_BLOB_INDEX

737373

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The metadata size is usually larger than the maximum size of the control message, namely 63 bytes. The full
data blob can be read using the commands above as follows:

1. Retrieve the blob size with the command GET_WWE_DETECTED_METADATA_BLOB_SIZE.

2. Retrieve 63 bytes of the blob data with the command GET_WWE_DETECTED_METADATA_BLOB.

3. Set the read index of the blob data to 63 with the command SET_WWE_DETECTED_METADATA_BLOB_INDEX.

4. Repeat step 2. (read 63 bytes of data) and 3. (increment read index by 63) till all the blob data is read.

For example if the metadata size is 224, you need to run the following commands:

vfctrl_usb GET_WWE_DETECTED_METADATA_BLOB_SIZE

vfctrl_usb GET_WWE_DETECTED_METADATA_BLOB

vfctrl_usb SET_WWE_DETECTED_METADATA_BLOB_INDEX 63

vfctrl_usb GET_WWE_DETECTED_METADATA_BLOB

vfctrl_usb SET_WWE_DETECTED_METADATA_BLOB_INDEX 126

vfctrl_usb GET_WWE_DETECTED_METADATA_BLOB

vfctrl_usb SET_WWE_DETECTED_METADATA_BLOB_INDEX 189

vfctrl_usb GET_WWE_DETECTED_METADATA_BLOB

Note: The command GET_WWE_DETECTED_METADATA_BLOB reports 63 bytes of data and it pads its content
with zeros if the data size is less than 63.

747474

8 Reference information

8.1 Base vfctrl command list

The table below summarises the XVF3615 parameters which are programmable via the control interfaces or flash
data partition. These parameters allow the setup of the XVF3615 processor’s interfaces and tuning of the internal
signal processing.

To aid quick reference of the key parameters the summary is split into two sections. This section details the
most frequently used parameters which are required for interface configuration and basic control, and the second
details advanced parameters which will not generally need to be modified.

The XVF3615 version 5.7 supports the following commands for configuration, control and diagnostics.

Group Command Num-
ber of
Values

UA Default INT Default

ADMIN GET_HARDWARE_BUILD 1 - -
GET_RUN_STATUS 1 - -
GET_SERIAL_NUMBER 26 - -
SET_SERIAL_NUMBER 26 - -
GET_VERSION 1 v5.7.2 v5.7.2

AEC GET_BYPASS_AEC 1 0 0
SET_BYPASS_AEC 1 - -

AGC GET_ADAPT_CH0_AGC 1 1 1
GET_ADAPT_CH1_AGC 1 1 1
GET_GAIN_CH0_AGC 1 53.8407 71.1364
GET_GAIN_CH1_AGC 1 422.3719 432.6752

AUDIO GET_ADEC_ENABLED 1 0 0
SET_ADEC_ENABLED 1 - -
GET_ADEC_MODE 1 - -
GET_ALT_ARCH_ENABLED 1 0 0
SET_ALT_ARCH_ENABLED 1 - -
GET_BYPASS_IC 1 0 0
SET_BYPASS_IC 1 - -
GET_BYPASS_SUP 1 0 0
SET_BYPASS_SUP 1 - -
SET_DELAY_DIRECTION 1 - -

GPIO GET_GPI_PIN 1 0 0
SET_GPI_PIN_ACTIVE_LEVEL 3 - -
GET_GPI_PORT 1 0 0
GET_GPI_READ_HEADER 2 0 0 0 0
SET_GPI_READ_HEADER 2 - -
SET_GPO_FLASHING 3 - -
SET_GPO_PIN 3 - -
SET_GPO_PIN_ACTIVE_LEVEL 3 - -
SET_GPO_PORT 2 - -
SET_GPO_PWM_DUTY 3 - -

continues on next page

757575

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Table 8.1 – continued from previous page
Group Command Num-

ber of
Values

UA Default INT Default

SET_IO_MAP 2 - -
GET_IO_MAP_AND_SHIFT 24 - -
SET_OUTPUT_SHIFT 2 - -

USB GET_DEVICE_TO_USB_BIT_RES 1 16 32
SET_DEVICE_TO_USB_BIT_RES 1 - -
GET_DEVICE_TO_USB_RATE 1 48000 48000
SET_DEVICE_TO_USB_RATE 1 - -
GET_USB_PRODUCT_ID 1 22 22
SET_USB_PRODUCT_ID 1 - -
GET_USB_PRODUCT_STRING 26 XVF3615

Voice Pro-
cessor

XVF3615 Voice Pro-
cessor

SET_USB_PRODUCT_STRING 26 - -
SET_USB_SERIAL_NUMBER 1 - -
GET_USB_TO_DEVICE_BIT_RES 1 16 32
SET_USB_TO_DEVICE_BIT_RES 1 - -
GET_USB_TO_DEVICE_RATE 1 48000 48000
SET_USB_TO_DEVICE_RATE 1 - -
GET_USB_VENDOR_ID 1 8369 8369
SET_USB_VENDOR_ID 1 - -
GET_USB_VENDOR_STRING 26 XMOS XMOS
SET_USB_VENDOR_STRING 26 - -

8.2 Advanced vfctrl command list

The XVF3615 version 5.7 supports the following additional commands for advanced configuration and diagnos-
tics.

Group Command Num-
ber of
Values

UA Default INT Default

ADMIN GET_BLD_HOST 30 - -
GET_BLD_MODIFIED 6 - -
GET_BLD_MSG 50 - -
GET_BLD_REPO_HASH 7 - -
GET_BLD_XGIT_HASH 7 - -
GET_BLD_XGIT_VIEW 50 - -
GET_DELAY_SAMPLES 1 0 0
SET_DELAY_SAMPLES 1 - -
GET_STATUS 1 - -

AEC GET_ADAPTATION_CONFIG_AEC 1 0 0
SET_ADAPTATION_CONFIG_AEC 1 - -
GET_COEFF_INDEX_AEC 1 0 0
SET_COEFF_INDEX_AEC 1 - -
GET_ERLE_CH0_AEC 2 - -

continues on next page

767676

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Table 8.2 – continued from previous page
Group Command Num-

ber of
Values

UA Default INT Default

GET_ERLE_CH1_AEC 2 - -
GET_F_BIN_COUNT_AEC 1 - -
GET_FILTER_COEFFICIENTS_AEC 14 - -
GET_FORCED_MU_VALUE_AEC 1 1 1
SET_FORCED_MU_VALUE_AEC 1 - -
GET_FRAME_ADVANCE_AEC 1 - -
GET_MU_LIMITS_AEC 2 1.0000

0.0001
1.0000
0.0001

SET_MU_LIMITS_AEC 2 - -
GET_MU_SCALAR_AEC 1 2 2
SET_MU_SCALAR_AEC 1 - -
RESET_FILTER_AEC 1 - -
GET_SIGMA_ALPHAS_AEC 3 5 5 11 5 5 11
SET_SIGMA_ALPHAS_AEC 3 - -
GET_X_CHANNEL_PHASES_AEC 10 - -
GET_X_CHANNELS_AEC 1 - -
GET_X_ENERGY_DELTA_AEC 1 0.000000 dB 0.000000 dB
SET_X_ENERGY_DELTA_AEC 1 - -
GET_X_ENERGY_GAMMA_LOG2_AEC 1 6 6
SET_X_ENERGY_GAMMA_LOG2_AEC 1 - -
GET_Y_CHANNELS_AEC 1 - -

AGC SET_ADAPT_CH0_AGC 1 - -
SET_ADAPT_CH1_AGC 1 - -
GET_ADAPT_ON_VAD_CH0_AGC 1 1 1
SET_ADAPT_ON_VAD_CH0_AGC 1 - -
GET_ADAPT_ON_VAD_CH1_AGC 1 1 1
SET_ADAPT_ON_VAD_CH1_AGC 1 - -
GET_DECREMENT_GAIN_STEPSIZE_CH0_AGC 1 0.87 0.87
SET_DECREMENT_GAIN_STEPSIZE_CH0_AGC 1 - -
GET_DECREMENT_GAIN_STEPSIZE_CH1_AGC 1 0.988 0.988
SET_DECREMENT_GAIN_STEPSIZE_CH1_AGC 1 - -
SET_GAIN_CH0_AGC 1 - -
SET_GAIN_CH1_AGC 1 - -
GET_INCREMENT_GAIN_STEPSIZE_CH0_AGC 1 1.197 1.197
SET_INCREMENT_GAIN_STEPSIZE_CH0_AGC 1 - -
GET_INCREMENT_GAIN_STEPSIZE_CH1_AGC 1 1.0034 1.0034
SET_INCREMENT_GAIN_STEPSIZE_CH1_AGC 1 - -
GET_LC_CORR_THRESHOLD_CH0_AGC 1 0 0
SET_LC_CORR_THRESHOLD_CH0_AGC 1 - -
GET_LC_CORR_THRESHOLD_CH1_AGC 1 0.993 0.993
SET_LC_CORR_THRESHOLD_CH1_AGC 1 - -
GET_LC_DELTAS_CH0_AGC 3 0.0000

0.0000
0.0000

0.0000
0.0000
0.0000

SET_LC_DELTAS_CH0_AGC 3 - -
continues on next page

777777

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Table 8.2 – continued from previous page
Group Command Num-

ber of
Values

UA Default INT Default

GET_LC_DELTAS_CH1_AGC 3 299.9954
49.9992
99.9985

299.9954
49.9992
99.9985

SET_LC_DELTAS_CH1_AGC 3 - -
GET_LC_ENABLED_CH0_AGC 1 0 0
SET_LC_ENABLED_CH0_AGC 1 - -
GET_LC_ENABLED_CH1_AGC 1 1 1
SET_LC_ENABLED_CH1_AGC 1 - -
GET_LC_GAINS_CH0_AGC 4 0.0000

0.0000
0.0000
0.0000

0.0000
0.0000
0.0000
0.0000

SET_LC_GAINS_CH0_AGC 4 - -
GET_LC_GAINS_CH1_AGC 4 1.0000

0.9000
0.1000
0.0224

1.0000
0.9000
0.1000
0.0224

SET_LC_GAINS_CH1_AGC 4 - -
GET_LC_GAMMAS_CH0_AGC 3 0.0000

0.0000
0.0000

0.0000
0.0000
0.0000

SET_LC_GAMMAS_CH0_AGC 3 - -
GET_LC_GAMMAS_CH1_AGC 3 1.0020

1.0050
0.9950

1.0020
1.0050
0.9950

SET_LC_GAMMAS_CH1_AGC 3 - -
SET_LC_N_FRAMES_CH0_AGC 2 - -
GET_LC_N_FRAMES_CH1_AGC 2 17 34 17 34
SET_LC_N_FRAMES_CH1_AGC 2 - -
GET_LOWER_THRESHOLD_CH0_AGC 1 0.1905 0.1905
SET_LOWER_THRESHOLD_CH0_AGC 1 - -
GET_LOWER_THRESHOLD_CH1_AGC 1 0.4 0.4
SET_LOWER_THRESHOLD_CH1_AGC 1 - -
GET_MAX_GAIN_CH0_AGC 1 999.9847 999.9847
SET_MAX_GAIN_CH0_AGC 1 - -
GET_MAX_GAIN_CH1_AGC 1 999.9847 999.9847
SET_MAX_GAIN_CH1_AGC 1 - -
GET_MIN_GAIN_CH0_AGC 1 0 0
SET_MIN_GAIN_CH0_AGC 1 - -
GET_MIN_GAIN_CH1_AGC 1 0 0
SET_MIN_GAIN_CH1_AGC 1 - -
GET_SOFT_CLIPPING_CH0_AGC 1 1 1
SET_SOFT_CLIPPING_CH0_AGC 1 - -
GET_SOFT_CLIPPING_CH1_AGC 1 1 1
SET_SOFT_CLIPPING_CH1_AGC 1 - -
GET_UPPER_THRESHOLD_CH0_AGC 1 0.7079 0.7079
SET_UPPER_THRESHOLD_CH0_AGC 1 - -
GET_UPPER_THRESHOLD_CH1_AGC 1 0.4 0.4

continues on next page

787878

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Table 8.2 – continued from previous page
Group Command Num-

ber of
Values

UA Default INT Default

SET_UPPER_THRESHOLD_CH1_AGC 1 - -
AUDIO GET_ADEC_FAR_THRESHOLD 1 0.000002 dB 0.000002 dB

SET_ADEC_FAR_THRESHOLD 1 - -
GET_ADEC_PEAK_TO_AVERAGE_GOOD_AEC 1 4.000000 dB 4.000000 dB
SET_ADEC_PEAK_TO_AVERAGE_GOOD_AEC 1 - -
GET_ADEC_TIME_SINCE_RESET 1 - -
GET_AEC_PEAK_TO_AVERAGE_RATIO 1 - -
GET_AEC_RESET_TIMEOUT 1 -1 -1
SET_AEC_RESET_TIMEOUT 1 - -
GET_AGM 1 - -
GET_DELAY_DIRECTION 1 0 0
GET_DELAY_ESTIMATE 1 - -
GET_DELAY_ESTIMATOR_ENABLED 1 0 0
SET_DELAY_ESTIMATOR_ENABLED 1 - -
GET_ERLE_BAD_BITS 1 -0.066 -0.066
SET_ERLE_BAD_BITS 1 - -
GET_ERLE_BAD_GAIN 1 0.0625 0.0625
SET_ERLE_BAD_GAIN 1 - -
GET_ERLE_GOOD_BITS 1 2 2
SET_ERLE_GOOD_BITS 1 - -
SET_MANUAL_ADEC_CYCLE_TRIGGER 1 - -
GET_MAX_CONTROL_TIME_STAGE_A 1 - -
GET_MAX_CONTROL_TIME_STAGE_B 1 - -
GET_MAX_CONTROL_TIME_STAGE_C 1 - -
GET_MAX_DSP_TIME_STAGE_A 1 - -
GET_MAX_DSP_TIME_STAGE_B 1 - -
GET_MAX_DSP_TIME_STAGE_C 1 - -
GET_MAX_IDLE_TIME_STAGE_A 1 - -
GET_MAX_IDLE_TIME_STAGE_B 1 - -
GET_MAX_IDLE_TIME_STAGE_C 1 - -
GET_MAX_RX_TIME_STAGE_A 1 - -
GET_MAX_RX_TIME_STAGE_B 1 - -
GET_MAX_RX_TIME_STAGE_C 1 - -
GET_MAX_TX_TIME_STAGE_A 1 - -
GET_MAX_TX_TIME_STAGE_B 1 - -
GET_MAX_TX_TIME_STAGE_C 1 - -
GET_MIC_SHIFT_SATURATE 2 0 0 0 0
SET_MIC_SHIFT_SATURATE 2 - -
GET_MIN_CONTROL_TIME_STAGE_A 1 - -
GET_MIN_CONTROL_TIME_STAGE_B 1 - -
GET_MIN_CONTROL_TIME_STAGE_C 1 - -
GET_MIN_DSP_TIME_STAGE_A 1 - -
GET_MIN_DSP_TIME_STAGE_B 1 - -
GET_MIN_DSP_TIME_STAGE_C 1 - -
GET_MIN_IDLE_TIME_STAGE_A 1 - -
GET_MIN_IDLE_TIME_STAGE_B 1 - -
GET_MIN_IDLE_TIME_STAGE_C 1 - -

continues on next page

797979

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Table 8.2 – continued from previous page
Group Command Num-

ber of
Values

UA Default INT Default

GET_MIN_RX_TIME_STAGE_A 1 - -
GET_MIN_RX_TIME_STAGE_B 1 - -
GET_MIN_RX_TIME_STAGE_C 1 - -
GET_MIN_TX_TIME_STAGE_A 1 - -
GET_MIN_TX_TIME_STAGE_B 1 - -
GET_MIN_TX_TIME_STAGE_C 1 - -
GET_PEAK_PHASE_ENERGY_TREND_GAIN 1 3 3
SET_PEAK_PHASE_ENERGY_TREND_GAIN 1 - -
GET_PHASE_POWER_INDEX 1 0 0
SET_PHASE_POWER_INDEX 1 - -
GET_PHASE_POWERS 5 - -
RESET_TIME_STAGE_A 1 - -
RESET_TIME_STAGE_B 1 - -
RESET_TIME_STAGE_C 1 - -

FILTER GET_FILTER_BYPASS 1 1 1
SET_FILTER_BYPASS 1 - -
GET_FILTER_COEFF 10 -0.00000000

-0.00000000
0.00000000
0.00000000
0.00000000
-0.00000000
-0.00000000
0.00000000
0.00000000
0.00000000

-0.00000000
-0.00000000
0.00000000
0.00000000
0.00000000
-0.00000000
-0.00000000
0.00000000
0.00000000
0.00000000

SET_FILTER_COEFF 10 - -
GET_FILTER_COEFF_RAW 10 0 0 0 0 0 0 0 0

0 0
0 0 0 0 0 0 0 0
0 0

SET_FILTER_COEFF_RAW 10 - -
GET_FILTER_INDEX 1 0 0
SET_FILTER_INDEX 1 - -

GPIO SET_GPI_INT_CONFIG 3 - -
GET_GPI_INT_PENDING_PIN 1 - -
GET_GPI_INT_PENDING_PORT 1 - -
GET_MAX_UBM_CYCLES 1 - -
GET_MCLK_IN_TO_PDM_CLK_DIVIDER 1 2 2
SET_MCLK_IN_TO_PDM_CLK_DIVIDER 1 - -
GET_MIC_START_STATUS 1 2 2
SET_MIC_START_STATUS 1 - -
RESET_MAX_UBM_CYCLES 1 - -
GET_SYS_CLK_TO_MCLK_OUT_DIVIDER 1 12 12
SET_SYS_CLK_TO_MCLK_OUT_DIVIDER 1 - -

continues on next page

808080

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Table 8.2 – continued from previous page
Group Command Num-

ber of
Values

UA Default INT Default

I2C GET_I2C 56 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

-

SET_I2C 56 - -
GET_I2C_READ_HEADER 3 0 0 0 -
SET_I2C_READ_HEADER 3 - -
GET_I2C_WITH_REG 56 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

-

SET_I2C_WITH_REG 56 - -
I2S GET_I2S_RATE 1 48000 48000

SET_I2S_RATE 1 - -
GET_I2S_START_STATUS 1 2 2
SET_I2S_START_STATUS 1 - -

IC GET_ADAPTATION_CONFIG_IC 1 0 0
SET_ADAPTATION_CONFIG_IC 1 - -
GET_CH1_BEAMFORM_ENABLE 1 1 1
SET_CH1_BEAMFORM_ENABLE 1 - -
GET_COEFFICIENT_INDEX_IC 1 0 0
SET_COEFFICIENT_INDEX_IC 1 - -
GET_FILTER_COEFFICIENTS_IC 14 - -
GET_FORCED_MU_VALUE_IC 1 0.999 0.6021
SET_FORCED_MU_VALUE_IC 1 - -
GET_PHASES_IC 1 - -
GET_PROC_FRAME_BINS_IC 1 - -
RESET_FILTER_IC 1 - -
GET_SIGMA_ALPHA_IC 1 11 11
SET_SIGMA_ALPHA_IC 1 - -
GET_X_ENERGY_DELTA_IC 1 0.000070 dB 0.000070 dB
SET_X_ENERGY_DELTA_IC 1 - -
GET_X_ENERGY_GAMMA_LOG2_IC 1 2 2
SET_X_ENERGY_GAMMA_LOG2_IC 1 - -

KWD GET_KWD_BOOT_STATUS 1 - -
GET_KWD_HID_EVENT_CNT 1 0 0
SET_KWD_HID_EVENT_CNT 1 - -
GET_KWD_INTERRUPT_PIN 1 4 4
SET_KWD_INTERRUPT_PIN 1 - -

SPI GET_SPI 56 - -
SET_SPI_PUSH 56 - -
SET_SPI_PUSH_AND_EXEC 56 - -

continues on next page

818181

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Table 8.2 – continued from previous page
Group Command Num-

ber of
Values

UA Default INT Default

GET_SPI_READ_HEADER 2 0 0 0 0
SET_SPI_READ_HEADER 2 - -

USB GET_HID_MAP 2 0 2 -
SET_HID_MAP 2 - -
GET_HID_MAP_HEADER 2 0 0 -
SET_HID_MAP_HEADER 2 - -
GET_HID_USAGE 2 9 23 -
SET_HID_USAGE 2 - -
GET_HID_USAGE_HEADER 3 0 0 7 -
SET_HID_USAGE_HEADER 3 - -
GET_USB_BCD_DEVICE 1 1 1
SET_USB_BCD_DEVICE 1 - -
GET_USB_START_STATUS 1 2 -
SET_USB_START_STATUS 1 - -

8.3 Boot status codes (RUN_STATUS)

The following table describes the Boot Status codes returned by the startup processes accessible though the
GET_RUN_STATUS control utility command.

828282

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Table 8.3: XVF3615 Boot Status Codes

Code Label Note

0 INIT Reserved initial value. Decline attempts to initiate
DFU.

1 DATA_PARTITION_NOT_FOUND Not used.
2 FACTORY_DATA_SUCCESS Normal operation.
3 UPGRADE_DATA_SUCCESS Normal operation.
4 FACTORY_DATA_IN_PROGRESS Image scanning in progress. Decline attempts to ini-

tiate DFU.
5 UPGRADE_DATA_IN_PROGRESS Image scanning in progress. Decline attempts to ini-

tiate DFU.
6 DFU_IN_PROGRESS Enough DFU commands received to establish a con-

nection to on-board flash memory. Not cleared until
reboot.

7 HW_BUILD_READ_SUCCESS Reserved intermediate value. Normally never re-
turned.

8 HW_BUILD_PARTITION_SIZE_ERROR Problem reading data partition header. Check factory
programming.

9 HW_BUILD_PARTITION_BASE_ERROR Problem reading data partition header. Check factory
programming.

10 HW_BUILD_READ_ERROR Problem reading data partition header. Check factory
programming.

11 HW_BUILD_CRC_ERROR Problem reading data partition header. Check factory
programming. May indicate that no data partition is
present or a flash wear issue.

12 HW_BUILD_TAG_ERROR Problem reading data partition header. Check factory
programming.

13 FACTORY_VERSION_ERROR No valid upgrade image found. A factory image did
not match running version. This can indicate fail-safe
mode.

14 UPGRADE_VERSION_ERROR Valid upgrade boot and data images found but data
image version does notmatch running version. Check
correct version of deployed field upgrade.

15 FACTORY_ITEM_READ_ERROR Problem reading configuration items from data im-
age. Unexpected error.

16 UPGRADE_ITEM_READ_ERROR Problem reading configuration items from data im-
age. Unexpected error.

17 FACTORY_ITEM_INVALID_TYPE Last item encountered is not of terminator type.
Should never happen with script generated data im-
ages. Check generation procedure.

18 UPGRADE_ITEM_INVALID_TYPE Last item encountered is not of terminator type.
Should never happen with script generated data im-
ages. Check generation procedure.

19 DFU_FLASH_CONNECT_FAILED Failed to establish on-board flash connection. Check
factory programming. Check flash specification (see
section below).

20 DFU_FLASH_SPEC_UNSUITABLE Flash specification unsuitable for DFU. Check flash
specification (see section below).

838383

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

8.4 Example .SPISPEC file format

SPISPEC file for 64Mbit Winbond W25Q64JV (used on XK-VOICE-L71 kit).

This file is required to run the xflash command to program the firmware into the flash memory device.

Comments are inserted with /* .. */.

0, /* W25Q64JV - Just specify 0 as flash_id */

256, /* page size */

32768, /* num pages */

3, /* address size */

4, /* log2 clock divider */

0x9F, /* QSPI_RDID */

0, /* id dummy bytes */

3, /* id size in bytes */

0, /* device id (leave zero) */

0x20, /* QSPI_SE */

4096, /* Sector erase is always 4KB */

0x06, /* QSPI_WREN */

0x04, /* QSPI_WRDI */

PROT_TYPE_SR, /* Protection via SR */

{{0x18,0x00},{0,0}}, /* QSPI_SP, QSPI_SU */

0x02, /* QSPI_PP */

0xEB, /* QSPI_READ_FAST */

1, /* 1 read dummy byte */

SECTOR_LAYOUT_REGULAR, /* mad sectors */

{4096,{0,{0}}}, /* regular sector sizes */

0x05, /* QSPI_RDSR */

0x01, /* QSPI_WRSR */

0x01, /* QSPI_WIP_BIT_MASK */

8.5 USB enumeration

TheXVF3615 includes aHuman InterfaceDevice (HID) endpoint to enable the XVF3615 to signal interrupts caused
by GPIO events. The table below shows how the XVF3615 HID appears on Windows using USB view.

848484

https://www.nirsoft.net/utils/usb_devices_view.html

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Table 8.4: USB HID Endpoint

Device
Name

Description Device
Type

Ven-
dor ID

Product
ID

USB
Class

USB
Sub-
Class

USB
Pro-
to-
col

Ser-
vice
Name

USB
Ver-
sion

Driver
De-
scrip-
tion

XVF3615
(UAC1.0)
Adaptive

USB Com-
posite Device

Un-
known

20b1 0x0018 0 0 0 usbc-
cgp

2 USB
Com-
posite
Device

XVF3615
(UAC1.0)
Adaptive

USB Audio
Device

Audio 20b1 0x0018 1 1 0 us-
bau-
dio

2 USB
Audio
Device

XVF3615
(UAC1.0)
Adaptive

XMOS Con-
trol

Vendor
Specific

20b1 0x0018 ff ff ff 2

XVF3615
(UAC1.0)
Adaptive

USB Input De-
vice

HID
(Human
Interface
Device)

20b1 0x0018 3 0 0 HidUsb 2 USB
Input
Device

DuringUSB enumeration, the XVF3615HID produces three descriptors. The listing below shows themas recorded
on Windows using USB View. For details of the structure and meaning of these descriptors, see the USB Spec-
ification v2.0 sections 9.6.5 and 9.6.6 and the Device Class Definition for Human Interface Devices (HID) v1.11
section 6.2.1.

===>Interface Descriptor<===

bLength: 0x09

bDescriptorType: 0x04

bInterfaceNumber: 0x04

bAlternateSetting: 0x00

bNumEndpoints: 0x01

bInterfaceClass: 0x03 -> HID Interface Class

bInterfaceSubClass: 0x00

bInterfaceProtocol: 0x00

iInterface: 0x00

===>HID Descriptor<===

bLength: 0x09

bDescriptorType: 0x21

bcdHID: 0x0110

bCountryCode: 0x00

bNumDescriptors: 0x01

bDescriptorType: 0x22 (Report Descriptor)

wDescriptorLength: 0x006E

===>Endpoint Descriptor<===

bLength: 0x07

bDescriptorType: 0x05

bEndpointAddress: 0x82 -> Direction: IN - EndpointID: 2

bmAttributes: 0x03 -> Interrupt Transfer Type

wMaxPacketSize: 0x0040 = 0x40 bytes

bInterval: 0x08

858585

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/usbview
https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/device-class-definition-hid-111

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Note: If the SET_HID_USAGE command has been used to change the meaning of a bit in the HID Report, the
wDescriptorLength field of the HID Descriptor may contain a different value.

8.6 General purpose filter example

8.6.1 Specification

This page illustrates the process of defining an audio filter block in the XVF3615.

The example below routes a USB audio signal through a filer block and sends the output back to the USB host.

Steps to set up this configuration are:

1. Set the stereo USB output to listen to the stereo USB input (loopback, skipping audio processing pipeline
completely)

2. Apply a stereo 500Hz high-pass and 4kHz low-pass cascaded biquad filter

3. The 500Hz high-pass filter coefficients are:

a1 = -1.90748889
a2 = 0.91158173
b0 = 0.95476766
b1 = -1.90953531
b2 = 0.95476766

4. The 4kHz low-pass filter coefficients are:

a1 = -1.27958194
a2 = 0.47753396
b0 = 0.04948800
b1 = 0.09897601
b2 = 0.04948800

5. Enable the filter and hear the effect of the filter on a signal when the filters are enabled

8.6.2 Worked Example

This example assumes that the input and output sample rate is 48kHz.

First, connect the USB output to the USB input:

vfctrl_usb SET_IO_MAP 0 7 # (USB output left outputs USB input left)

vfctrl_usb SET_IO_MAP 1 8 # (As above for right channel)

Now configure the filter:

vfctrl_usb SET_FILTER_INDEX 2 (USB output left filter)

vfctrl_usb SET_FILTER_COEFF -1.90748889 0.91158173 0.95476766 -1.90953531 0.95476766 -1.

→˓27958194 0.47753396 0.04948800 0.09897601 0.04948800

vfctrl_usb SET_FILTER_INDEX 3 (USB output right filter)

(continues on next page)

868686

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

(continued from previous page)

vfctrl_usb SET_FILTER_COEFF -1.90748889 0.91158173 0.95476766 -1.90953531 0.95476766 -1.

→˓27958194 0.47753396 0.04948800 0.09897601 0.04948800

Now enable the filter:

vfctrl_usb SET_FILTER_INDEX 0

vfctrl_usb SET_FILTER_BYPASS 0

vfctrl_usb SET_FILTER_INDEX 1

vfctrl_usb SET_FILTER_BYPASS 0

Play a white noise source from the USB device and record the input. Use a spectrogram to show the band limited
signal due to the effect of the filters. The effect should also be audible.

8.7 Command transport protocol

8.7.1 Transport protocol for control parameters

Control parameters are converted to an array of bytes in network byte order (big endian) before they’re sent over
the transport protocol. For example, to set a control parameter to integer value 305419896 which corresponds to
hex 0x12345678, the array of bytes sent over the transport protocol would be {0x12, 0x34, 0x56, 0x78}. Similarly,
a 4 byte payload {0x00, 0x01, 0x23, 0x22} read over the transport protocol is interpreted as an integer value
0x00012322.

In addition to the control parameters values, commands include Resource ID, the Command ID and Payload
Length fields that must be communicated from the host to the device. The Resource ID is an 8-bit identifier that
identifies the resource within the device that the command is for. The Command ID is an 8-bit identifier used to
identify a command for a resource in the device. Payload length is the length of the data in bytes that the host
wants to write to the device or read from the device.

The payload length is interpreted differently for GET_ and SET_ commands. For SET_ commands, the payload
length is simply the number of bytes worth of control parameters to write to the device. For example, the payload
length for a SET_ command to set a control parameter of type int32 to a certain value, would be set to 4. For
GET_ commands the payload length is 1 more than the number of bytes of control parameters to read from the
device. For example, a GET_ command to read a parameter of type int32, payload length would be set to 5. The
one extra byte is used for status and is the first byte (payload[0]) of the payload received from the device. In the
example above, payload[0] would be the status byte and payload[1]..payload[4] would be the 4 bytes that make
up the value of the control parameter.

The table below lists the different values of the status byte and the action the user is expected to take for each
status:

Table 8.5: Values for returned status byte

Return code Values Description

ctrl_done 0 Read command successful. The payload bytes contain valid payload re-
turned from the device.

ctrl_wait 1 Read command not serviced. Retry until ctrl_done status returned.
ctrl_invalid 3 Error in read command. Abort and debug.

The GET_commands need the extra status byte since the device might not return the control parameter value
imimagestely due to timing constraints. If that is the case the status byte would indicate the status as ctrl_wait

878787

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

and the user would need to retry the command. When returned a ctrl_wait, the user is expected to retry the GET_
command until the status is returned as ctrl_done. The first GET_command is placed in a queue and it will be
serviced by the end of each 15ms audio frame. Once the status byte indicates ctrl_done, the rest of the bytes in
the payload indicate the control parameter value.

8.7.2 Transporting control parameters over I2C

This section describes the I2C command sequence when issuing read and write commands to the device.

The first byte sent over I2C after start contains the device address and information about whether this is an I2C
read transaction or a write transaction. This byte is 0x58 for a write command or 0x59 for a read command.
These values are derived by left shifting the device address (0x2c) by 1 and doing a logical OR of the resulting
value with 0 for an I2C write and 1 for an I2C read.

The bytes sequence sent between I2C start and stop for SET_ commands is shown in the figure below:

Fig. 8.1: Bytes sequence for I2C SET_ commands

For GET_ commands, the I2C commands sequence consists of a write command followed by a read command
with a repeated start between the 2 commands. The write command writes the resource ID, command ID and
the expected data length to the device and the read command reads the status byte followed by the rest of the
payload that makes up the control parameter value. The figure below shows the I2C bytes sequence sent and
received for a GET_ command.

Fig. 8.2: Bytes sequence for I2C GET_ commands

8.7.3 Transporting control parameters over USB

Use the vendor_id 0x20b1, product_id 0x0018 and interface number 3 to initialize for USB. The API function
libusb_control_transfer() is used for transporting over USB. When calling libusb_control_transfer(), wIndex cor-
responds to the Resource ID, wValue is the Command ID and wLength is the payload length.

8.7.4 Floating point to fixed point (Q format) conversion

Numberswith fractional parts can be represented as floating-point or fixed-point numbers. Floating point formats
are widely used but carry performance overheads. Fixed point formats can improve system efficiency and are
used extensively within the XVF3615. Fixed point numbers have the position of the decimal point fixed and this
is indicated as a part of the format description.

In this document, Q format is used to describe fixed point number formats, with the representation given as Qm.n
format where m is the number of bits reserved for the sign and integer part of the number and n is the number
of bits reserved for the fractional part of the number. The position of the decimal point is a trade-off between the
range of values supported and the resolution provided by the fractional bits.

888888

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The dynamic range of Qm.n format is -2m-1 and 2m-1-2-n with a resolution of 2-n

To convert a floating-point format number to Qm.n format fixed-point number:

• Multiply the floating-point number by 2m

• Round the result to the nearest integer

• The resulting integer number is the Qm.n fixed-point representation of the initial floating-point number

To convert a Qm.n fixed-point number to floating-point:

• Divide the fixed-point number by 2m

• The resulting decimal number is a floating-point representation of the fixed-point number.

Converting a number into fixed point format and then back to a floating point number may introduce an error of
up to ±2-(n+1)

Example:

To represent a floating-point number 14.765467 in Q8.24 format, the equivalent fixed-point number would be
14.765467 x 224 = 247723429.2 which rounds to 247723429.

To get back the floating-point number given the Q8.24 number 247723429, calculate 247723429 / 224 and get
back the floating-point number as 14.76546699. The difference of 0.00000001 is correct to with the error bounds
of ±2-25 which is ±0.00000003

8.8 Flash programming and update flow

The flows to program the flash and to update the device are shown in the diagram below:

Fig. 8.3: Flash programming and update flow

898989

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The first steps for both flows consists of generating the data partition as described in Configuration and the Data
Partition. When programming the factory image, the data partition and the boot image must be used as reported
in Programming the Factory Boot image and Data Partition. In case of a firmware update, the list of tools and
steps required can be found in Upgrade Images and Data Partitions.

8.9 Capturing packed samples

To assist with system integration, the XVF3615 provides the ability to pack multiple 16kHz channels into a 48kHz
output. The following section describes the usage of packed signals.

Note: All packed functions provide a snapshot of a 16kHz signals over a 48kHz output. If the output stream
is not 48kHz, it will not work because the 3x bandwidth is needed for packing the 16kHz signals. They all also
require that no volume scaling be applied on the host otherwise it will break the marker sequence resulting in the
captured audio being unable to be unpacked.

There are two packing mechanisms however for typical usage where a full capture of the pipeline is needed,
PACKED_ALL is recommended.

8.9.1 Capturing all pipeline input and output signals over a 48kHz USB interface

The goal here is to capture the pipeline input and output to provide visibility on what signals are actually entering
the pipeline and what processed output was generated. This can be useful when checking the microphone and
reference signals are correctly routed, as well as checking signal delay issues causing poor AEC performance.

This procedure is described in the figure below:

909090

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Fig. 8.4: System overview to capture of DSP pipeline signals over a 48kHz USB interface

First, set the USB output interface resolution to 24b. This is important because microphone signals in a quiet
room (35dBA) may be quantised away in a 16b audio capture. Also, 24b audio has been found to work on most
hosts.

Second, configure the audio crossbar to output PACKED_ALL on USB output channels 0 and 1. More information
about the output channels can be found in the signal routing section.

This can be done by setting the parameters in the data partition, as described in the data partition section.

To configure the packed output for USB, add in the file input/set_packed_all_usb_output.txt the following
contents:

SET_IO_MAP 0 16

SET_IO_MAP 1 16

Note: The IO map source 16 is set for both USB output channels. Source 16 automatically resolves the channel
indices so this will result in a stereo output containing a packed capture of all six discrete channels of interest.

Next, add the following sections to the .json configuration file item section and save it:

{

"path": "input/set_packed_all_usb_output.txt",

"comment": ""

},

{

"path": "input/device_to_usb_bit_res_24.txt",

(continues on next page)

919191

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

(continued from previous page)

"comment": ""

},

Now generate the data partition from the updated .json configuration file and flash the device with the newly
generated data partition as described in the data partition section.

Once the firmware has booted following the flashing operation, it can be verified in the sound control panel that
the USB input stream from the XVF3615-UA to the host is now set to 24b.

Next the audio of interest is captured. Do this with a wav capture utility to capture the stereo output from the USB
input from the XVF3615 device at 48kHz. Ensure the file is saved as 32b Signed Integer which is needed for the
next step.

An example command line for Linux (with ALSA tools installed and XVF3615 as device 1) is shown below:

arecord -c 2 -f S24_LE -r 48000 packed_capture.wav -D plughw:1

Note: Viewing/listening to the packed wav is non-sensical because it contains packed/multiplexed signals and
will sound noisy.

Finally convert these packed files into unpacked, 16kHz, six-channel audio files.

python3 host/unpacker_packed_all.py packed_capture.wav unpacked_6ch_16kHz.wav 24

The output file unpacked_6ch_16kHz.wav may now be inspected. The channel assignment is as follows:

1. Microphone Ch 0

2. Microphone Ch 1

3. Reference input Left

4. Reference input Right

5. Pipeline Output Ch 0 (nominally ASR)

6. Pipeline Output Ch 1 (nominally Comms)

Below is a visualisation of a six-channel audio capture. Note the relatively quiet microphone signals compared
with the reference. This is typical and allows for loud near-end signals without distortion.

929292

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Fig. 8.5: Example of six-channel audio capture

939393

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

8.9.2 Capturing all pipeline input and output signals over a 48kHz I2S interface

The same procedure described for the USB interface can be adapted for the I2S interface. The only differences
are that:

• I2S interface is always 32 bits

• I2S has different output channels than USB

To configure the packed output for I2S, add in the file input/set_packed_all_i2s_output.txt the following
contents:

SET_IO_MAP 2 16

SET_IO_MAP 3 16

Note: The IO map source 16 is set for both I2S output channels. Source 16 automatically resolves the channel
indices so this will result in a stereo output containing a packed capture of all six discrete channels of interest.

Next, add the following sections to .json configuration file item section and save it:

{

"path": "input/set_packed_all_i2s_output.txt",

"comment": ""

},

Now generate the data partition from the updated .json file and flash it on the device using the same instructions
as described in the data partition section.

Next the audio of interest is captured. Do this with a wav capture utility to capture the stereo output from the I2S
input from the XVF3615 device at 48kHz. Ensure the file is saved as 32b Signed Integer which is needed for the
next step.

An example command line for Linux (with ALSA tools installed and XVF3615 as device 0) is shown below:

arecord -c 2 -f S24_LE -r 48000 packed_capture.wav -D plughw:0

Note: Viewing/listening to the packed wav is non-sensical because it contains packed/multiplexed signals and
will sound noisy.

Finally convert these packed files into unpacked, 16kHz, six-channel audio files.

python3 host/unpacker_packed_all.py packed_capture.wav unpacked_6ch_16kHz.wav 32

The output file unpacked_6ch_16kHz.wav may now be inspected. The channel assignment is as follows:

1. Microphone Ch 0

2. Microphone Ch 1

3. Reference input Left

4. Reference input Right

5. Pipeline Output Ch 0 (nominally ASR)

6. Pipeline Output Ch 1 (nominally Comms)

949494

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

8.9.3 Packing specific signals

PACKED_PIPELINE_OUTPUT, PACKED_MIC, PACKED_REF all use the same underlying packing function. They pack 2
channels (pipeline outpout 0/1 or microphone0/1 or reference left/right) into a single audio channel. They require
that the output interface, including host processing, be capable of bit-perfect 32b audio. The underlying function
packs the two 16kHz samples into three 48kHz samples as follows:

• Top 24b of sample[0] with 8b LSB marker ‘0x00’

• Top 24b of sample[1] with 8b LSB marker ‘0x01’

• The bottom 8b of sample[0], the bottom 8b of sample[1], 0x00, 8b LSB marker ‘0x02’

The unpacker.py script then looks for 0x00, 0x01, 0x02 in the LSByte to check for a packed sequence. So in-
specting the wav in a hex editor should make it clear when it is captured properly.

It will capture bit-perfect data.

Warning: Packing specific signals will not work on a Mac because it only supports 24b audio due to core
audio representing audio using single-precision floating-point. It has been tested and works well on Linux
(x86/RPI) which supports bit-perfect 32b audio.

8.10 Direct access to DSP Pipeline

The XVF3615 supports amodewhere the DSP pipeline can be fed directly from a 4-channel test vector whichmay
either be pre-generated or even pre-captured by recording from an XVF3615 device. This can be helpful when re-
creating a previous scenario or when tuning the system via the control interface in the presence of a fixed and
repeatable test vector.

The vector injectionmodeworks by packing 4-channel 16kHz input data (dual microphones and stereo reference)
into a 48kHz stereo input signal. The device then unpacks the 48kHzwav into 16kHzmulti-channel input and feeds
it to the front end of the pipeline.

8.10.1 Injecting a 4-channel, 16kHz test vector into the DSP pipeline over USB

The goal here is to provide a 4-channel test vector directly into the DSP pipeline instead of using the microphones
and a separate reference signal. The packed input feature is supported by both I2S (INT) and USB (UA and UA-
HYBRID) connected XVF3615 variants.

First the procedure for the UA variant is described.

This procedure is represented in the figure below:

959595

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Fig. 8.6: System overview to inject a 4-channel, 16kHz test vector into the DSP pipeline

First, the resolution must be set to 24b (default is 16b). No need exists to adjust the sample rate as this is set
to 48kHz by default. The resolution is important because microphone signals in a quiet room (35dBA) may be
quantised away in a 16b audio sample. Also, the packing process uses the least significant bit of the audio to
carry the frame markers and hence 1 bit of audio resolution is lost. Using 24b audio has been found to work on
most popular hosts and OSs.

Second, the audio crossbar switch must be configured to input PACKED_ALL_INPUT_USB on input chan-
nels MIC_TO_PIPELINE_0, MIC_TO_PIPELINE_1, REF_TO_PIPELINE_0 and REF_TO_PIPELINE_1. More information
about the input channels can be found in the signal routing section.

Both of these settings will be set by configuring parameters in a custom data partition. The audio crossbar can
be configured at runtime whereas USB parameters can only be set in the data partition.

To configure the packed output for USB add in the file input/set_packed_all_usb_input.txt the following
contents:

SET_IO_MAP 4 17

SET_IO_MAP 5 17

SET_IO_MAP 6 17

SET_IO_MAP 7 17

Note: The IOmap source 17 is set for bothmicrophone and reference channels. Source 17 automatically resolves
the channel indices.

Next, add the following sections to the .json configuration file item section and save it:

"item_files": [

(continues on next page)

969696

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

(continued from previous page)

{

"path": "input/set_packed_all_usb_input.txt",

"comment": ""

},

{

"path": "input/usb_to_device_bit_res_24.txt",

"comment": ""

}

]

Now generate the data partition from the updated .json configuration file and flash the device with the newly
generated data partition as described in the data partition section.

Once the firmware has booted following the flashing operation you may verify in the sound control panel that the
USB stream from host to the XVF3615 is now set to 24b.

Next the 4-channel audio test file to be injected must be converted into a packed, 48kHz, stereo audio file.

Note: Viewing/listening to the packed wav is non-sensical because it contains packed/multiplexed signals and
will sound noisy. If you provide a 2-channel 16KHz input vector, the two channels are treated asmicrophone inputs
and the reference channels are set to zero.

python3 ../python/packer_packed_all.py my_4ch_test_vector.wav packed_input.wav 24

The output file packed_input.wav can now be fed into the XVF3615. Do this with your favourite wav playback
utility to inject the test file across the USB input to the XVF3615 device at 48kHz.

An example command to play the audio on a Linux host (with ALSA tools installed, assuming XVF3615 is device
1) is:

aplay -c 2 -f S24_LE -r 48000 packed_input.wav-D plughw:1

Note: Ensure the XVF3615 input audio device setting is set to 100% which will allow samples to be passed
through without scaling or breaking the marker sequence. Do this in your OS Audio control panel; it is not a
control supported by the vfctrlmechanism. If the device receives an invalid marker sequence it mutes the inputs.

8.10.2 Injecting a 4-channel, 16kHz test vector into the DSP pipeline over I2S

The same procedure described for the USB interface can be adapted for the I2S interface used by INT and UA-
HYBRID variants. The only differences are that:

• I2S interface is always 32 bits

• I2S has different input channels than USB

The audio crossbar switch must be configured to input PACKED_ALL_INPUT_I2S on input channels
MIC_TO_PIPELINE_0, MIC_TO_PIPELINE_1, REF_TO_PIPELINE_0 and REF_TO_PIPELINE_1. More information
about the input channels can be found in the signal routing section.

To configure the packed output for I2S, add in the file input/set_packed_all_i2s_input.txt the following con-
tents:

979797

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

SET_IO_MAP 4 18

SET_IO_MAP 5 18

SET_IO_MAP 6 18

SET_IO_MAP 7 18

Note: The IOmap source 18 is set for bothmicrophone and reference channels. Source 18 automatically resolves
the channel indices.

Next, add the following sections to the .json configuration file item section and save it:

"item_files": [

{

"path": "input/set_packed_all_i2s_input.txt",

"comment": ""

}

]

Now generate the data partition from the updated .json configuration file and flash the device with the newly
generated data partition as described in the data partition section.

Next the 4-channel audio test file to be injected must be converted into a packed, 48kHz, stereo audio file.

Note: Viewing/listening to the packed wav is non-sensical because it contains packed/multiplexed signals and
will sound noisy. If you provide a 2-channel 16KHz input vector, the two channels are treated asmicrophone inputs
and the reference channels are set to zero.

python3 ../python/packer_packed_all.py my_4ch_test_vector.wav packed_input.wav 32

The output file packed_input.wav can now be fed into the XVF3615. Do this with your favourite wav playback
utility to inject the test file across the I2S input to the XVF3615 device at 48kHz.

An example command to play the audio on a Linux host (with ALSA tools installed, assuming XVF3615 is device
0) is:

aplay -c 2 -f S24_LE -r 48000 packed_input.wav-D plughw:0

Note: Ensure the XVF3615 input audio device setting is set to 100% which will allow samples to be passed
through without scaling or breaking the marker sequence. Do this in your OS Audio control panel; it is not a
control supported by the vfctrlmechanism. If the device receives an invalid marker sequence it mutes the inputs.

989898

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

8.10.3 Injecting a 4-channel packed input and capturing a 6-channel packed output

The full packed-input, packed-output system combines the behaviours of capturing and injecting the packed
audio samples on the XVF3615 device.

A system overview of this procedure for XVF3615-UA is below:

Fig. 8.7: System overview to inject a 4-channel packed input and capture a 6-channel packed output

999999

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

To enable 4-channel input and 6-channel output simultaneously, create a json configuration file using the
item_files sections used in the previous chapters, the sections must be included in the same .json configu-
ration file.

The configurations described below are recommended for Hardware-In-Loop implementations because the in-
tegrity of the packing and unpacking process can easily be checked visually by inspecting the 6-channel output
capture.

Steps for XVF3615-UA

Following the instructions in the data partition section, generate and flash a data partition including the commands
to capture the packed audio over USB and inject the packed audio over USB.

Now start capturing the packed output audio file. Do this with your favourite wav capture utility to capture the
stereo output from the USB input from the XVF3615 device at 48kHz. Ensure you save the file as 32b Signed
Integer which is needed for the next step.

An example command line for Linux (with ALSA tools installed and XVF3615 as device 1) is shown below:

arecord -c 2 -f S24_LE -r 48000 packed_capture.wav -D plughw:1

Next the 4-channel audio test file to be injected must be converted into a packed, 48kHz, stereo audio file.

python3 ../python/packer_packed_all.py my_4ch_test_vector.wav packed_input.wav 24

The output file packed_input.wav can now be fed into the XVF3615. Do this with your favourite wav playback
utility to inject the test file across the USB input to the XVF3615 device at 48kHz.

An example command to play the audio on a Linux host (with ALSA tools installed, assuming XVF3615 is device
1) is:

aplay -c 2 -f S24_LE -r 48000 packed_input.wav-D plughw:1

When the audio file is played into the device, the recording can be stopped and you can now convert the packed
file into an unpacked, 16kHz, 6-Channel audio file.

python3 host/unpacker_packed_all.py packed_capture.wav unpacked_6ch_16kHz.wav 24

Steps for XVF3615-UA-HYBRID

Following the instructions in the data partition section, generate and flash a data partition including the commands
to capture the packed audio over USB and inject the packed audio over I2S.

Now start capturing the packed output audio file. Do this with your favourite wav capture utility to capture the
stereo output from the USB input from the XVF3615 device at 48kHz. Ensure you save the file as 32b Signed
Integer which is needed for the next step.

An example command line for Linux (with ALSA tools installed and XVF3615 as device 1) is shown below:

arecord -c 2 -f S24_LE -r 48000 packed_capture.wav -D plughw:1

Next the 4-channel audio test file to be injected must be converted into a packed, 48kHz, stereo audio file.

python3 ../python/packer_packed_all.py my_4ch_test_vector.wav packed_input.wav 32

100100100

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

The output file packed_input.wav can now be fed into the XVF3615. Do this with your favourite wav playback
utility to inject the test file across the I2S input to the XVF3615 device at 48kHz.

An example command to play the audio on a Linux host (with ALSA tools installed, assuming XVF3615 is device
0) is:

aplay -c 2 -f S24_LE -r 48000 packed_input.wav-D plughw:0

When the audio file is played into the device, the recording can be stopped and you can now convert the packed
file into an unpacked, 16kHz, 6-Channel audio file.

python3 host/unpacker_packed_all.py packed_capture.wav unpacked_6ch_16kHz.wav 24

Steps for XVF3615-INT

Following the instructions in the data partition section, generate and flash a data partition including the commands
to capture the packed audio over I2S and inject the packed audio over I2S.

Now start capturing the packed output audio file. Do this with your favourite wav capture utility to capture the
stereo output from the USB input from the XVF3615 device at 48kHz. Ensure you save the file as 32b Signed
Integer which is needed for the next step.

An example command line for Linux (with ALSA tools installed and XVF3615 as device 1) is shown below:

arecord -c 2 -f S24_LE -r 48000 packed_capture.wav -D plughw:1

Next the 4-channel audio test file to be injected must be converted into a packed, 48kHz, stereo audio file.

python3 ../python/packer_packed_all.py my_4ch_test_vector.wav packed_input.wav 32

The output file packed_input.wav can now be fed into the XVF3615. Do this with your favourite wav playback
utility to inject the test file across the I2S input to the XVF3615 device at 48kHz.

An example command to play the audio on a Linux host (with ALSA tools installed, assuming XVF3615 is device
1) is:

aplay -c 2 -f S24_LE -r 48000 packed_input.wav-D plughw:1

When the audio file is played into the device, the recording can be stopped and you can now convert the packed
file into an unpacked, 16kHz, 6-Channel audio file.

python3 host/unpacker_packed_all.py packed_capture.wav unpacked_6ch_16kHz.wav 32

101101101

XVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User GuideXVF3615 Voice Processor - User Guide

Copyright © 2023, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. XMOS Ltd makes no representation that the Information, or any particular implementation thereof, is or
will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom
and other countries and may not be used without written permission. Company and product names mentioned
in this document are the trademarks or registered trademarks of their respective owners.

102102102

	Introduction
	Overview
	Audio processing
	System Interfaces
	Booting and Initial configuration
	Default operation

	Audio Processing Pipeline
	Signal flow and processing
	Signal Routing and Scaling
	Routing commands
	Destinations
	Sources
	Example Routing Commands
	PACKED_ALL signals

	General Purpose Filter
	PDM microphone interface
	Automatic Echo Cancellation (AEC)
	Automatic Delay Estimation Control (ADEC)
	Interference canceller
	Noise Suppressor (NS)
	Automatic Gain Control (AGC) and Loss Control
	Alternative Architecture mode (ALT_ARCH)

	System Interfaces
	General Purpose Input and Output and Peripheral Bridging
	GPIO
	General Purpose Inputs
	General Purpose Outputs
	I2C Master peripheral interface (XVF3615-UA Only)
	I2C Slave Control interface (XVF3615-INT only)
	Using I2C Master to write to a device
	Using the I2C master to read from a device
	SPI Master

	System Boot and Initial Configuration
	Boot process
	Flash storage structure
	Programming the Factory Boot image and Data Partition
	Upgrade Images and Data Partitions
	Generation of Binary Upgrade image
	Addition of DFU Suffix to Binary files
	Performing Firmware Updates
	Factory restore
	Boot Image and Data Partition Compatibility checks
	Custom flash memory devices
	Custom flash definition for factory programming
	Custom flash definition for Data Partition generation

	SPI Slave Boot
	SPI Boot of XVF3615-INT
	SPI Boot of XVF3615-UA
	Implementing a SPI Boot host application

	Configuration and the Data Partition
	Data Partition file structure
	Item files
	Generating a Data Partition for custom applications

	Device operation
	Host Utilities
	Building the host utilities from source code

	Command-line interface (vfctrl)
	vfctrl Installation
	vfctrl syntax
	Configuration via Control interface
	Control operation
	Host Application
	Device Application

	Configuration via Data Partition

	USB Interface - (XVF3615-UA and XVF3615-UA-HYBRID only)
	USB Interface
	USB Configuration
	USB HID interface
	HID Report configuration
	USB HID report format
	HID report generation
	Serial Number
	USB device enumeration

	Wake Word Feature Description
	Management of Wake Word Models
	Use of the Amazon Wake Word Engine
	Adding a wake word model in the data partition
	Replace model in SPI boot mode

	Wake Word Configuration
	DIGITAL OUTPUT
	Wake Word Counter
	USB HID

	Wake word specific control commands
	Wake Word Integration
	Wake word start and end index values
	Wake word metadata blob

	Reference information
	Base vfctrl command list
	Advanced vfctrl command list
	Boot status codes (RUN_STATUS)
	Example .SPISPEC file format
	USB enumeration
	General purpose filter example
	Specification
	Worked Example

	Command transport protocol
	Transport protocol for control parameters
	Transporting control parameters over I2C
	Transporting control parameters over USB
	Floating point to fixed point (Q format) conversion

	Flash programming and update flow
	Capturing packed samples
	Capturing all pipeline input and output signals over a 48kHz USB interface
	Capturing all pipeline input and output signals over a 48kHz I2S interface
	Packing specific signals

	Direct access to DSP Pipeline
	Injecting a 4-channel, 16kHz test vector into the DSP pipeline over USB
	Injecting a 4-channel, 16kHz test vector into the DSP pipeline over I2S
	Injecting a 4-channel packed input and capturing a 6-channel packed output
	Steps for XVF3615-UA
	Steps for XVF3615-UA-HYBRID
	Steps for XVF3615-INT

