
XMOS USB Device Design Guide

REV A

Publication Date: 2013/7/26

XMOS © 2013, All Rights Reserved.

XMOS USB Device Design Guide 2/40

SYNOPSIS

This document is a design guide for using the XMOS USB Device (XUD) Library to create both Full
and High Speed USB 2.0 devices on the XMOS xCORE devices.

REV A

XMOS USB Device Design Guide 3/40

Table of Contents

1 Overview 4
1.1 Features . 4
1.2 Memory Requirements . 4
1.3 Resource Requirements . 4
1.4 Core Speed . 5
1.5 Ports/Pins . 5

2 Hardware Requirements 7
2.1 Recommended Hardware . 7

2.1.1 U16 Slicekit . 7
2.2 Demonstration Applications . 7

2.2.1 HID Class USB Device Demo . 7
2.2.2 Custom Class USB Device Demo . 7

3 System 8
3.1 XUD Library . 8

3.1.1 XUD Core . 9
3.1.2 Endpoint Communication with XUD_Manager() 9
3.1.3 Endpoint Type Table . 9
3.1.4 Status Reporting . 10
3.1.5 SOF Channel . 10
3.1.6 USB Test Modes . 10

3.2 USB Device Helper Functions . 11
3.2.1 Standard Requests and Endpoint 0 . 11

4 API 13
4.1 module_xud . 13

4.1.1 XUD_Manager() . 13
4.1.2 XUD_ep . 14
4.1.3 XUD_InitEp() . 14

4.2 module_usb_device . 19
4.2.1 Data Structure . 19
4.2.2 Setup Function . 19
4.2.3 Standard Requests . 20
4.2.4 Standard Device Request Types . 21
4.2.5 Standard Interface Requests . 22
4.2.6 Standard Endpoint Requests . 22

5 Programming Guide 23
5.1 Includes . 23
5.2 Declarations . 23
5.3 Endpoint 0 Implementation . 24
5.4 Main . 25
5.5 Endpoint Addresses . 26
5.6 Sending/Receiving Data . 26
5.7 Device Descriptors . 26
5.8 Worked Example . 26

6 Example Application 27

REV A

XMOS USB Device Design Guide 4/40

6.1 Declarations . 27
6.2 Main program . 27
6.3 HID Response Function . 28
6.4 Standard Descriptors . 30

6.4.1 Device Descriptor . 30
6.4.2 Device Qualifier Descriptor . 30
6.4.3 Configuration Descriptor . 31
6.4.4 Other Speed Configuration Descriptor . 31
6.4.5 String Descriptors . 32

6.5 Application and Class Specific Requests . 32

7 L-Series Support 38
7.1 Resource Requirements . 38
7.2 Ports/Pins . 38
7.3 Reset Requirements . 39
7.4 Building for L-Series . 39

REV A

1 Overview

IN THIS CHAPTER

· Features

· Memory Requirements

· Resource Requirements

· Core Speed

· Ports/Pins

This document describes the XMOS USB Device Library, its API and provides a
worked example of a USB Human Interface Device (HID) Class compliant mouse
using the library. This library is aimed primarily for use with xCORE-USB (U-Series)
devices but it does also support L-Series devices (see §7).

This document assumes familiarity with the XMOS xCORE architecture, the Universal
Serial Bus 2.0 Specification (and related specifications), the XMOS tool chain and
XC language.

1.1 Features

· Support for USB 2.0 full and high speed devices.

1.2 Memory Requirements

The approximate memory usage for the USB device library including the XUD library
is:

Usage

Stack 2kB

Program 12kB

1.3 Resource Requirements

The resources used by the device application and libraries on the xCORE-USB are
shown below:

REV A

XMOS USB Device Design Guide 6/40

Resource Requirements

Logical Cores 2 plus 1 per endpoint

Channels 2 for Endpoint0 and 1 additional per IN and OUT endpoint

Timers 4 timers

Clock blocks Clock blocks 4 and 5

1.4 Core Speed

Due to I/O timing requirements, the library requires a guaranteed MIPS rate to
ensure correct operation. This means that core count restrictions must be observed.
The XUD core must run at at least 80 MIPS.

This means that for an xCORE device running at 500MHz no more than six cores
shall execute at any one time when using the XUD.

This restriction is only a requirement on the tile on which the XUD is running. For
example, a different tile on an U16 device is unaffected by this restriction.

1.5 Ports/Pins

The U-Series of processors has an integrated USB transceiver. Some ports are
used to communicate with the USB transceiver inside the U-Series packages. These
ports/pins should not be used when USB functionality is enabled. The ports/pins
are shown in Figure 1.

REV A

XMOS USB Device Design Guide 7/40

Pin Port

1b 4b 8b 16b 32b

X0D02 P4A0 P8A0 P16A0 P32A20

X0D03 P4A1 P8A1 P16A1 P32A21

X0D04 P4B0 P8A2 P16A2 P32A22

X0D05 P4B1 P8A3 P16A3 P32A23

X0D06 P4B2 P8A4 P16A4 P32A24

X0D07 P4B3 P8A5 P16A5 P32A25

X0D08 P4A2 P8A6 P16A6 P32A26

X0D09 P4A3 P8A7 P16A7 P32A27

X0D23 P1H0

X0D25 P1J0

X0D26 P4E0 P8C0 P16B0

X0D27 P4E1 P8C1 P16B1

X0D28 P4F0 P8C2 P16B2

X0D29 P4F1 P8C3 P16B3

X0D30 P4F2 P8C4 P16B4

X0D31 P4F3 P8C5 P16B5

X0D32 P4E2 P8C6 P16B6

X0D33 P4E3 P8C7 P16B7

X0D34 P1K0

X0D36 P1M0 P8D0 P16B8

X0D37 P1N0 P8C1 P16B1

X0D38 P1O0 P8C2 P16B2

X0D39 P1P0 P8C3 P16B3

Figure 1:

U-Series
required
pin/port

connections

REV A

2 Hardware Requirements

IN THIS CHAPTER

· Recommended Hardware

· Demonstration Applications

The XMOS USB Device Library supports both the xCORE-USB (U-Series) devices and
the xCORE General Purpose (L-Series) devices. However, not all development kits
support implementing USB devices.

2.1 Recommended Hardware

2.1.1 U16 Slicekit

The USB device capabilities are best evaluated using the U16 Slicekit Modular
Development Platform. The required boards are:

· XP-SKC-U16 (Slicekit U16 Core Board) plus XA-SK-USB-AB (USB Slice)

· Optionally: XA-SK-MIXED SIGNAL (Mixed Signal Slice) for the HID Class USB Device
Demo

2.2 Demonstration Applications

2.2.1 HID Class USB Device Demo

This application demonstrates how to write a Human Interface Device (HID) Class
Device; a mouse.

· Package: HID Class USB Device Demo

· Application: app_hid_mouse_demo

2.2.2 Custom Class USB Device Demo

This application demonstrates how to write a Custom Class USB Device using bulk
transfers. It provides both the xCORE application, host application and Windows
drivers (drivers not required on MacOSX and Linux).

· Package: Custom Class USB Device Demo

· Application: app_custom_bulk_demo

REV A

3 System

IN THIS CHAPTER

· XUD Library

· USB Device Helper Functions

The XMOS USB library is divided into the XMOS USB Device (XUD) Library and the
USB Device Helper Functions.

3.1 XUD Library

The XUD Library performs all the low-level I/O operations required to meet the USB
2.0 specification. This processing goes up to and includes the transaction level.
It removes all low-level timing requirements from the application, allowing quick
development of all manner of USB devices.

The XUD Library allows the implementation of both full-speed and high-speed USB
2.0 devices on U-Series and L-Series devices.

The U-Series includes an integrated USB transceiver. For the L-Series the implemen-
tation requires the use of an external ULPI transceiver such as the SMSC USB33XX
range. Two libraries, with identical interfaces, are provided - one for U-Series and
one for L-Series devices.

The XUD Library runs in a single core with endpoint and application cores commu-
nicating with it via a combination of channel communication and shared memory
variables.

There is one channel per IN or OUT endpoint. Endpoint 0 (the control endpoint)
requires two channels, one for each direction. Note, that throughout this document
the USB nomenclature is used: an OUT endpoint is used to transfer data from the
host to the device, an IN endpoint is used when the host requests data from the
device.

An example task diagram is shown in Figure 2. Circles represent cores running
with arrows depicting communication channels between these cores. In this
configuration there is one core that deals with endpoint 0, which has both the
input and output channel for endpoint 0. IN endpoint 1 is dealt with by a second
core, and OUT endpoint 2 and IN endpoint 5 are dealt with by a third core. Cores
must be ready to communicate with the XUD Library whenever the host demands
its attention. If not, the XUD Library will NAK.

It is important to note that, for performance reasons, cores communicate with
the XUD Library using both XC channels and shared memory communication.
Therefore, all cores using the XUD Library must be on the same tile as the library
itself.

REV A

XMOS USB Device Design Guide 10/40

EP0
XS1

XUDULPI
Phy EP1

EP2
EP5

ep0, OUT

ep0, IN

ep1, IN
ep2, OUTep5, IN

Figure 2:

XUD Overview

3.1.1 XUD Core

The main XUD task is XUD_Manager() (see § 4.1.1) that performs power-
signalling/handshaking on the USB bus, and passes packets on for the various
endpoints.

This function should be called directly from the top-level par statement in main()
to ensure that the XUD Library is ready within the 100ms allowed by the USB
specification.

3.1.2 Endpoint Communication with XUD_Manager()

Communication state between a core and the XUD Library is encapsulated in an
opaque type XUD_ep (see §4.1.2).

All client calls communicating with the XUD Library pass in this type. These data
structures can be created at the start of execution of a client core with using
XUD_InitEp() that takes as an argument the endpoint channel connected to the
XUD Library.

Endpoint data is sent/received using XUD_SetBuffer() (see §4.1.3.2) and receive
data using XUD_GetBuffer() (see §4.1.3.1).

These functions will automatically deal with any low-level complications required
such as Packet ID toggling etc.

3.1.3 Endpoint Type Table

The endpoint type table should take an array of XUD_EpType to inform XUD about
endpoints being used. This is mainly used to indicate the transfer-type of each

REV A

XMOS USB Device Design Guide 11/40

endpoint (bulk, control, isochronous or interrupt) as well as whether the endpoint
wishes to be informed about bus-resets (see §3.1.4).

Note: endpoints can also be marked as disabled.

Traffic to Endpoints that are not in used will be NAKed.

3.1.4 Status Reporting

Status reporting on an endpoint can be enabled so that bus state is known. This is
achieved by ORing XUD_STATUS_ENABLE into the relevant endpoint in the endpoint
type table.

This means that endpoints are notified of USB bus resets (and bus-speed
changes). The XUD access functions discussed previously (XUD_SetBuffer(),
XUD_GetBuffer()) return less than 0 if a USB bus reset is detected.

This reset notification is important if an endpoint core is expecting alternating INs
and OUTs. For example, consider the case where an endpoint is always expecting
the sequence OUT, IN, OUT (such as a control transfer). If an unplug/reset event
was received after the first OUT, the host would return to sending the initial OUT
after a replug, while the endpoint would hang on the IN. The endpoint needs to
know of the bus reset in order to reset its state machine.

Endpoint 0 therefore requires this functionality since it deals with bi-directional
control transfers.

This is also important for high-speed devices, since it is not guaranteed that the
host will detect the device as a high-speed device. The device therefore needs to
know what speed it is running at.

After a reset notification has been received, the endpoint must call the
XUD_ResetEndpoint() function. This will return the current bus speed.

3.1.5 SOF Channel

An application can pass a channel-end to the c_sof parameter of XUD_Manager().
This will cause a word of data to be output every time the device receives a SOF
from the host. This can be used for timing information for audio devices etc. If
this functionality is not required null should be passed as the parameter. Please
note, if a channel-end is passed into XUD_Manager() there must be a responsive
task ready to receive SOF notifications since else the XUD_Manager() task will be
blocked attempting to send these messages.

3.1.6 USB Test Modes

XUD supports the required test modes for USB Compliance testing. The
XUD_Manager() task can take a channel-end argument for controlling the test mode
required. null can be passed if this functionality is not required.

REV A

XMOS USB Device Design Guide 12/40

XUD accepts a single word for from this channel to signal which test mode to enter,
these commands are based on the definitions of the Test Mode Selector Codes in
the USB 2.0 Specification Table 11-24. The supported test modes are summarised
in the Figure 3.

Value Test Mode Description

1 Test_J

2 Test_K

3 Test_SE0_NAK

4 Test_Packet

5 Test_Force_Enable

Figure 3:

Supported
Test Mode

Selector
Codes

The use of other codes results in undefined behaviour.

As per the USB 2.0 specification a power cycle or reboot is required to exit the test
mode.

3.2 USB Device Helper Functions

The USB Device Helper Functions provide a set of standard functions to aid the
creation of USB devices. USB devices must provide an implementation of endpoint
0 and can optionally provide a number of other IN and OUT endpoints.

3.2.1 Standard Requests and Endpoint 0

Endpoint 0 must deal with enumeration and configuration requests from the host.
Many enumeration requests are compulsory and common to all devices, most of
them being requests for mandatory descriptors (Configuration, Device, String, etc.).
Since these requests are common across most (if not all) devices, some useful
functions are provided to deal with them.

Firstly, the function USB_GetSetupPacket() is provided. This makes a call to the
standard XUD function XUD_GetSetupBuffer() with the 8 byte Setup packet which
it parses into a USB_SetupPacket_t structure (see §4.2.1) for further inspection.
The USB_SetupPacket_t structure passed by reference to USB_GetSetupPacket() is
populated by the function.

At this point the request is in a reasonable state to be parsed by endpoint 0. Please
see Universal Serial Bus 2.0 specification for full details of setup packet and request
structure.

A USB_StandardRequests() (see §4.2.3) function provides a bare-minimum imple-
mentation of the mandatory requests required to be implemented by a USB device.
It is not intended that this replace a good knowledge of the requests required, since
the implementation does not guarantee a fully USB compliant device. Each request
could well be required to be over-ridden for a device implementation. For example,
a USB Audio device could well require a specialised version of SET_INTERFACE since
this could mean that audio will be streamed imminently.

Please see Universal Serial Bus 2.0 spec for full details of these requests.

REV A

XMOS USB Device Design Guide 13/40

The function inspects this USB_SetupPacket_t structure and includes a minimum
implementation of the Standard Device requests. To see the requests handled and
a listing of the basic functionality associated with the request see §4.2.4.

REV A

4 API

IN THIS CHAPTER

· module_xud

· module_usb_device

The XMOS USB Device library is provided by module_xud and the USB Device Helper Functions are
provided by module_usb_device. The APIs of both of these modules are detailed in this section.

4.1 module_xud

4.1.1 XUD_Manager()
int XUD_Manager(chanend c_epOut[],

int noEpOut,
chanend c_epIn[],
int noEpIn,
chanend ?c_sof,
XUD_EpType epTypeTableOut[],
XUD_EpType epTypeTableIn[],
out port ?p_usb_rst,
clock ?clk,
unsigned rstMask,
XUD_BusSpeed desiredSpeed,
chanend ?c_usb_testmode,
XUD_PwrConfig pwrConfig)

This performs the low-level USB I/O operations.

Note that this needs to run in a thread with at least 80 MIPS worst case execution
speed.

This function has the following parameters:

c_epOut An array of channel ends, one channel end per output endpoint
(USB OUT transaction); this includes a channel to obtain requests
on Endpoint 0.

noEpOut The number of output endpoints, should be at least 1 (for Endpoint
0).

c_epIn An array of channel ends, one channel end per input endpoint (USB
IN transaction); this includes a channel to respond to requests on
Endpoint 0.

REV A

XMOS USB Device Design Guide 15/40

noEpIn The number of input endpoints, should be at least 1 (for Endpoint
0).

c_sof A channel to receive SOF tokens on. This channel must be connected
to a process that can receive a token once every 125 ms. If tokens
are not read, the USB layer will lock up. If no SOF tokens are required
null should be used as this channel.

epTypeTableOut
See epTypeTableIn.

epTypeTableIn
This and epTypeTableOut are two arrays indicating the type of
the endpoint. Legal types include: XUD_EPTYPE_CTL (Endpoint 0),
XUD_EPTYPE_BUL (Bulk endpoint), XUD_EPTYPE_ISO (Isochronous end-
point), XUD_EPTYPE_INT (Interrupt endpoint), XUD_EPTYPE_DIS (End-
point not used). The first array contains the endpoint types for each
of the OUT endpoints, the second array contains the endpoint types
for each of the IN endpoints.

p_usb_rst The port to send reset signals to. Should be null for U-Series.

clk The clock block to use for the USB reset - this should not be clock
block 0. Should be null for U-Series.

rstMask The mask to use when taking an external phy into/out of reset.
The mask is ORed into the port to disable reset, and unset when
deasserting reset. Use ‘-1’ as a default mask if this port is not
shared.

desiredSpeed
This parameter specifies whether the device must be full-speed (ie,
USB-1.0) or whether high-speed is acceptable if supported by the
host (ie, USB-2.0). Pass XUD_SPEED_HS if high-speed is allowed, and
XUD_SPEED_FS if not. Low speed USB is not supported by XUD.

c_usb_testmode
See §3.1.6

pwrConfig Specifies whether the device is bus or self-powered. When self-
powered the XUD will monitor the VBUS line for host disconnections.
This is required for compliance reasons.

4.1.2 XUD_ep

XUD_ep
Typedef for endpoint identifiers.

4.1.3 XUD_InitEp()

XUD_ep XUD_InitEp(chanend c_ep)

REV A

XMOS USB Device Design Guide 16/40

Initialises an XUD_ep.

This function has the following parameters:

c_ep Endpoint channel to be connected to the XUD library.

This function returns:

Endpoint descriptor

4.1.3.1 XUD_GetBuffer()

int XUD_GetBuffer(XUD_ep ep_out, unsigned char buffer[])
This function must be called by a thread that deals with an OUT endpoint.

When the host sends data, the low-level driver will fill the buffer. It pauses until
data is available.

This function has the following parameters:

ep_out The OUT endpoint identifier.

buffer The buffer to store data in. This is a buffer containing characters.
The buffer must be word aligned.

This function returns:

The number of bytes written to the buffer, for errors see §3.1.4.

4.1.3.2 XUD_SetBuffer()

int XUD_SetBuffer(XUD_ep ep_in, unsigned char buffer[], unsigned datalength)
This function must be called by a thread that deals with an IN endpoint.

When the host asks for data, the low-level driver will transmit the buffer to the
host.

This function has the following parameters:

ep_in The endpoint identifier created by XUD_InitEp.

buffer The buffer of data to send out.

datalength The number of bytes in the buffer.

This function returns:

0 on success, for errors see §3.1.4.

REV A

XMOS USB Device Design Guide 17/40

4.1.3.3 XUD_SetBuffer_EpMax()

This function provides a similar function to XUD_SetBuffer function but it cuts the data up in
packets of a fixed maximum size. This is especially useful for control transfers where large
descriptors must be sent in typically 64 byte transactions.

int XUD_SetBuffer_EpMax(XUD_ep ep_in,
unsigned char buffer[],
unsigned datalength,
unsigned epMax)

Similar to XUD_SetBuffer but breaks up data transfers of into smaller packets.

This function must be called by a thread that deals with an IN endpoint. When the
host asks for data, the low-level driver will transmit the buffer to the host.

This function has the following parameters:

ep_in The IN endpoint identifier created by XUD_InitEp.

buffer The buffer of data to send out.

datalength The number of bytes in the buffer.

epMax The maximum packet size in bytes.

This function returns:

0 on success, for errors see §3.1.4.

4.1.3.4 XUD_DoGetRequest()

int XUD_DoGetRequest(XUD_ep ep_out,
XUD_ep ep_in,
unsigned char buffer[],
unsigned length,
unsigned requested)

This function performs a combined XUD_SetBuffer and XUD_GetBuffer.

It transmits the buffer of the given length over the ep_in endpoint to answer an
IN request, and then waits for a 0 length Status OUT transaction on ep_out. This
function is normally called to handle Get control requests to Endpoint 0.

This function has the following parameters:

ep_out The endpoint identifier that handles Endpoint 0 OUT data in the
XUD manager.

ep_in The endpoint identifier that handles Endpoint 0 IN data in the XUD
manager.

REV A

XMOS USB Device Design Guide 18/40

buffer The data to send in response to the IN transaction. Note that this
data is chopped up in fragments of at most 64 bytes.

length Length of data to be sent.

requested The length that the host requested, pass the value sp.wLength.

This function returns:

0 on success, for errors see §3.1.4

4.1.3.5 XUD_DoSetRequestStatus()

int XUD_DoSetRequestStatus(XUD_ep ep_in)
This function sends an empty packet back on the next IN request with PID1.

It is normally used by Endpoint 0 to acknowledge success of a control transfer.

This function has the following parameters:

ep_in The Endpoint 0 IN identifier to the XUD manager.

This function returns:

0 on success, for errors see §3.1.4

4.1.3.6 XUD_SetDevAddr()

void XUD_SetDevAddr(unsigned addr)
This function must be called by Endpoint 0 once a setDeviceAddress request is
made by the host.

Must be run on USB core

This function has the following parameters:

addr New device address.

4.1.3.7 XUD_ResetEndpoint()

XUD_BusSpeed XUD_ResetEndpoint(XUD_ep one, XUD_ep & ?two)
This function will complete a reset on an endpoint.

Can either pass one or two channel-ends in (the second channel-end can be set
to null). The return value should be inspected to find out what type of reset was
performed. In Endpoint 0 typically two channels are reset (IN and OUT). In other
endpoints null can be passed as the second parameter.

This function has the following parameters:

REV A

XMOS USB Device Design Guide 19/40

one IN or OUT endpoint identifier to perform the reset on.

two Optional second IN or OUT endpoint structure to perform a reset
on.

This function returns:

Either XUD_SPEED_HS - the host has accepted that this device can execute at high
speed, or XUD_SPEED_FS - the device should run at full speed.

4.1.3.8 XUD_SetStallByAddr()

void XUD_SetStallByAddr(int epNum)
Mark an IN endpoint as STALL based on its EP address.

Cleared automatically if a SETUP received on the endpoint. Note: the IN bit of the
endpoint address is used.

Must be run on USB core

This function has the following parameters:

epNum Endpoint number.

4.1.3.9 XUD_SetStall()

void XUD_SetStall(XUD_ep ep)
Mark an endpoint as STALLed.

It is cleared automatically if a SETUP received on the endpoint.

Must be run on USB core

This function has the following parameters:

ep XUD_ep type.

4.1.3.10 XUD_ClearStallByAddr()

void XUD_ClearStallByAddr(int epNum)
Mark an OUT endpoint as NOT STALLed based on its EP address.

Note: the IN bit of the endpoint address is used.

Must be run on USB core

This function has the following parameters:

epNum Endpoint number.

REV A

XMOS USB Device Design Guide 20/40

4.1.3.11 XUD_ClearStall()

void XUD_ClearStall(XUD_ep ep)
Mark an OUT endpoint as NOT STALLed.

Must be run on USB core

This function has the following parameters:

ep XUD_ep type.

4.2 module_usb_device

4.2.1 Data Structure

This structure closely matches the structure defined in the USB 2.0 Specification:

typedef struct USB_SetupPacket
{

USB_BmRequestType_t bmRequestType; /* (1 byte) Specifies direction of dataflow ,
type of rquest and recipient */

unsigned char bRequest; /* Specifies the request */
unsigned short wValue; /* Host can use this to pass info to the

device in its own way */
unsigned short wIndex; /* Typically used to pass index/offset such

as interface or EP no */
unsigned short wLength; /* Number of data bytes in the data stage

(for Host -> Device this this is exact
count , for Dev ->Host is a max. */

} USB_SetupPacket_t;

4.2.2 Setup Function

int USB_GetSetupPacket(XUD_ep ep_out, XUD_ep ep_in, USB_SetupPacket_t &sp)
Receives a Setup data packet and parses it into the passed USB_SetupPacket_t
structure.

This function has the following parameters:

ep_out OUT endpint from XUD

ep_in IN endpoint to XUD

sp SetupPacket structure to be filled in (passed by ref)

This function returns:

0 on non-error, -1 for bus-reset

Note, this function can return -1 to indicate a bus-reset condition.

REV A

XMOS USB Device Design Guide 21/40

4.2.3 Standard Requests

This function takes a populated USB_SetupPacket_t structure as an argument.

int USB_StandardRequests(XUD_ep ep_out,
XUD_ep ep_in,
unsigned char devDesc_hs[],
int devDescLength_hs,
unsigned char cfgDesc_hs[],
int cfgDescLength_hs,
unsigned char ?devDesc_fs[],
int devDescLength_fs,
unsigned char ?cfgDesc_fs[],
int cfgDescLength_fs,
unsigned char strDescs[][40],
USB_SetupPacket_t &sp,
chanend ?c_usb_test,
XUD_BusSpeed usbBusSpeed)

This function deals with common requests This includes Standard Device Requests
listed in table 9-3 of the USB 2.0 Spec all devices must respond to these requests, in
some cases a bare minimum implementation is provided and should be extended
in the devices EP0 code It handles the following standard requests appropriately
using values passed to it:.

Get Device Descriptor (using devDesc_hs/devDesc_fs arguments)

Get Configuration Descriptor (using cfgDesc_hs/cfgDesc_fs arguments)

String requests (using strDesc argument)

Get Microsoft OS String Descriptor (re-uses product ID string)

Get Device_Qualifier Descriptor

Get Other-Speed Configuration Descriptor

Set/Clear Feature (Endpoint Halt)

Get/Set Interface

Set Configuration

If the request is not recognised the endpoint is marked STALLED

This function has the following parameters:

ep_out Endpoint from XUD (ep 0)

ep_in Endpoint from XUD (ep 0)

devDesc_hs The Device descriptor to use, encoded according to the USB stan-
dard

REV A

XMOS USB Device Design Guide 22/40

devDescLength_hs
Length of device descriptor in bytes

cfgDesc_hs Configuration descriptor

cfgDescLength_hs
Length of config descriptor in bytes

devDesc_fs The Device descriptor to use, encoded according to the USB stan-
dard

devDescLength_fs
Length of device descriptor in bytes. If 0 the HS device descriptor is
used.

cfgDesc_fs Configuration descriptor

cfgDescLength_fs
Length of config descriptor in bytes. If 0 the HS config descriptor is
used.

strDescs

sp USB_SetupPacket_t (passed by ref) in which the setup data is re-
turned

c_usb_test Optional channel param for USB test mode support

usbBusSpeed The current bus speed (XUD_SPEED_HS or XUD_SPEED_FS)

This function returns:

Returns 0 if the request has been dealt with successfully, 1 if not. -1 for bus reset

4.2.4 Standard Device Request Types

· SET_ADDRESS

· The device address is set in XUD (using XUD_SetDevAddr()).

· SET_CONFIGURATION

· A global variable is updated with the given configuration value.

· GET_STATUS

· The status of the device is returned. This uses the device Configuration descriptor to return
if the device is bus powered or not.

· SET_CONFIGURATION

· A global variable is returned with the current configuration last set by SET_CONFIGURATION.

· GET_DESCRIPTOR

REV A

XMOS USB Device Design Guide 23/40

· Returns the relevant descriptors. See §6.4 for further details. Note, some changes of returned
descriptor will occur based on the current bus speed the device is running.
· DEVICE
· CONFIGURATION
· DEVICE_QUALIFIER
· OTHER_SPEED_CONFIGURATION
· STRING

In addition the following test mode requests are dealt with (with the correct test mode set in XUD):

· SET_FEATURE

· TEST_J

· TEST_K

· TEST_SE0_NAK

· TEST_PACKET

· FORCE_ENABLE

4.2.5 Standard Interface Requests

· SET_INTERFACE

· A global variable is maintained for each interface. This is updated by a SET_INTERFACE. Some
basic range checking is included using the value numInterfaces from the ConfigurationDe-
scriptor.

· GET_INTERFACE

· Returns the value written by SET_INTERFACE.

4.2.6 Standard Endpoint Requests

· SET_FEATURE

· CLEAR_FEATURE

· GET_STATUS

If parsing the request does not result in a match, the request is not handled, the Endpoint is
marked “Halted” (Using XUD_SetStall_Out() and XUD_SetStall_In()) and the function returns 1.
The function returns 0 if a request was handled without error (See also Status Reporting).

REV A

5 Programming Guide

IN THIS CHAPTER

· Includes

· Declarations

· Endpoint 0 Implementation

· Main

· Endpoint Addresses

· Sending/Receiving Data

· Device Descriptors

· Worked Example

This section provides information on how to create an application using the USB
Device library.

5.1 Includes

The application needs to include xud.h and usb.h.

5.2 Declarations

Create a table of endpoint types for both IN and OUT endpoints. These must each
include one for endpoint 0.

#define XUD_EP_COUNT_OUT 1
#define XUD_EP_COUNT_IN 2

/* Endpoint type tables */
XUD_EpType epTypeTableOut[XUD_EP_COUNT_OUT] = {

XUD_EPTYPE_CTL | XUD_STATUS_ENABLE
};
XUD_EpType epTypeTableIn[XUD_EP_COUNT_IN] = {

XUD_EPTYPE_CTL | XUD_STATUS_ENABLE , XUD_EPTYPE_BUL
};

The endpoint types are:

· XUD_EPTYPE_ISO: Isochronous endpoint

· XUD_EPTYPE_INT: Interrupt endpoint

· XUD_EPTYPE_BUL: Bulk endpoint

REV A

XMOS USB Device Design Guide 25/40

· XUD_EPTYPE_CTL: Control endpoint

· XUD_EPTYPE_DIS: Disabled endpoint

And XUD_STATUS_ENABLE is ORed in to the endpoints that wish to be informed of
USB bus resets (see §3.1.4).

5.3 Endpoint 0 Implementation

It is necessary to create an implementation for endpoint 0 which takes two channels,
one for IN and one for OUT. It can take an optional channel for test (see §3.1.6).

void Endpoint0(chanend chan_ep0_out , chanend chan_ep0_in , chanend ?
↩ c_usb_test)

{

Every endpoint must be initialized using the XUD_InitEp() function. For endpoint
0 this is looks like:

XUD_ep ep0_out = XUD_InitEp(chan_ep0_out);
XUD_ep ep0_in = XUD_InitEp(chan_ep0_in);

Typically the minimal code for endpoint 0 loops making call to
USB_GetSetupPacket(), parses the USB_SetupPacket_t for any class/applicaton
specific requests. Then makes a call to USB_StandardRequests(). And finally, calls
XUD_ResetEndpoint() if there have been any errors. For example:

REV A

XMOS USB Device Design Guide 26/40

while (1)
{

/* Returns 0 on success , < 0 for USB RESET */
int retVal = USB_GetSetupPacket(ep0_out , ep0_in , sp);

if(retVal == 0)
{

switch(sp.bmRequestType.Type)
{

case BM_REQTYPE_TYPE_CLASS:
switch(sp.bmRequestType.Receipient)
{

case BM_REQTYPE_RECIP_INTER:
// Optional class specific requests.
break;

...
}

break;

...
}

retval = USB_StandardRequests(ep0_out , ep0_in ,
devDesc , devDescLen , ...);

}

if(retVal < 0)
usbBusSpeed = XUD_ResetEndpoint(ep0_out , ep0_in);

}

The code above could also over-ride any of the requests handled in
USB_StandardRequests() for custom functionality.

Note, class specific code should be inserted before USB_StandardRequests() is
called since if USB_StandardRequests() cannot handle a request it marks the
Endpoint stalled to indicate to the host that the request is not supported by the
device.

Note that on reset the XUD returns the negotiated USB speed (full speed/high
speed).

5.4 Main

Within the main function it is necessary to allocate the channels to connect the
endpoints and then create the top-level par containing the XUD_Manager, endpoint
0 and any application specific endpoints.

REV A

XMOS USB Device Design Guide 27/40

int main()
{

chan c_ep_out[XUD_EP_COUNT_OUT], c_ep_in[XUD_EP_COUNT_IN];
par {

XUD_Manager(c_ep_out , XUD_EP_COUNT_OUT ,
c_ep_in , XUD_EP_COUNT_IN ,
null , epTypeTableOut , epTypeTableIn ,
null , null , null , XUD_SPEED_HS , null);

Endpoint0(c_ep_out [0], c_ep_in [0]);

// Application specific endpoints
...

}
return 0;

}

The XUD_Manager connects to one end of every channel while the other end is
passed to an endpoint (either endpoint 0 or an application specific endpoint).
Application specific endpoints are connected using channel ends so the IN and
OUT channel arrays need to be extended for each endpoint.

5.5 Endpoint Addresses

Endpoint 0 uses index 0 of both the endpoint type table and the channel array. The
address of other endpoints must also correspond to their index in the endpoint
table and the channel array.

5.6 Sending/Receiving Data

An application specific endpoint can send data using XUD_SetBuffer()
(see §4.1.3.2) and receive data using XUD_GetBuffer() (see §4.1.3.1).

5.7 Device Descriptors

USB device descriptors must be provided for each USB device. They are used to
identify the USB device’s vendor ID, product ID and detail all the attributes of the
advice as specified in the USB 2.0 standard. It is beyond the scope of this document
to give details of writing a descriptor.

5.8 Worked Example

For more details see the worked HID Class example (§6).

REV A

6 Example Application

IN THIS CHAPTER

· Declarations

· Main program

· HID Response Function

· Standard Descriptors

· Application and Class Specific Requests

This section contains a full worked example of a High Speed USB 2.0 HID Class
device. The example code in this document is intended for xCORE-USB (U-Series)
devices. The code would be very similar for an xCORE General Purpose (L-Series)
devices with external ULPI transceiver, with only the declarations and call to
XUD_Manager() being different.

The full source for this demo is released as the HID Class USB Device Demo avail-
able through the XMOS xTIMEcomposer tool. The tool can be downloaded free
from www.xmos.com.

6.1 Declarations

#include <xs1.h>

#include "xud.h"
#include "usb.h"

#define XUD_EP_COUNT_OUT 1
#define XUD_EP_COUNT_IN 2

/* Endpoint type tables */
XUD_EpType epTypeTableOut[XUD_EP_COUNT_OUT] = {

XUD_EPTYPE_CTL | XUD_STATUS_ENABLE
};
XUD_EpType epTypeTableIn[XUD_EP_COUNT_IN] = {

XUD_EPTYPE_CTL | XUD_STATUS_ENABLE , XUD_EPTYPE_BUL
};

6.2 Main program

The main function creates three tasks: the XUD manager, endpoint 0, and HID. An
array of channels is used for both in and out endpoints, endpoint 0 requires both,
HID is just an IN endpoint for the mouse data to the host.

REV A

XMOS USB Device Design Guide 29/40

int main()
{

chan c_ep_out[XUD_EP_COUNT_OUT], c_ep_in[XUD_EP_COUNT_IN];
par {

XUD_Manager(c_ep_out , XUD_EP_COUNT_OUT ,
c_ep_in , XUD_EP_COUNT_IN ,
null , epTypeTableOut , epTypeTableIn ,
null , null , null , XUD_SPEED_HS , null);

Endpoint0(c_ep_out [0], c_ep_in [0]);
hid_mouse(c_ep_in [1]);

}
return 0;

}

Since we do not require SOF notifications null is passed into the c_sof parameter.
XUD_SPEED_HS is passed for the desiredSpeed parameter as we wish to run as a
high-speed device. Test mode support is not important for this example to null is
also passed to the c_usb_testmode parameter.

6.3 HID Response Function

This function responds to the HID requests—it draws a square using the mouse
moving 40 pixels in each direction in sequence every 100 requests. Change this
function to feed other data back (for example based on user input). It demonstrates
the use of XUD_SetBuffer.

REV A

XMOS USB Device Design Guide 30/40

void hid_mouse(chanend c_ep1) {
char buffer [] = {0, 0, 0, 0};
int counter = 0;
int state = 0;

XUD_ep ep = XUD_Init_Ep(c_ep1);

counter = 0;
while (1) {

counter ++;
if(counter == 100) {

if(state == 0) {
buffer [1] = 40;
buffer [2] = 0;
state +=1;

} else if(state == 1) {
buffer [1] = 0;
buffer [2] = 40;
state +=1;

} else if(state == 2) {
buffer [1] = -40;
buffer [2] = 0;
state +=1;

} else if(state == 3) {
buffer [1] = 0;
buffer [2] = -40;
state = 0;

}
counter = 0;

} else {
buffer [1] = 0;
buffer [2] = 0;

}

XUD_SetBuffer(c_ep , buffer , 4) < 0;
}

}

Note, this endpoint does not receive or check for status data. It always performs IN
transactions. Since it’s behaviour is not modified based on bus speed the mouse
cursor will move more slowly when connected via a full-speed port. Ideally the
device would either modify its required polling rate in its descriptors (bInterval
in the endpoint descriptor) or the counter value it is using in the hid_mouse()
function.

Should processing take longer that the host IN polls, the XUD_Manager core will
simply NAK the host. The XUD_SetBuffer() function will return when the packet
transmission is complete.

REV A

XMOS USB Device Design Guide 31/40

6.4 Standard Descriptors

The USB_StandardRequests() function expects descriptors be declared as arrays
of characters. Descriptors are looked at in depth in this section.

6.4.1 Device Descriptor

The device descriptor contains basic information about the device. This descriptor
is the first descriptor the host reads during its enumeration process and it includes
information that enables the host to further interrogate the device. The descriptor
includes information on the descriptor itself, the device (USB version, vendor ID
etc.), its configurations and any classes the device implements.

For the HID Mouse example this descriptor looks like the following:

static unsigned char devDesc [] =
{

0x12 , /* 0 bLength */
USB_DEVICE , /* 1 bdescriptorType */
0x00 , /* 2 bcdUSB */
0x02 , /* 3 bcdUSB */
0x00 , /* 4 bDeviceClass */
0x00 , /* 5 bDeviceSubClass */
0x00 , /* 6 bDeviceProtocol */
0x40 , /* 7 bMaxPacketSize */
(VENDOR_ID & 0xFF), /* 8 idVendor */
(VENDOR_ID >> 8), /* 9 idVendor */
(PRODUCT_ID & 0xFF), /* 10 idProduct */
(PRODUCT_ID >> 8), /* 11 idProduct */
(BCD_DEVICE & 0xFF), /* 12 bcdDevice */
(BCD_DEVICE >> 8), /* 13 bcdDevice */
0x01 , /* 14 iManufacturer */
0x02 , /* 15 iProduct */
0x00 , /* 16 iSerialNumber */
0x01 /* 17 bNumConfigurations */

6.4.2 Device Qualifier Descriptor

Devices which support both full and high-speeds must implement a device qualifier
descriptor. The device qualifier descriptor defines how fields of a high speed
device’s descriptor would look if that device is run at a different speed. If a high-
speed device is running currently at full/high speed, fields of this descriptor reflect
how device descriptor fields would look if speed was changed to high/full. Please
refer to section 9.6.2 of the USB 2.0 specification for further details.

For a full-speed only device this is not required.

Typically a device qualifier descriptor is derived mechanically from the device
descriptor. The USB_StandardRequest function will build a device qualifier from the
device descriptors passed to it based on the speed the device is currently running
at.

REV A

XMOS USB Device Design Guide 32/40

6.4.3 Configuration Descriptor

The configuration descriptor contains the devices features and abilities. This
descriptor includes Interface and Endpoint Descriptors. Every device must have
at least one configuration, in our example there is only one configuration. The
configuration descriptor is presented below:

static unsigned char cfgDesc [] = {
0x09 , /* 0 bLength */
0x02 , /* 1 bDescriptortype */
0x22 , 0x00 , /* 2 wTotalLength */
0x01 , /* 4 bNumInterfaces */
0x01 , /* 5 bConfigurationValue */
0x03 , /* 6 iConfiguration */
0x80 , /* 7 bmAttributes */
0xC8 , /* 8 bMaxPower */

0x09 , /* 0 bLength */
0x04 , /* 1 bDescriptorType */
0x00 , /* 2 bInterfacecNumber */
0x00 , /* 3 bAlternateSetting */
0x01 , /* 4: bNumEndpoints */
0x03 , /* 5: bInterfaceClass */
0x00 , /* 6: bInterfaceSubClass */
0x02 , /* 7: bInterfaceProtocol */
0x00 , /* 8 iInterface */

0x09 , /* 0 bLength. Note this is currently
replicated in hidDescriptor [] below */

0x21 , /* 1 bDescriptorType (HID) */
0x10 , /* 2 bcdHID */
0x11 , /* 3 bcdHID */
0x00 , /* 4 bCountryCode */
0x01 , /* 5 bNumDescriptors */
0x22 , /* 6 bDescriptorType [0] (Report) */
0x48 , /* 7 wDescriptorLength */
0x00 , /* 8 wDescriptorLength */

0x07 , /* 0 bLength */
0x05 , /* 1 bDescriptorType */
0x81 , /* 2 bEndpointAddress */
0x03 , /* 3 bmAttributes */
0x40 , /* 4 wMaxPacketSize */
0x00 , /* 5 wMaxPacketSize */
0x01 /* 6 bInterval */

6.4.4 Other Speed Configuration Descriptor

A other speed configuration for similar reasons as the device qualifier descriptor.
The USB_StandardRequests() function generates this descriptor from the Configu-
ration Descriptors passed to it based on the bus speed it is currently running at.
For the HID mouse example we used the same configuration Descriptors if running
on full-speed or high-speed.

REV A

XMOS USB Device Design Guide 33/40

6.4.5 String Descriptors

An array of strings supplies all the strings that are referenced from the descriptors
(using fields such as ‘iInterface’, ‘iProduct’ etc.). String 0 is the language descriptor,
and is interpreted as “no string supplied” when used as an index value. The
USB_StandardRequests() function deals with requests for strings using the table of
strings passed to it. The string table for the HID mouse example is shown below:

static unsigned char stringDescriptors [][40] =
{

" ", // Language string
"XMOS", // iManufacturer
"Example HID Mouse", // iProduct
"Config", // iConfiguration

Note that the null values and length 0 is passed for the full-speed descriptors, this
means that the same descriptors will be used whether the device is running in full
or high-speed.

6.5 Application and Class Specific Requests

Although the USB_StandardRequests() function deals with many of the requests
the device is required to handle in order to be properly enumerated by a host,
typically a USB device will have Class (or Application) specific requests that must
be handled.

In the case of the HID mouse there are three mandatory requests that must be
handled:

· GET_DESCRIPTOR

· HID Return the HID descriptor

· REPORT Return the HID report descriptor

· GET_REPORT Return the HID report data

Please refer to the HID Specification and related documentation for full details of
all HID requests.

The HID report descriptor informs the hosts of the contents of the HID reports that
it will be sending to the host periodically. For a mouse this could include X/Y axis
values, button presses etc. Tools for building these descriptors are available for
download on the usb.org website.

The HID report descriptor for the HID mouse example is shown below:

REV A

XMOS USB Device Design Guide 34/40

static unsigned char hidReportDescriptor [] =
{

0x05 , 0x01 , // Usage page (desktop)
0x09 , 0x02 , // Usage (mouse)
0xA1 , 0x01 , // Collection (app)
0x05 , 0x09 , // Usage page (buttons)
0x19 , 0x01 ,
0x29 , 0x03 ,
0x15 , 0x00 , // Logical min (0)
0x25 , 0x01 , // Logical max (1)
0x95 , 0x03 , // Report count (3)
0x75 , 0x01 , // Report size (1)
0x81 , 0x02 , // Input (Data , Absolute)
0x95 , 0x01 , // Report count (1)
0x75 , 0x05 , // Report size (5)
0x81 , 0x03 , // Input (Absolute , Constant)
0x05 , 0x01 , // Usage page (desktop)
0x09 , 0x01 , // Usage (pointer)
0xA1 , 0x00 , // Collection (phys)
0x09 , 0x30 , // Usage (x)
0x09 , 0x31 , // Usage (y)
0x15 , 0x81 , // Logical min (-127)
0x25 , 0x7F , // Logical max (127)
0x75 , 0x08 , // Report size (8)
0x95 , 0x02 , // Report count (2)
0x81 , POSITION_TYPE , // Input (Data , Rel=0x6, Abs=0x2)
0xC0 , // End collection
0x09 , 0x38 , // Usage (Wheel)
0x95 , 0x01 , // Report count (1)
0x81 , 0x02 , // Input (Data , Relative)
0x09 , 0x3C , // Usage (Motion Wakeup)
0x15 , 0x00 , // Logical min (0)
0x25 , 0x01 , // Logical max (1)
0x75 , 0x01 , // Report size (1)
0x95 , 0x01 , // Report count (1)
0xB1 , 0x22 , // Feature (No preferred , Variable)
0x95 , 0x07 , // Report count (7)
0xB1 , 0x01 , // Feature (Constant)
0xC0 // End collection

The request for this descriptor (and the other required requests) should be imple-
mented before making the call to USB_StandardRequests(). The programmer may
decide not to make a call to USB_StandardRequests if the request is fully handled.
It is possible the programmer may choose to implement some functionality for a
request, then allow USB_StandardRequests() to finalize.

The complete code listing for the main endpoint 0 task is show below:

REV A

XMOS USB Device Design Guide 35/40

void Endpoint0(chanend chan_ep0_out , chanend chan_ep0_in , chanend ?
↩ c_usb_test)

{
USB_SetupPacket_t sp;

unsigned bmRequestType;
XUD_BusSpeed usbBusSpeed;

XUD_ep ep0_out = XUD_InitEp(chan_ep0_out);
XUD_ep ep0_in = XUD_InitEp(chan_ep0_in);

// Set language string to US English
stringDescriptors [0][0] = 0x9;
stringDescriptors [0][1] = 0x4;

while (1)
{

/* Returns 0 on success , < 0 for USB RESET */
int retVal = USB_GetSetupPacket(ep0_out , ep0_in , sp);

if(! retVal)
{

/* Set retVal to non -zero , we expect it to get set to 0 if a
↩ request is handled */

retVal = 1;

/* Stick bmRequest type back together for an easier parse ... */
bmRequestType = (sp.bmRequestType.Direction <<7) |

(sp.bmRequestType.Type <<5) |
(sp.bmRequestType.Recipient);

if(USE_XSCOPE)
{

/* Stick bmRequest type back together for an easier parse
↩ ... */

unsigned bmRequestType = (sp.bmRequestType.Direction <<7) |
(sp.bmRequestType.Type <<5) |
(sp.bmRequestType.Recipient);

if ((bmRequestType == USB_BMREQ_H2D_STANDARD_DEV) &&
(sp.bRequest == USB_SET_ADDRESS))

{
debug_printf("Address allocated %d\n", sp.wValue);

}
}

switch(bmRequestType)
{

/* Direction: Device -to-host
* Type: Standard
* Recipient: Interface
*/

case USB_BMREQ_D2H_STANDARD_INT:

if(sp.bRequest == USB_GET_DESCRIPTOR)
{

/* HID Interface is Interface 0 */
if(sp.wIndex == 0)
{

/* Look at Descriptor Type (high -byte of wValue
↩) */

unsigned short descriptorType = sp.wValue & 0
↩ xff00;

switch(descriptorType)
{

case HID_HID:
retVal = XUD_DoGetRequest(ep0_out ,
↩ ep0_in , hidDescriptor ,

sizeof(hidDescriptor), sp.wLength);
break;

case HID_REPORT:
retVal = XUD_DoGetRequest(ep0_out ,
↩ ep0_in , hidReportDescriptor ,

sizeof(hidReportDescriptor), sp.
↩ wLength);

break;
}

}
}
break;

/* Direction: Device -to-host and Host -to -device
* Type: Class
* Recipient: Interface
*/

case USB_BMREQ_H2D_CLASS_INT:
case USB_BMREQ_D2H_CLASS_INT:

/* Inspect for HID interface num */
if(sp.wIndex == 0)
{

/* Returns 0 if handled ,
* 1 if not handled ,
* -1 for bus reset */

retVal = HidInterfaceClassRequests(ep0_out , ep0_in ,
↩ sp);

}
break;

}
}

/* If we haven 't handled the request about ,
* then do standard enumeration requests */

if(retVal > 0)
{

/* Returns 0 if handled okay ,
* 1 if request was not handled (STALLed),
* -1 for USB Reset */

retVal = USB_StandardRequests(ep0_out , ep0_in , devDesc ,
sizeof(devDesc), cfgDesc , sizeof(cfgDesc),
null , 0, null , 0, stringDescriptors , sp ,
c_usb_test , usbBusSpeed);

}

/* USB bus reset detected , reset EP and get new bus speed */
if(retVal < 0)
{

usbBusSpeed = XUD_ResetEndpoint(ep0_out , ep0_in);
}

}
}

REV A

XMOS USB Device Design Guide 36/40

The skeleton HidInterfaceClassRequests() function deals with any outstanding
HID requests. See the USB HID Specification for full request details:

REV A

XMOS USB Device Design Guide 37/40

int HidInterfaceClassRequests(XUD_ep c_ep0_out , XUD_ep c_ep0_in ,
USB_SetupPacket_t sp)

{
unsigned buffer [64];
unsigned tmp;

switch(sp.bRequest)
{

case HID_GET_REPORT:

/* Mandatory. Allows sending of report over control pipe */
/* Send a hid report - note the use of asm due to shared mem */
asm("ldaw %0, dp[g_reportBuffer]": "=r"(tmp));
asm("ldw %0, %1[0]": "=r"(tmp) : "r"(tmp));
buffer [0] = tmp;

return XUD_DoGetRequest(c_ep0_out , c_ep0_in ,
(buffer , unsigned char []), 4, sp.wLength);

break;

case HID_GET_IDLE:
/* Return the current Idle rate - optional for a HID mouse */

/* Do nothing - i.e. STALL */
break;

case HID_GET_PROTOCOL:
/* Required only devices supporting boot protocol devices ,
* which this example does not */

/* Do nothing - i.e. STALL */
break;

case HID_SET_REPORT:
/* The host sends an Output or Feature report to a HID
* using a cntrol transfer - optional */

/* Do nothing - i.e. STALL */
break;

case HID_SET_IDLE:
/* Set the current Idle rate - this is optional for a HID mouse
* (Bandwidth can be saved by limiting the frequency that an
* interrupt IN EP when the data hasn 't changed since the last
* report */

/* Do nothing - i.e. STALL */
break;

case HID_SET_PROTOCOL:
/* Required only devices supporting boot protocol devices ,
* which this example does not */

/* Do nothing - i.e. STALL */
break;

}

return 1;
}

REV A

XMOS USB Device Design Guide 38/40

If the HID request is not handles, the function returns 1. This results in
USB_StandardRequests() being called, and eventually the endpoint being STALLed
to indicate an unknown request.

REV A

7 L-Series Support

IN THIS CHAPTER

· Resource Requirements

· Ports/Pins

· Reset Requirements

· Building for L-Series

The USB Device Library has been designed primarily for use with xCORE-USB (U-
Series) devices. However, it does also support L-Series devices. This section
describe the resource usage on the L-Series and changes required to build for
L-Series devices.

7.1 Resource Requirements

The resources used by the USB device and XUD libraries combined on an L-Series
device are shown below:

Resource Requirements

Logical Cores 2 plus one per endpoint

Channels 2 for Endpoint0 and 1 additional per IN and OUT endpoint

Timers 4 timers

Clock blocks Clock block 0

Note: On the L-Series the XUD library uses clock block 0 and configures it to be
clocked by the 60MHz clock from the ULPI transceiver. The ports it uses are in turn
clocked from the clock block. Since clock block 0 is the default for all ports when
enabled it is important that if a port is not required to be clocked from this 60MHz
clock, then it is configured to use another clock block.

7.2 Ports/Pins

The ports used for the physical connection to the external ULPI transceiver must
be connected as shown in Figure 4.

In addition some ports are used internally when the XUD library is in operation.
For example pins X0D2-X0D9, X0D26-X0D33 and X0D37-X0D43 on an XS1-L8-128
device should not be used.

Please refer to the device datasheet for further information on which ports are
available.

REV A

XMOS USB Device Design Guide 40/40

Pin Port Signal

1b 4b 8b

X0D12 P1E0 ULPI_STP

X0D13 P1F0 ULPI_NXT

X0D14 P4C0 P8B0 ULPI_DATA[7:0]

X0D15 P4C1 P8B1

X0D16 P4D0 P8B2

X0D17 P4D1 P8B3

X0D18 P4D2 P8B4

X0D19 P4D3 P8B5

X0D20 P4C2 P8B6

X0D21 P4C3 P8B7

X0D22 P1G0 ULPI_DIR

X0D23 P1H0 ULPI_CLK

X0D24 P1I0 ULPI_RST_N

Figure 4:

L-Series
required
pin/port

connections

7.3 Reset Requirements

On the L-Series the XUD_Manager requires a reset port and a reset clock block to be
given.

7.4 Building for L-Series

Note: module_usb_device and module_xud upon which it depends both support
both U-Series and L-Series devices, but the xSOFTip Explorer will only perform
resource estimation with the U-Series library.

Note: Also, tools before the 13.0 release do not support automatically changing a
target library. Therefore, if using xTIMEcomposer pre-13.0 the Makefile generated
will have to be modified in order to compile for an L-Series device. Open the
Makefile and add the line MODULE_LIBRARIES = xud_l.

REV A

XMOS USB Device Design Guide 41/40

Copyright © 2013, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS and the XMOS logo are registered trademarks of Xmos Ltd. in the United Kingdom and other countries,
and may not be used without written permission. All other trademarks are property of their respective owners.
Where those designations appear in this book, and XMOS was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

REV A

	Overview
	Features
	Memory Requirements
	Resource Requirements
	Core Speed
	Ports/Pins

	Hardware Requirements
	Recommended Hardware
	U16 Slicekit

	Demonstration Applications
	HID Class USB Device Demo
	Custom Class USB Device Demo

	System
	XUD Library
	XUD Core
	Endpoint Communication with XUD_Manager()
	Endpoint Type Table
	Status Reporting
	SOF Channel
	USB Test Modes

	USB Device Helper Functions
	Standard Requests and Endpoint 0

	API
	module_xud
	XUD_Manager()
	XUD_ep
	XUD_InitEp()

	module_usb_device
	Data Structure
	Setup Function
	Standard Requests
	Standard Device Request Types
	Standard Interface Requests
	Standard Endpoint Requests

	Programming Guide
	Includes
	Declarations
	Endpoint 0 Implementation
	Main
	Endpoint Addresses
	Sending/Receiving Data
	Device Descriptors
	Worked Example

	Example Application
	Declarations
	Main program
	HID Response Function
	Standard Descriptors
	Device Descriptor
	Device Qualifier Descriptor
	Configuration Descriptor
	Other Speed Configuration Descriptor
	String Descriptors

	Application and Class Specific Requests

	L-Series Support
	Resource Requirements
	Ports/Pins
	Reset Requirements
	Building for L-Series

