XK-XMP-64 Performance Measurements

(VERSION 1.1)

XMOS

2010/03/15

Authors:
JAMIE HANLON

Copyright © 2010, XMOS Ltd.
All Rights Reserved

1 Hypercube Topology

A hypercube is a generalisation of a regular cube structure into an arbitrary number of dimensions.
A d-dimensional hypercube is a special case of a k-ary n-cube (torus network) when k = 2, and
has N = 29 nodes and d29-" edges. Each node in the network can be labeled with a d-bit binary
identifier, and an edge exists between two nodes if their identifiers differ by exactly one bit. Hence,
each node has d = logN edges. An edge is called a dimension e edge if it links two nodes whose
identifiers differ in the eth bit position [2].

Intuitively, a 4-dimensional hypercube can be constructed by joining two cube structures (each
with 8 nodes), by adding edges between corresponding vertexes. Figure 1 illustrates this. Inci-
dentally, a 4-ary 2-cube is equivalent to a 4-dimensional hypercube, and this flat structure is used
to package the hypercube network between the 16 chips in the XMP-64. As each chip contains 4
cores, the hypercube can be viewed as having 64 nodes, in 6 dimensions.

rf\ M M m)

0000 0010 1000 1010 1010, 7100G 10010 70000

0100 0110 1100 1110 (e o)
1011 [1001 |0011 | 0001

C s)
0001 0011 1001 1011 1110 |110d |0110 |0100

0101 0111 1101 1111 C)
J1111911017 0111~ 0101

(a) (b)

Figure1 Representations of a 4-dimensional hypercube. (a) shows an intuitive construction and (b) shows
an equivalent 4-ary 2-cube, or torus network, which is used to package the hypercube on the XMP-64 board.

2 Node Synchronisation

Some programming techniques for parallel computers rely on efficient synchronisation between
all of the processes, so that the processors operate in unison. Synchronisation may be needed
to detect termination, or to ensure that all of the processes have completed modification of global
state before proceeding to the next stage of a computation.

Barrier synchronisation is used to ensure that a set of threads/processes enter a new phase of
computation at the same time. More generally, any global communication such as a reduction
(an operation such as a sum or multiply performed on distributed data) or scatter (to distribute
data from one process to many processes) may imply the use of a barrier. Figure 2 illustrates the
operation of a barrier.

Clock synchronisation is another form of synchronisation, necessary when each node in a network
has access to its own clock, but no guarantees can be made of the agreement with the clocks kept
by other nodes. Synchronisation can be performed globally so that there is a consensus on the

Processes

Barrier
Barrier

Phase 1 — Phase 2 —

Figure 2 Operation of a barrier. Some processes may complete a phase more quickly than others, but
the barrier ensures that all processes enter the next phase synchronously.

time in the network. Doing this, for example, would allow the transit times of messages between
nodes to be calculated.

2.1 Barrier Synchronisation

The communication channels of the XMP-64 are arranged in a hypercube topology, and it is possi-
ble to implement a barrier synchronisation in O(/logN) communication steps, where N is the num-
ber of nodes in the network. In other network topologies such as meshes or irregular structures,
barrier synchronisation is typically implemented using tree structures which incur a far higher cost.

The barrier synchronisation scheme for a hypercube works in the following way. In dimensional
order, each node exchanges a single message with its neighbouring node. For example the first
neighbour of node i is i & 0x1, the second is i & 0x2 and in general for dimension d: i & (0x1 < d).

In the first exchange, all pairs of nodes connected in the first dimension become synchronised
with each other. In the second exchange, nodes connected in second dimension also become
synchronised. After d iterations, all nodes become synchronised with each other. The critical
feature of these exchanges is that no node can leave the barrier before all nodes have entered it.
Algorithm 1 gives the barrier pseudo-code that each node executes to synchronise.

Algorithm 1 Barrier synchronisation pseudo-code executed by each node in the network.

fori=1to ddo
Neighbour node n =i & (0x1 < j)
Send message to n
Receive message from n

end for

This approach of iteratively exchanging messages in each dimension can be applied to other
problems, such as finding minimum and maximum values over the set of nodes, or to calculate the
average of the values held by each node. In particular though, clock synchronisation can also be
achieved this way.

2.2 Global Clock Synchronisation

The aim of clock synchronisation is for each node to learn an offset value to some reference clock
in the network. This could be the average clock or that of a specific node.

Synchronisation of clocks to a specific node for a hypercube works by iteratively synchronising
dimensions in the same way as the barrier. Let ¢, denote the clock of node n. Initially, all pairs
of nodes connected in the first dimension exchange messages to determine the offsets between
their clocks. If synchronising to ¢,,, an adjustment is then applied to the node with the largest
identifier, and if to node ¢y, _,’s clock, then to the lowest. At this point the two nodes in each pair of
nodes are synchronised, and conceptually the network now contains N/2 different clocks. In the
second phase, nodes exchange in the second dimension, but include the offset they learnt in the
first, leaving N/4 different clocks. This continues until all nodes have learnt their offset from the
reference clock.

The pseudo-code for this process is given in algorithm 2. The functions clkSyncMaster() and
clkSyncSlave() communicate in order to determine the A term between the two clocks such that
A = Cnu - Cn

V"

Algorithm 2 Clock synchronisation pseudo-code for node u.

offset < 0
fori=1toddo
Neighbour node v = i & (0x1 < j)
if u > v then
A «+ clkSyncMaster()
offset < offset + A
else
clkSyncSlave()
end if
end for

Accurately determining the value of A is key to the final synchronisation between nodes. The
following describes a way by which this can be done.

The algorithm essentially works with two ping-pong exchanges between the master and slave
processes from which the master learns two time values (fp) and () recorded by the slave, and
t1, recorded itself in the middle. The exchange is initialised by the slave node which sends a
message to the master. When the master receives this, it sends one back. On receiving this, the
slave measures its time (fp) and send it back to the master. The master receives it and measures
its own time (1), then pings the slave again for another clock measurement (&) which is measured
and sent back in the same way. Figure 3 illustrates this exchange. Using these, the following
equations can then be setup, where h is a single hop time and ¢ is an error term.

th—10
b —t

A+h+e (1)
—A+h+e (2)

Then, subtracting 2 from 1 we have

A=t —1f/2—-1t/2

Hop time (h)
7N\

Slave

Master
to tl t2

Figure 3 A diagram illustrating the exchanges made between the master and slave nodes to obtain the
values ty, ty and t.

In order to reduce to a minimum any error in measurement by minimising the number of instruc-
tions and ensuring the exchanges are symmetric, the functions clkSyncMaster() and clkSyncSlave()
were implemented in assembly code.

In practice, the true value of A cannot always be learnt, and instead the calculation may yield A +e,
where ¢ is some small error. This could be caused by non-determinism at the hardware level. We
know that the calculation of A in a given dimension d should be the same for all of the nodes
that have already synchronised in the previous dimensions, of which there will be 29-1. Hence, to
reduce the effect of this error, each node u computes its A, offset as the average over the other
As calculated in previous dimensions:

Bld)=ggs S Bnl0)

venbsy(v)

where
nbsy(v) = {n|(n AND (1 < dd)) = (v AND (1 <« d))}

is the set of neighbouring nodes of v in dimension d, of which will always be of size 2. The
calculation of the average at each node can be completed in d — 1 = log(29-") steps using the
same approach of exchanging values in each dimension.

3 Timing a Barrier Synchronisation

As barrier synchronisation is key to the operation of many parallel algorithms, it is useful to know
how long it takes. An simple estimate can be made by considering the single-hop times between
cores. In the case of the XMP-64, we can view its 64 cores as being arranged in a 6-dimensional
hypercube, where the first two dimensions are in the chip. If hj, is a single hop time in-chip and

4

hof is the time for a single hop off-chip, then the time to run a barrier synchronisation should be
2 x hijp +4 x hog. These times are straight-forward to measure and are presented in table 1. Using
these values, an estimate of 940ns for the barrier to complete can be made.

Core-to-core journey | Time (ns)
On-chip 70
Off-chip (1 hop) 200
Off-chip (2 hops) 290
Off-chip (3 hops) 390
Off-chip (4 hops) 480

Table 1 Timings of core-to-core journeys, both on and off-chip. Note 4 is the diameter of the hypercube;
the maximum distance between any two nodes.

To make a precise measurement of the time taken for a barrier to complete, where all nodes
minimise their time in the barrier, i.e. that they enter at precisely the same point in time (an
assumption made by the above estimate), it is necessary to use the clock synchronisation to
achieve this.

If nodes enter the barrier synchronised, some will enter before others, completing exchanges in as
many dimensions as they can, but not completing until all have entered. For those nodes entering
late, they will complete much faster then normal as messages will be waiting for them in one or
more dimensions. In one extreme, nodes ny to ngz enter the barrier early, followed much later by
no. In this case, it takes ng just 280ns to complete the barrier synchronisation.

For nodes to enter the barrier simultaneously, they must synchronise their clocks against, for
example, node np to obtain an offset to ¢,, and enter at a time in the future specified by ng
adjusted by the offset to cp,. If the synchronisation is perfect, then each node should spend
exactly the same amount of time in the barrier.

Using the above method, the elapsed time through the barrier was recorded for each node. The
results varied by a range of around 150ns each run, with minimum and maximum times of approx-
imately 930ns and 1100ns respectively, but with a consistent average of 990ns, which is in-line
with the estimate made by considering single hop times.

Although the measurement error in the A term was reduced by averaging over synchronised
nodes, it still effects the synchronisation, evident in the resulting times through the barrier. To
ensure this error was not systematic in the program code, the precise clock offsets were inspected
by analysing signal output from pins on the board. This revealed that offsets after synchronisation
between nodes n; to ngz and ng varied between runs and hence could not be caused by some
bias in the measurement for example.

4 Traffic Patterns

In order to evaluate the performance of interconnection networks, synthetic workloads can be
generated. These are a simplification of real execution workloads, but they capture the important

5

spatial and temporal elements of them. With the XMP-64, we are interested in the temporal
characteristics of different traffic patterns, and the congestion that they induce over the network.

4.1 Traffic Patterns

Synthetic traffic patterns are commonly considered as a permutation =, which provides a one-to-
one mapping of source addresses to destination addresses; d = 7(s). Because permutation traffic
concentrates load on individual source-destination pairs, they provide good stress-testing [1].

Bit permutations calculate each bit of the destination address d; as a function of one bit of the
source address s; such that

di = St(iyag(i)-
The following bit permutations were used to evaluate performance of the XMP-64.

» Shuffle. A Fast Fourier Transform or sorting algorithm will demonstrate communications
characteristic of the shuffle permutation:

di=Si_1 mod b-

Where b is the number of bits in the pattern. Equivalently, the identifier is circularly shifted
by 1-bit.

» Transpose. Matrix transpose or corner-turn operations induce the transpose permutation:
d; = si+§ mod b°

This is equivalent to a circular shift of an n-bit identifier by n/2. The transpose permutation
is a worst case for a hypercube network as it causes all source-destination pairs to be sep-
arated by the full diameter of the network, and hence all nodes to be maximally loaded. For
the XMP-64 as are interested in the four dimensions of the hypercube, the transpose relates
to a circular shift of two, performed on the four most significant bits.

+ Bit Complement.
di = §;.

« Bit Reverse.
di = Sp—j1-

Random permutations were also used to provide an average-case. These differ slightly to random
traffic patterns, where each node is equally likely to send to each destination, possibly resulting in
many sources sending to a single destination.

4.2 Method

As we are interested in the spatial locality of the traffic permutations, measurements can be taken
from a single burst of traffic between all source-destination pairs. If this is performed in unison by
all nodes, i.e. they begin sending at the same instance, then maximum congestion will occur.

To do this it is necessary to perform a global clock synchronisation between all nodes, so that they
can synchronise their entry into the permutation and calculate the latencies of messages sent.
Measurements are taken over 10,000 runs of the permutation to ensure values are representative
of the underlying process.

We will look at two important elements of the traffic patterns: distribution of message latencies
and average latencies. To look at the latency distribution, each node records the latency of each
message in a set of frequency bins. To determine the bin ranges, the traffic pattern is simulated for
a number of runs so that all nodes can share a maximum latency value, from which the bin range is
determined. At the end of the experiment, a master node collates the frequency distributions from
all other nodes. To determine average latency, again each node records total latency and then
calculated average latency on completion, passing values back to the master node for collation
into a global average.

For random permutations, each iteration of the experiment is conducted with a new permuta-
tion so that the measurements are unbiased towards some particular configuration. Technically,
this is achieved by each node, each iteration, re-shuffling the permutation, achieving pseudo-
randomness using a cyclic redundancy check (CRC) instruction. An initial global seed value is
distributed to all nodes so they generate the same sequence of random numbers. According to
the permutation, channel end destinations are manually configured during execution.

With regards to the software implementation, each network node consists of two threads; one
sender and one receiver. This is necessary for message lengths greater that the buffering between
nodes (16 Bytes). As each dimension of the hypercube is connected by 4 links, traffic congestion
will be highest when every link is fully utilised. This can be achieved by running 4 pairs of send
and receive processes on each core. Alternatively, the number of available links between each
processor can be altered by modifying the XN mapping file.

4.3 Average Latency

Figure 4 shows the average latency of messages over all nodes, for varying message lengths.
These results were obtained from all 64 nodes, with each core running a single pair of send
and receive threads. Processors are connected with a single link in each dimension to maximise
congestion. Note that there is very little, or even no penalty for sending short messages.

100000

SHUFFLE —+—
FRANSPOSE
BITCOMP ---% -
BITREV)
RANDOM

10000 -

Average Latency (ns)

1000 -

100 . ! .
1 10 100 1000 10000

Message size (bytes)

Figure 4 Log-log plot of average latency as a function of message size for a 64 nodes with single wire
interconnects.

4.4 Latency Distributions

Figures 5, 6, 7, 8 and 9 show the latency distributions for a message length of 32 bytes, with 64
cores and single wire interconnects.

The latency distribution for the random permutation in Figure 9 clearly shows asymmetric distri-
butions around each of the 1, 2, 3 and 4 node hops. The distributions are asymmetric because a
hop must always take at least some period of time, but a message can be delayed in a network for
any amount of time.

Count

Count

80000

70000

60000

50000

40000

30000

20000

10000

T T
SHUFFLE

160000

140000

120000

100000

80000

60000

40000

20000

LEEbeddd

220 440 660 1100 1320 1540 1760 1980
Message latency (ns)

Figure 5 Shuffle permutation

T T
TRANSPOSE

AL Ihl Ihl I|I bl
660 880

220 440 1100 1320 1540 1760 1980
Message latency (ns)

Figure 6 Transpose permutation

Count

Count

20000

15000

10000

5000

BITIC MI> —

160000

140000

120000

100000

80000

60000

40000

20000

1 1 1 1 1
0 130 260 390 520 650 780 910 1040 1170
Message latency (ns)
Figure 7 Bit-complement permutation
T T T T T T T T T
BITREV mmm
0 240 480 720 960 1200 1440 1680 1920 2160

Message latency (ns)

Figure 8 Bit-reverse permutation

10

50000 7 T T T T T T T T T
RANDOM mmm

45000 1

40000 1

35000 1

30000 u

25000 -

20000 u

15000 - u

10000 u

N h | ‘““lm“M
L L

0 250 500 750 1000 1250 1500 1750 2000 2250
Message latency (ns)

Count

Figure 9 Random permutation

References

[1] W. J Dally, B. Towles Principles and practices of interconnection networks Morgan Kauffman
Pub, 2004

[2] F. T. Leighton, Introduction to Parallel Algorithms and Architectures : Arrays, Trees, Hyper-
cubes Morgan Kauffman Pub, 1992

5 Document History

Date Release| Comment
2010/02/22 1.0 First release.
2010/03/15 1.1 Latency histograms updated.

11

XMOS Ltd is the owner or licensee of this design, code, or Information (collectively, the “Informa-
tion”) and is providing it to you “AS IS” with no warranty of any kind, express or implied and shall
have no liability in relation to its use. XMOS Ltd makes no representation that the Information, or
any particular implementation thereof, is or will be free from any claims of infringement and again,
shall have no liability in relation to any such claims.

(c) 2010 XMOS Limited - All Rights Reserved

12

	Hypercube Topology
	Node Synchronisation
	Barrier Synchronisation
	Global Clock Synchronisation

	Timing a Barrier Synchronisation
	Traffic Patterns
	Traffic Patterns
	Method
	Average Latency
	Latency Distributions

	Document History

