
XCORE-VOICE SOLUTION - Programming Guide
Release: 1.0.0
Publication Date: 2023/03/20

Table of Contents

1 Product Description 1

2 Key Features 2

3 Obtaining the Hardware 3

4 Obtaining the Software 4
4.1 Development Tools . 4
4.2 Application Demonstrations . 4
4.3 Source Code . 4

4.3.1 Cloning the Repository . 4

5 Prerequisites 5
5.1 Windows . 5

5.1.1 libusb . 5
5.2 macOS . 5

6 Example Designs 6
6.1 Far-field Voice Local Command . 6

6.1.1 Overview . 6
6.1.2 Supported Hardware . 6

6.1.2.1 Setting up the Hardware . 6
6.1.3 Configuring the Firmware . 8
6.1.4 Deploying the Firmware with Linux or macOS . 9

6.1.4.1 Building the Host Applications . 10
6.1.4.2 Building the Firmware . 10
6.1.4.3 Running the Firmware . 10
6.1.4.4 Debugging the Firmware . 10

6.1.5 Deploying the Firmware with Native Windows . 10
6.1.5.1 Building the Host Applications . 11
6.1.5.2 Building the Firmware . 11
6.1.5.3 Running the Firmware . 11
6.1.5.4 Debugging the Firmware . 11

6.1.6 Modifying the Software . 12
6.1.6.1 Host Integration . 12
6.1.6.2 Audio Pipeline . 12
6.1.6.3 Software Description . 14
6.1.6.4 Software Modifications . 21
6.1.6.5 Wanson Speech Recognition . 26

6.2 Far-field Voice Assistant . 28
6.2.1 Overview . 28
6.2.2 Supported Hardware . 28

6.2.2.1 Setting up the Hardware . 28
6.2.3 Deploying the Firmware with Linux or macOS . 30

6.2.3.1 Building the Host Applications . 30
6.2.3.2 Building the Firmware . 30
6.2.3.3 Running the Firmware . 30
6.2.3.4 Upgrading the Firmware . 31

iiiiii

6.2.3.5 Debugging the Firmware . 31
6.2.4 Deploying the Firmware with Native Windows . 32

6.2.4.1 Building the Host Applications . 32
6.2.4.2 Building the Firmware . 32
6.2.4.3 Running the Firmware . 32
6.2.4.4 Upgrading the Firmware . 33
6.2.4.5 Debugging the Firmware . 34

6.2.5 Modifying the Software . 34
6.2.5.1 Host Integration . 34
6.2.5.2 Design Architecture . 36
6.2.5.3 Audio Pipeline . 37
6.2.5.4 Software Description . 38
6.2.5.5 Software Modifications . 42

6.3 Automated Speech Recognition Porting . 47
6.3.1 Overview . 47
6.3.2 Supported Hardware . 47

6.3.2.1 Setting up the Hardware . 47
6.3.3 Deploying the Firmware with Linux or macOS . 48

6.3.3.1 Building the Host Server . 48
6.3.3.2 Building the Firmware . 49
6.3.3.3 Flashing the Model . 49
6.3.3.4 Running the Firmware . 49

6.3.4 Deploying the Firmware with Native Windows . 49
6.3.4.1 Building the Host Server . 49
6.3.4.2 Building the Firmware . 50
6.3.4.3 Flashing the Model . 50
6.3.4.4 Running the Firmware . 50

6.3.5 Modifying the Software . 50
6.3.5.1 Implementing the ASR API . 50
6.3.5.2 Flashing Models . 51
6.3.5.3 Placing Models in SRAM . 51

6.3.6 ASR API . 51
6.3.7 Device Memory API . 56

7 Memory and CPU Requirements 58
7.1 Memory . 58
7.2 CPU . 58

8 Frequently Asked Questions 59
8.1 CMake hides XTC Tools commands . 59
8.2 fatfs_mkimage: not found . 59
8.3 FFD Crash At Start . 59
8.4 FFD pdm_rx_isr() Crash . 59
8.5 Debugging low-power . 60
8.6 xcc2clang.exe: error: no such file or directory . 60

9 Copyright & Disclaimer 61

10 Licenses 62
10.1 XMOS . 62
10.2 Third-Party . 62

Index 63

iiiiiiiii

1 Product Description

The XCORE-VOICE Solution consists of example designs and a C-based SDK for the development of audio front-
end applications to support far-field voice use cases on the xcore.ai family of chips (XU316). The XCORE-VOICE
design is currently based on FreeRTOS, leveraging the flexibility of the xcore.ai platform and providing designers
with a familiar environment to customize and develop products.

XCORE-VOICE example designs provide turn-key solutions to enable easier product development for smart home
applications such as light switches, thermostats, and home appliances. xcore.ai’s unique architecture providing
powerful signal processing and accelerated AI capabilities combined with the XCORE-VOICE framework allows
designers to incorporate keyword, event detection, or advanced local dictionary support to create a complete
voice interface solution.

111

2 Key Features

The XCORE-VOICE Solution takes advantage of the flexible software-defined xcore-ai architecture to support nu-
merous far-field voice use cases through the available example designs and the ability to construct user-defined
audio pipeline from the SW components and libraries in the C-based SDK.

These include:

Voice Processing components

• Two PDM microphone interfaces

• Digital signal processing pipeline

• Full duplex, stereo, Acoustic Echo Cancellation (AEC)

• Reference audio via I2S with automatic bulk delay insertion

• Point noise suppression via interference canceller

• Switchable stationary noise suppressor

• Programmable Automatic Gain Control (AGC)

• Flexible audio output routing and filtering

• Support for Wanson or other 3rd party Automatic Speech Recognition (ASR) software

Device Interface components

• Full speed USB2.0 compliant device supporting USB Audio Class (UAC) 2.0

• Flexible Peripheral Interfaces

• Programmable digital general-purpose inputs and outputs

Example Designs utilizing above components

• Far-Field Voice Local Command

• Far-Field Voice Assistance

Firmware Management

• Boot from QSPI Flash

• Default firmware image for power-on operation

• Option to boot from a local host processor via SPI

• Device Firmware Update (DFU) via USB or other transport

Power Consumption

• Typical power consumption 300-350mW

• Low power modes down to 55mW

222

3 Obtaining the Hardware

The XK-VOICE-L71 DevKit and Hardware Manual can be obtained from the XK-VOICE-L71 product information
page.

The XK-VOICE-L71 is based on the: XU316-1024-QF60A

Learn more about the The XMOS XS3 Architecture

333

https://www.xmos.ai/xk-voice-l71
https://www.xmos.ai/file/xu316-1024-qf60b-xcore_ai-datasheet?version=latest
https://www.xmos.ai/download/The-XMOS-XS3-Architecture.pdf

4 Obtaining the Software

4.1 Development Tools

It is recommended that you download and install the latest release of the XTCTools. XTCTools 15.1.4 or newer are
required. If you already have the XTC Toolchain installed, you can check the version with the following command:

xcc --version

4.2 Application Demonstrations

If you only want to run the example designs, pre-built firmware and other software can be downloaded from the
XCORE-VOICE product information page.

4.3 Source Code

If you wish to modify the example designs, a zip archive of all source code can be downloaded from the XCORE-
VOICE product information page.

See the Programming Guide for information on:

• Prerequisites

• Instructions for building, running, and debugging the example designs

• Details on the software design and source code

4.3.1 Cloning the Repository

Alternatively, the source code can be obtained by cloning the public GitHub repository.

Note: Cloning requires a GitHub account configured with SSH key authentication.

Run the following git command to clone the repository and all submodules:

git clone --recurse-submodules git@github.com:xmos/sln_voice.git

444

https://www.xmos.com/software/tools/
https://www.xmos.ai/xcore-voice
https://www.xmos.ai/xcore-voice
https://www.xmos.ai/xcore-voice
https://github.com
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/about-ssh

5 Prerequisites

It is recommended that you download and install the latest release of the XTC Tools. XTC Tools 15.1.4 or newer
are required for building, running, flashing and debugging the example applications.

CMake 3.21 or newer is also required for building the example applications.

5.1 Windows

A standard C/C++ compiler is required to build applications for the host PC. Windows users may use Build Tools
for Visual Studio command-line interface.

XCORE-VOICE host build should also work using other Windows GNU development environments like GNUMake,
MinGW or Cygwin.

5.1.1 libusb

The DFU feature of XCORE-VOICE requires dfu-util which requires libusb v1.0. libusb requires the installation
of a driver for use on a Windows host. Driver installation should be done using a third-party installation tool like
Zadig.

5.2 macOS

A standard C/C++ compiler is required to build applications for the host PC. Mac users may use the Xcode
command-line tools.

555

https://www.xmos.com/software/tools/
https://cmake.org/download/
https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=msvc-170#download-and-install-the-tools
https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=msvc-170#download-and-install-the-tools
https://dfu-util.sourceforge.net/
https://zadig.akeo.ie/

6 Example Designs

6.1 Far-field Voice Local Command

6.1.1 Overview

This is the low-power far-field voice local command (FFD) example design with Wanson speech recognition and
local dictionary.

While inactive, low-power mode uses a fraction of energy otherwise required by normal operations while awaiting
and processing speech.

When a wake-up phrase is followed by an command phrase, the application will output an audio response and a
discrete message over I2C and UART.

This software is an evaluation version only. It includes a mechanism that limits the maximum number of recog-
nitions to 50. You can reset the counter to 0 by restarting or rebooting the application. The application can be
rebooted by power cycling or pressing the SW2 button.

Note: Due to the hardware design, SW2 is only functional when in full-power operation.

More information on the Wanson speech recognition library can be found here: Wanson Speech Recognition

6.1.2 Supported Hardware

This example application is supported on the XK-VOICE-L71 board.

6.1.2.1 Setting up the Hardware

This example design requires an XTAG4 and XK-VOICE-L71 board.

666

https://www.digikey.co.uk/en/products/detail/xmos/XK-VOICE-L71/15761172

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

xTAG The xTAG is used to program and debug the device

Connect the xTAG to the debug header, as shown below.

Connect the micro USB XTAG4 and micro USB XK-VOICE-L71 to the programming host.

777

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Speakers (OPTIONAL) This example application features audio playback responses. Speakers can be con-
nected to the LINE OUT on the XK-VOICE-L71.

6.1.3 Configuring the Firmware

The default application performs as described in the Overview. There are numerous compile time options that
can be added to change the example design without requiring code changes. To change the options explained
in the table below, add the desired configuration variables to the APP_COMPILE_DEFINITIONS cmake variable
located here.

If options are changed, the application firmware must be rebuilt.

888

https://github.com/xmos/sln_voice/blob/develop/examples/ffd/ffd.cmake

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Table 6.1: FFD Compile Options

Compile Option Description Default
Value

appconfINTENT_ENABLED Enables/disables the intent engine, primarily
for debug.

1

appconfINTENT_RESET_DELAY_MS Sets the period after the wake up phrase has
been heard for a valid command phrase

5000

appconfINTENT_RAW_OUTPUT Set to 1 to output all keywords found, skipping
the internal wake up and command state ma-
chine

0

appconfAUDIO_PLAYBACK_ENABLED Enables/disables the audio playback com-
mand response

1

appconfINTENT_UART_OUTPUT_ENABLED Enables/disables the UART intent message 1
appconfINTENT_I2C_OUTPUT_ENABLED Enables/disables the I2C intent message 1
appconfUART_BAUD_RATE Sets the baud rate for the UART tx intent inter-

face
9600

appconfINTENT_I2C_OUTPUT_DEVICE_ADDR Sets the I2C slave address to transmit the in-
tent to

0x01

appconfINTENT_TRANSPORT_DELAY_MS Sets the delay between host wake up re-
quested and I2C and UART keyword code
transmission

50

appconfINTENT_QUEUE_LEN Sets themaximumnumber of detected intents
to hold while waiting for the host to wake up

10

appconfINTENT_WAKEUP_EDGE_TYPE Sets the host wake up pin GPIO edge type. 0
for rising edge, 1 for falling edge

0

appconfLOW_POWER_ENABLED Enables/disables low power feature 1
appconfLOW_POWER_SWITCH_CLK_DIV_ENABLE Enables/disables low power feature adjusting

the switch clock
1

appconfLOW_POWER_SWITCH_CLK_DIV Sets the low power mode switch clock divider
value

30

appconfLOW_POWER_OTHER_TILE_CLK_DIV Sets the lowpowermode tile core clock divider
value for the keyword engine tile

600

appconfLOW_POWER_CONTROL_TILE_CLK_DIV Sets the lowpowermode tile core clock divider
value for the audio pipeline and voice activity
detection tile

2

appconfPOWER_FULL_HOLD_DURATION Sets the minimum amount of time to expect
a wakeword before requesting to be set back
into low power

1000

appconfAUDIO_PIPELINE_BUFFER_ENABLED Enables/disables a ring buffer to hold pre-
trigger audio frames when in low power

1

appconfAUDIO_PIPELINE_BUFFER_NUM_FRAMES Sets the number of audio frames held in the
low power audio frame buffer

32

appconfAUDIO_PIPELINE_SKIP_IC_AND_VNR Enables/disables the IC and VNR 0
appconfAUDIO_PIPELINE_SKIP_NS Enables/disables the NS 0
appconfAUDIO_PIPELINE_SKIP_AGC Enables/disables the AGC 0

6.1.4 Deploying the Firmware with Linux or macOS

This document explains how to deploy the software using CMake and Make.

999

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

6.1.4.1 Building the Host Applications

This application requires a host application to create the flash data partition. Run the following commands in the
root folder to build the host application using your native Toolchain:

Note: Permissions may be required to install the host applications.

cmake -B build_host

cd build_host

make install

The host applications will be installed at /opt/xmos/bin, and may be moved if desired. You may wish to add this
directory to your PATH variable.

6.1.4.2 Building the Firmware

Run the following commands in the root folder to build the firmware:

cmake -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

make example_ffd

6.1.4.3 Running the Firmware

Before running the firmware, the filesystem and model must be flashed to the data partition.

Within the root of the build folder, run:

make flash_app_example_ffd

After this command completes, the application will be running.

After flashing the data partition, the application can be run without reflashing. If changes are made to the data
partition components, the application must be reflashed.

From the build folder run:

make run_example_ffd

6.1.4.4 Debugging the Firmware

To debug with xgdb, from the build folder run:

make debug_example_ffd

6.1.5 Deploying the Firmware with Native Windows

This document explains how to deploy the software usingCMake andNMake. If you are not using nativeWindows
MSVCbuild tools and instead using a Linux emulation tool such asWSL, refer toDeploying the Firmwarewith Linux
or macOS.

101010

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

6.1.5.1 Building the Host Applications

This application requires a host application to create the flash data partition. Run the following commands in the
root folder to build the host application using your native Toolchain:

Note: Permissions may be required to install the host applications.

Before building the host application, you will need to add the path to the XTC Tools to your environment.

set "XMOS_TOOL_PATH=<path-to-xtc-tools>"

Then build the host application:

cmake -G "NMake Makefiles" -B build_host

cd build_host

nmake install

The host applications will be install at <USERPROFILE>\.xmos\bin, and may be moved if desired. You may wish
to add this directory to your PATH variable.

6.1.5.2 Building the Firmware

Run the following commands in the root folder to build the firmware:

cmake -G "NMake Makefiles" -B build -D CMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

nmake example_ffd

6.1.5.3 Running the Firmware

Before running the firmware, the filesystem and model must be flashed to the data partition.

Within the root of the build folder, run:

nmake flash_app_example_ffd

After this command completes, the application will be running.

After flashing the data partition, the application can be run without reflashing. If changes are made to the data
partition components, the application must be reflashed.

From the build folder run:

nmake run_example_ffd

6.1.5.4 Debugging the Firmware

To debug with xgdb, from the build folder run:

nmake debug_example_ffd

111111

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

6.1.6 Modifying the Software

6.1.6.1 Host Integration

Overview This section describes the connections that would need to be made to an external host for plug and
play integration with existing devices.

When an intent is found, the XCORE device will check if the host is awake, by checking the Host Status GPIO pin.
If the host is awake the intent code will be transmitted over I2C and/or UART.

If the host is not awake, the XCORE device will trigger a transition of theWakeup GPIO pin. This can be configured
to be a rising or falling edge. The XCORE device will then wait for a fixed period of time, set at compile time, before
transmitting the intent over the I2C and/or UART interface.

UART

Table 6.2: UART Connections

FFD Connection Host Connection

J4:24 UART RX
J4:20 GND

I2C

Table 6.3: I2C Connections

FFD Connection Host Connection

J4:3 SDA
J4:5 SCL
J4:9 GND

GPIO

Table 6.4: GPIO Connections

FFD Connection Host Connection

J4:19 Wake up input
J4:21 Host Status output

6.1.6.2 Audio Pipeline

The audio pipeline in FFD processes two channel PDM microphone input into a single output channel, intended
for use by an ASR engine.

The audio pipeline consists of 3 stages.

121212

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

131313

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Table 6.5: FFD Audio Pipeline

Stage Description Input Channel
Count

Output Chan-
nel Count

1 Interference Canceller and Voice Noise Ratio 2 1
2 Noise Suppression 1 1
3 Automatic Gain Control 1 1

See the Voice Framework User Guide for more information.

6.1.6.3 Software Description

Overview The estimated power usage of the example application, while in POWER_STATE_FULL, varies from
100-141 mW. This will vary based on component tolerances and any user added code and/or user added compile
options.

By default, the application will startup using a system frequency of 600MHz which will consume around 141 mW.
After startup, tile[1] clock divider is enabled and set to 3 bringing the tile’s frequency down to 300 MHz, where
it will consume around 114 mW. Tile frequencies lower than this may lead to application instability. When the
application enters POWER_STATE_LOW, the tile[0] clock frequency will be divided by 600 and the switch clock
frequency by 30 bringing the frequencies to 1 MHz and 20 MHz, respectively. This low power state consumes
around 55 mW.

Table 6.6: FFD Resources

Resource Tile 0 Tile 1

Unused CPU Time (600 MHz) 83% 27%
Total Memory Free 192k 173k
Runtime Heap Memory Free 38k 42k

Table 6.7: FFD Power Usage

Power State Power (mW)

Low Power 55
Full Power 114

The description of the software is split up by folder:

141414

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Table 6.8: FFD Software Description

Folder Description

asr ASR engine ports
bsp_config Board support configuration setting up software based IO peripherals
ext Application extensions
filesystem_support Filesystem contents for application
src Main application
src/intent_engine Intent engine integration
src/intent_handler Intent engine output integration
src/power Low power state and control

asr This folder contains ASR ports.

Table 6.9: FFD ASR

Filename/Directory Description

api directory include folder for ASR modules
port directory contains ports for supported ASR engines
port/wanson directory contains the Wanson engine and associated port code
asr.cmake cmake for adding ASR targets

bsp_config This folder contains bsp_configs for the FFD application. More information on bsp_configs can be
found in the RTOS Framework documentation.

Table 6.10: FFD bsp_config

Filename/Directory Description

dac directory DAC ports for supported bsp_configs
XCORE-AI-EXPLORER directory experimental bsp_config, not recommended for general use
XCORE-AI-EXPLORER_EXT directory experimental bsp_config, not recommended for general use
XK_VOICE_L71 directory default FFD application bsp_config
XK_VOICE_L71_EXT directory USB debug extension FFD application bsp_config
bsp_config.cmake cmake for adding FFD bsp_configs

ext This folder contains FFD application debug and experimental extensions.

Table 6.11: FFD ext

Filename/Directory Description

src directory custom code for USB output and debug
ffd_dev.cmake cmake for declaring FFD experimental configs
ffd_ext.cmake cmake for declaring FFD extensions
ffd_usb_audio_testing.cmake cmake for declaring FFD usb debug extension

151515

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

filesystem_support This folder contains filesystem contents for the FFD application.

Table 6.12: FFD filesystem_support

Filename/Directory Description

50.wav Playback for intent ID 50
1.wav Playback for intent ID 1
3.wav Playback for intent ID 3
4.wav Playback for intent ID 4
5.wav Playback for intent ID 5
6.wav Playback for intent ID 6
7.wav Playback for intent ID 7
8.wav Playback for intent ID 8
9.wav Playback for intent ID 9
10.wav Playback for intent ID 10
11.wav Playback for intent ID 11
12.wav Playback for intent ID 12
13.wav Playback for intent ID 13
14.wav Playback for intent ID 14
15.wav Playback for intent ID 15
16.wav Playback for intent ID 16
17.wav Playback for intent ID 17
18.wav Playback for intent ID 18

src This folder contains the core application source.

Table 6.13: FFD src

Filename/Directory Description

audio_pipeline directory contains example XMOS audio pipeline
gpio_ctrl directory contains general purpose input handling and LED handling tasks
intent_engine directory contains intent engine code
intent_handler directory contains intent handling code
power directory contains low power state and control code
rtos_conf directory contains default FreeRTOS configuration headers
app_conf_check.h header to validate app_conf.h
app_conf.h header to describe app configuration
config.xscope xscope configuration file
ff_appconf.h default fatfs configuration header
main.c main application source file
xcore_device_memory.c model loading from filesystem source file
xcore_device_memory.h model loading from filesystem header file

Audio Pipeline The audio pipeline module provides the application with three API functions:

161616

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Listing 6.1: Audio Pipeline API (audio_pipeline.h)
void audio_pipeline_init(

void *input_app_data,

void *output_app_data);

void audio_pipeline_input(

void *input_app_data,

int32_t **input_audio_frames,

size_t ch_count,

size_t frame_count);

int audio_pipeline_output(

void *output_app_data,

int32_t **output_audio_frames,

size_t ch_count,

size_t frame_count);

audio_pipeline_init This function has the role of creating the audio pipeline, with two optional application point-
ers which are provided to the application in the audio_pipeline_input() and audio_pipeline_output() callbacks.

In FFD, the audio pipeline is initialized with no additional arguments, and instantiates a 3 stage pipeline on tile 1,
as described in: Audio Pipeline

audio_pipeline_input This function has the role of providing the audio pipeline with the input frames.

This function is weak so the application can override it if desired.

In FFD, the input is received from the rtos_mic_array driver.

audio_pipeline_output This function has the role of receiving the processed audio pipeline output.

This function is weak so the application can override it if desired.

In FFD, the output is sent to the intent engine. If appconfLOW_POWER_ENABLED is set true, then the output will
be dropped if the power state is not POWER_STATE_FULL. In certain conditions and environments, this behavior
may cause the wake word to be missed. Further adjustments to the application configuration settings related to
the VNR low power thresholds may mitigate such issues. See src/power.

Main The major components of main are:

Listing 6.2: Main components (main.c)
void startup_task(void *arg)

void vApplicationMinimalIdleHook(void)

void tile_common_init(chanend_t c)

void main_tile0(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)

void main_tile1(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)

startup_task This function has the role of launching tasks on each tile. For those familiar with XCORE, it is
comparable to the main par loop in an XC main.

171717

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

vApplicationMinimalIdleHook This is a FreeRTOS callback. By calling “waiteu” without events configured, this
has the effect of both MIPs and power savings on XCORE.

Listing 6.3: vApplicationMinimalIdleHook (main.c)
asm volatile("waiteu");

tile_common_init This function is the common tile initialization, which initializes the bsp_config, creates the
startup task, and starts the FreeRTOS kernel.

main_tile0 This function is the application C entry point on tile 0, provided by the SDK.

main_tile1 This function is the application C entry point on tile 1, provided by the SDK.

src/intent_engine This folder contains the intent engine module for the FFD application.

Table 6.14: FFD Intent Engine

Filename/Directory Description

intent_engine_io.c contains additional io intent engine code
intent_engine_support.c contains general intent engine support code
intent_engine.c contains the implementation of default intent engine code
intent_engine.h header for intent engine code

Major Components The intent engine module provides the application with two API functions:

Listing 6.4: Intent Engine API (intent_engine.h)
int32_t intent_engine_create(uint32_t priority, void *args);

int32_t intent_engine_sample_push(int32_t *buf, size_t frames);

If replacing the existing model, these are the only two functions that are required to be populated.

intent_engine_create This function has the role of creating the model running task and providing a pointer,
which can be used by the application to handle the output intent result. In the case of the default configuration,
the application provides a FreeRTOS Queue object.

In FFD, the audio pipeline output is on tile 1 and the ASR engine on tile 0.

Listing 6.5: intent_engine_create snippet (intent_engine_io.c)
if ASR_TILE_NO == AUDIO_PIPELINE_TILE_NO

intent_engine_task_create(priority);

else

intent_engine_intertile_task_create(priority);

endif

The call to intent_engine_intertile_task_create() will create two threads on tile 0. One thread is the ASR engine
thread. The other thread is an intertile rx thread, which will interface with the audio pipeline output.

181818

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

intent_engine_sample_push This function has the role of sending the ASR output channel from the audio
pipeline to the intent engine.

In FFD, the audio pipeline output is on tile 1 and the ASR engine on tile 0.

Listing 6.6: intent_engine_create snippet (intent_engine_io.c)
if appconfINTENT_ENABLED && ON_TILE(AUDIO_PIPELINE_TILE_NO)

if ASR_TILE_NO == AUDIO_PIPELINE_TILE_NO

intent_engine_samples_send_local(

frames,

buf);

else

intent_engine_samples_send_remote(

intertile_ap_ctx,

frames,

buf);

endif

endif

The call to intent_engine_samples_send_remote() will send the audio samples to the previously configured inter-
tile rx thread.

intent_engine_process_asr_result This function can be replaced by the application to handle the intent in a
completely different manner.

Miscellaneous Functions Several supporting helper functions to support the low power and audio playback
features that are unique the the default FFD application. These include:

• intent_engine_keyword_queue_count

• intent_engine_keyword_queue_complete

• intent_engine_stream_buf_reset

• intent_engine_play_response

• intent_engine_low_power_ready

• intent_engine_low_power_reset

• intent_engine_full_power_request

• intent_engine_low_power_accept

src/intent_handler This folder contains ASR output handling modules for the FFD application.

Table 6.15: FFD Intent handler

Filename/Directory Description

audio_response directory include folder for handling audio responses to keywords
intent_handler.c contains the implementation of default intent handling code
intent_handler.h header for intent handler code

191919

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Major Components The intent handling module provides the application with one API function:

Listing 6.7: Intent Handler API (intent_handler.h)
int32_t intent_handler_create(uint32_t priority, void *args);

If replacing the existing handler code, this is the only function that is required to be populated.

intent_handler_create This function has the role of creating the keyword handling task for the ASR engine. In
the case of the Wanson model, the application provides a FreeRTOS Queue object. This handler is on the same
tile as the Wanson engine, tile 0.

The call to intent_handler_create() will create one thread on tile 0. This thread will receive ID packets from the
ASR engine over a FreeRTOS Queue object and output over various IO interfaces based on configuration.

src/power This folder contains modules for lower power control and state reporting in the FFD application.

Configuration Notes The application monitors the VNR and produces low power events based on:

• appconfPOWER_VNR_THRESHOLD

• appconfPOWER_LOW_ENERGY_THRESHOLD

• appconfPOWER_HIGH_ENERGY_THRESHOLD

• appconfPOWER_FULL_HOLD_DURATION

The first three configuration options above determine when to begin transitioning, or continue to hold, the
device in POWER_STATE_FULL. The last configuration option above determines the minimum period of time
to device is allowed to wait for a wake word before requesting to transition into POWER_STATE_LOW. Each
time POWER_STATE_FULL is set by the audio pipeline tile, the timer that is configured for a period of appconf-
POWER_FULL_HOLD_DURATION milliseconds is reset, preventing any requests to POWER_STATE_LOW to be
aborted.

appconfLOW_POWER_ENABLED enables/disables use of this low power functionality.

When appconfLOW_POWER_SWITCH_CLK_DIV_ENABLE is enabled, appconfLOW_POWER_SWITCH_CLK_DIV
should be set appropriately. Clock divider values that result in frequencies greater than or equal to 20MHz have
been observed to work.

Values for appconfLOW_POWER_CONTROL_TILE_CLK_DIV that result in frequencies greater than or equal to
300MHz have been observed to work.

202020

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

6.1.6.4 Software Modifications

Overview The FFD example design consists of threemajor software blocks, the audio pipeline, keyword spotter,
and keyword handler. This section will go into detail on how to replace each/all of these subsystems.

It is highly recommended to be familiar with the application as a whole before attempting replacing these func-
tional units. This information can be found here: Software Description

See Software Description for more details on the memory footprint and CPU usage of the major software com-
ponents.

Replacing XCORE-VOICE DSP Block The audio pipeline can be replaced by making changes to the au-
dio_pipeline.c file.

It is up to the user to ensure that the input and output frames of the audio pipeline remain the same, or the
remainder of the application will not function properly.

212121

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

This section will walk through an example of replacing the XMOS NS stage, with a custom stage foo.

Declaration and Definition of DSP Context Replace:

Listing 6.8: XMOS NS (audio_pipeline.c)
typedef struct ns_stage_ctx {

ns_state_t state;

} ns_stage_ctx_t;

static ns_stage_ctx_t ns_stage_state = {};

With:

Listing 6.9: Foo (audio_pipeline.c)
typedef struct foo_stage_ctx {

/* Your required state context here */

} foo_stage_ctx_t;

static foo_stage_ctx_t foo_stage_state = {};

DSP Function Replace:

Listing 6.10: XMOS NS (audio_pipeline.c)
static void stage_ns(frame_data_t *frame_data)

{

if appconfAUDIO_PIPELINE_SKIP_NS

(void) frame_data;

else

int32_t ns_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];

configASSERT(NS_FRAME_ADVANCE == appconfAUDIO_PIPELINE_FRAME_ADVANCE);

ns_process_frame(

&ns_stage_state.state,

ns_output,

frame_data->samples[0]);

memcpy(frame_data->samples, ns_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE *␣

→˓sizeof(int32_t));

endif

}

With:

Listing 6.11: Foo (audio_pipeline.c)
static void stage_foo(frame_data_t *frame_data)

{

int32_t foo_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];

foo_process_frame(

&foo_stage_state.state,

foo_output,

frame_data->samples[0]);

memcpy(frame_data->samples, foo_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE *␣
(continues on next page)

222222

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

(continued from previous page)

→˓sizeof(int32_t));

}

Runtime Initialization Replace:

Listing 6.12: XMOS NS (audio_pipeline.c)
ns_init(&ns_stage_state.state);

With:

Listing 6.13: Foo (audio_pipeline.c)
foo_init(&foo_stage_state.state);

Audio Pipeline Setup Replace:

Listing 6.14: XMOS NS (audio_pipeline.c)
const pipeline_stage_t stages[] = {

(pipeline_stage_t)stage_vnr_and_ic,

(pipeline_stage_t)stage_ns,

(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_

→˓SIZE(audio_pipeline_input_i),

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_ns),

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_

→˓SIZE(audio_pipeline_output_i),

};

With:

Listing 6.15: Foo (audio_pipeline.c)
const pipeline_stage_t stages[] = {

(pipeline_stage_t)stage_vnr_and_ic,

(pipeline_stage_t)stage_foo,

(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_

→˓SIZE(audio_pipeline_input_i),

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_foo),

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_

→˓SIZE(audio_pipeline_output_i),

};

It is also possible to add or remove stages. Refer to the RTOS Framework documentation on the generic pipeline
sw_service.

232323

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Replacing ASR Engine Block Replacing the keyword spotter engine has the potential to require significant
changes due to various feature extraction input requirements and varied output logic.

The generic intent engine API only requires two functions be declared:

Listing 6.16: Intent API (intent_engine.h)
/* Generic interface for intent engines */

int32_t intent_engine_create(uint32_t priority, void *args);

int32_t intent_engine_sample_push(int32_t *buf, size_t frames);

Refer to the existingWansonmodel implementation for details on how the output handler is set up, how the audio
is conditioned to the expected model format, and how it receives frames from the audio pipeline.

Replacing Example Design Interfaces It may be desired to have a different output interface to talk to a host, or
not have a host at all and handle the intent local to the XCORE device.

Different Peripheral IO To add or remove a peripheral IO, modify the bsp_config accordingly. Refer to documen-
tation inside the RTOS Framework on how to instantiate different RTOS peripheral drivers.

242424

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Direct Control In a single controller system, the XCORE can be used to control peripherals directly.

The proc_keyword_res task can be modified as follows:

Listing 6.17: Intent Handler (intent_handler.c)
static void proc_keyword_res(void *args) {

QueueHandle_t q_intent = (QueueHandle_t) args;

int32_t id = 0;

while(1) {

xQueueReceive(q_intent, &id, portMAX_DELAY);

/* User logic here */

}

}

This code example will receive the ID of each intent, and can be populated by any user application logic. User
logic can use other RTOS drivers to control various peripherals, such as screens, motors, lights, etc, based on the
intent engine outputs.

252525

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

6.1.6.5 Wanson Speech Recognition

License This software is an evaluation version only. It includes a mechanism that limits the maximum number
of recognitions to 50.

TheWanson speech recognition library is Copyright 2022. Shanghai Wanson Electronic Technology Co.Ltd (“WAN-
SON”) and is subject to the Wanson Restrictive License.

Overview The Wanson speech recognition engine runs proprietary models to identify keywords in an audio
stream.

The model used in FFD is approximately 185k. The runtime and application supporting code consumes approxi-
mately 250k.

With the model in flash, the Wanson engine requires a core frequency of at least 400 MHz to keep up with real
time. Additionally, the Wanson engine must be on the same tile as the flash.

To replace the Wanson engine with a different engine, refer to the FFD documentation on Replacing ASR Engine
Block

Dictionary command table

Table 6.16: English Language Demo

Utterances Type Return code (decimal)

Hello XMOS keyword 1
Switch on the TV command 3
Switch off the TV command 4
Channel up command 5
Channel down command 6
Volume up command 7
Volume down command 8
Switch on the lights command 9
Switch off the lights command 10
Brightness up command 11
Brightness down command 12
Switch on the fan command 13
Switch off the fan command 14
Speed up the fan command 15
Slow down the fan command 16
Set higher temperature command 17
Set lower temperature command 18

262626

hhttps://github.com/xmos/sln_voice/blob/develop/examples/ffd/asr/port/wanson/lib/LICENSE.md

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

State Machine An optional state machine is used to condition the raw output of the Wanson speech engine.

When using the state machine, the application intent callback will only occur when a wake word and command
have been detected within a time period.

272727

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

The state machine logic can be disabled by setting the compile time option appconfINTENT_RAW_OUTPUT, to 1.
The wake word to command timeout is compile time configurable via appconfINTENT_RESET_DELAY_MS.

More information on these options can be found in the FFD Configuring the Firmware section.

Application Integration In depth information on out of the box integration can be found here: Host Integration

6.2 Far-field Voice Assistant

6.2.1 Overview

This is the XCORE-VOICE far-field voice assistant example design.

This application can be used out of the box as a voice processor solution, or expanded to run local wakeword
engines.

This application features a full duplex acoustic echo cancellation stage, which can be provided reference audio
via I2S or USB audio. An audio output ASR stream is also available via I2S or USB audio.

By default, there are two audio integration options. The INT (Integrated) configuration uses I2S for reference and
output audio streams. The UA (USB Accessory) configuration uses USB UAC 2.0 for reference and output audio
streams.

6.2.2 Supported Hardware

This example application is supported on the XK-VOICE-L71 board.

6.2.2.1 Setting up the Hardware

This example design requires an XTAG4 and XK-VOICE-L71 board.

xTAG The xTAG is used to program and debug the device

Connect the xTAG to the debug header, as shown below.

282828

https://www.digikey.co.uk/en/products/detail/xmos/XK-VOICE-L71/15761172

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Connect the micro USB XTAG4 and micro USB XK-VOICE-L71 to the programming host.

292929

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

6.2.3 Deploying the Firmware with Linux or macOS

This document explains how to deploy the software using CMake and Make.

6.2.3.1 Building the Host Applications

This application requires a host application to create the flash data partition. Run the following commands in the
root folder to build the host application using your native Toolchain:

Note: Permissions may be required to install the host applications.

cmake -B build_host

cd build_host

make install

The host applications will be installed at /opt/xmos/bin, and may be moved if desired. You may wish to add this
directory to your PATH variable.

6.2.3.2 Building the Firmware

Run the following commands in the root folder to build the I2S firmware:

cmake -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

make example_ffva_int_fixed_delay

Run the following commands in the root folder to build the USB firmware:

cmake -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

make example_ffva_ua_adec

6.2.3.3 Running the Firmware

Before the firmware is run, the filesystem must be loaded.

Inside of the build folder root, after building the firmware, run one of:

make flash_app_example_ffva_int_fixed_delay

make flash_app_example_ffva_ua_adec

Once flashed, the application will run.

After the filesystem has been flashed once, the application can be run without flashing. If changes are made to
the filesystem image, the application must be reflashed.

From the build folder run:

make run_example_ffva_int_fixed_delay

make run_example_ffva_ua_adec

303030

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

6.2.3.4 Upgrading the Firmware

The UA variants of this application contain DFU over the USB DFU Class V1.1 transport method.

To create an upgrade image from the build folder run:

make create_upgrade_img_example_ffva_ua_adec

Once the application is running, a USB DFU v1.1 tool can be used to perform various actions. This example will
demonstrate with dfu-util commands. Installation instructions for respective operating system can be found here

To verify the device is running run:

dfu-util -l

This should result in an output containing:

Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=2, name="DFU␣

→˓DATAPARTITION", serial="123456"

Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=1, name="DFU␣

→˓UPGRADE", serial="123456"

Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=0, name="DFU␣

→˓FACTORY", serial="123456"

The DFU interprets the flash as 3 separate partitions, the read only factory image, the read/write upgrade image,
and the read/write data partition containing the filesystem.

The factory image can be read back by running:

dfu-util -e -d 20b1:4001 -a 0 -U readback_factory_img.bin

The factory image can not be written to.

From the build folder, the upgrade image can be written by running:

dfu-util -e -d 20b1:4001 -a 1 -D example_ffva_ua_adec_upgrade.bin

The upgrade image can be read back by running:

dfu-util -e -d 20b1:4001 -a 1 -U readback_upgrade_img.bin

On system reboot, the upgrade image will always be loaded if valid. If the upgrade image is invalid, the factory
imagewill be loaded. To revert back to the factory image, you can upload an file containing the word 0xFFFFFFFF.

The data partition image can be read back by running:

dfu-util -e -d 20b1:4001 -a 2 -U readback_data_partition_img.bin

The data partition image can be written by running:

dfu-util -e -d 20b1:4001 -a 2 -D readback_data_partition_img.bin

Note that the data partition will always be at the address specified in the initial flashing call.

6.2.3.5 Debugging the Firmware

To debug with xgdb, from the build folder run:

313131

https://dfu-util.sourceforge.net/

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

make debug_example_int_adec

make debug_example_ua_adec

6.2.4 Deploying the Firmware with Native Windows

This document explains how to deploy the software using CMake and NMake. If you are not using native Windows
MSVC build tools and instead using a Linux emulation tool, refer to Deploying the Firmware with Linux or macOS.

6.2.4.1 Building the Host Applications

This application requires a host application to create the flash data partition. Run the following commands in the
root folder to build the host application using your native Toolchain:

Note: Permissions may be required to install the host applications.

Before building the host application, you will need to add the path to the XTC Tools to your environment.

set "XMOS_TOOL_PATH=<path-to-xtc-tools>"

Then build the host application:

cmake -G "NMake Makefiles" -B build_host

cd build_host

nmake install

The host applications will be install at <USERPROFILE>\.xmos\bin, and may be moved if desired. You may wish
to add this directory to your PATH variable.

6.2.4.2 Building the Firmware

Run the following commands in the root folder to build the I2S firmware:

cmake -G "NMake Makefiles" -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

nmake example_ffva_int_fixed_delay

Run the following commands in the root folder to build the USB firmware:

cmake -G "NMake Makefiles" -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

nmake example_ffva_ua_adec

6.2.4.3 Running the Firmware

Before the firmware is run, the filesystem must be loaded.

Inside of the build folder root, after building the firmware, run one of:

323232

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

nmake flash_app_example_ffva_int_fixed_delay

nmake flash_app_example_ffva_ua_adec

Once flashed, the application will run.

After the filesystem has been flashed once, the application can be run without flashing. If changes are made to
the filesystem image, the application must be reflashed.

From the build folder run:

nmake run_example_ffva_int_fixed_delay

nmake run_example_ffva_ua_adec

6.2.4.4 Upgrading the Firmware

The UA variants of this application contain DFU over the USB DFU Class V1.1 transport method.

To create an upgrade image from the build folder run:

nmake create_upgrade_img_example_ffva_ua_adec

Once the application is running, a USB DFU v1.1 tool can be used to perform various actions. This example will
demonstrate with dfu-util commands. Installation instructions for respective operating system can be found here

To verify the device is running run:

dfu-util -l

This should result in an output containing:

Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=2, name="DFU␣

→˓DATAPARTITION", serial="123456"

Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=1, name="DFU␣

→˓UPGRADE", serial="123456"

Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=0, name="DFU␣

→˓FACTORY", serial="123456"

The DFU interprets the flash as 3 separate partitions, the read only factory image, the read/write upgrade image,
and the read/write data partition containing the filesystem.

The factory image can be read back by running:

dfu-util -e -d 20b1:4001 -a 0 -U readback_factory_img.bin

The factory image can not be written to.

From the build folder, the upgrade image can be written by running:

dfu-util -e -d 20b1:4001 -a 1 -D example_ffva_ua_adec_upgrade.bin

The upgrade image can be read back by running:

dfu-util -e -d 20b1:4001 -a 1 -U readback_upgrade_img.bin

On system reboot, the upgrade image will always be loaded if valid. If the upgrade image is invalid, the factory
imagewill be loaded. To revert back to the factory image, you can upload an file containing the word 0xFFFFFFFF.

The data partition image can be read back by running:

333333

https://dfu-util.sourceforge.net/

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

dfu-util -e -d 20b1:4001 -a 2 -U readback_data_partition_img.bin

The data partition image can be written by running:

dfu-util -e -d 20b1:4001 -a 2 -D readback_data_partition_img.bin

Note that the data partition will always be at the address specified in the initial flashing call.

6.2.4.5 Debugging the Firmware

To debug with xgdb, from the build folder run:

nmake debug_example_int_adec

nmake debug_example_ua_adec

6.2.5 Modifying the Software

6.2.5.1 Host Integration

This example design can be integrated with existing solutions or modified to be a single controller solution.

Out of the Box Integration Out of the box integration varies based on configuration.

INT requires I2S connections to the host. Refer to the schematic, connecting the host reference audio playback
to the ADC I2S and the host input audio to the DAC I2S. Out of the box, the INT configuration requires an externally
generated MCLK of 12.288 MHz. 24.576 MHz is also supported and can be changed via the compile option
MIC_ARRAY_CONFIG_MCLK_FREQ, found in ffva_int.cmake.

UA requires a USB connection to the host.

Single Controller Solution In a single controller solution, a user can populate the model runner manager task
with the application specific code.

This dummy thread receives only the ASR channel output, which has been downshifted to 16 bits.

The usermust ensure the streambuffer is emptied at the rate of the audio pipeline atminimum, otherwise samples
will be lost.

Populate:

Listing 6.18: Model Runner Dummy (model_runner.c)
void model_runner_manager(void *args)

{

StreamBufferHandle_t input_queue = (StreamBufferHandle_t)args;

int16_t buf[appconfWW_FRAMES_PER_INFERENCE];

/* Perform any initialization here */

while (1)

(continues on next page)

343434

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

(continued from previous page)

{

/* Receive audio frames */

uint8_t *buf_ptr = (uint8_t*)buf;

size_t buf_len = appconfWW_FRAMES_PER_INFERENCE * sizeof(int16_t);

do {

size_t bytes_rxed = xStreamBufferReceive(input_queue,

buf_ptr,

buf_len,

portMAX_DELAY);

buf_len -= bytes_rxed;

buf_ptr += bytes_rxed;

} while(buf_len > 0);

/* Perform inference here */

// rtos_printf("inference\n");

}

}

353535

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

6.2.5.2 Design Architecture

The application consists of a PDM microphone input which is fed through the XMOS-VOICE DSP blocks. The
output ASR channel is then output over I2S or USB.

363636

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

6.2.5.3 Audio Pipeline

The audio pipeline in FFVA processes two channel PDM microphone input into a single output channel, intended
for use by an ASR engine.

The audio pipeline consists of 4 stages.

Table 6.17: FFVA Audio Pipeline

Stage Description Input Channel
Count

Output Chan-
nel Count

1 Acoustic Echo Cancellation 2 2
2 Interference Canceller and Voice Noise Ratio 2 1
3 Noise Suppression 1 1
4 Automatic Gain Control 1 1

See the Voice Framework User Guide for more information.

373737

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

6.2.5.4 Software Description

Overview There are two main build configurations for this application.

Table 6.18: FFVA INT Fixed Delay Resources

Resource Tile 0 Tile 1

Unused CPU Time (600 MHz) 98% 75%
Total Memory Free 166k 82k
Runtime Heap Memory Free 75k 82k

Table 6.19: FFVA UA ADEC Resources

Resource Tile 0 Tile 1

Unused CPU Time (600 MHz) 83% 45%
Total Memory Free 123k 58k
Runtime Heap Memory Free 54k 83k

The description of the software is split up by folder:

Table 6.20: FFVA Software Description

Folder Description

Audio Pipelines Preconfigured audio pipelines
bsp_config Board support configuration setting up software based IO peripherals
filesystem_support Filesystem contents for application
src Main application

bsp_config This folder contains bsp_configs for the FFVA application. More information on bsp_configs can be
found in the RTOS Framework documentation.

Table 6.21: FFVA bsp_config

Filename/Directory Description

dac directory DAC ports for supported bsp_configs
XCORE-AI-EXPLORER directory experimental bsp_config, not recommended for general use
XK_VOICE_L71 directory default FFVA application bsp_config
bsp_config.cmake cmake for adding FFVA bsp_configs

filesystem_support This folder contains filesystem contents for the FFVA application.

Table 6.22: FFVA filesystem_support

Filename/Directory Description

demo.txt Example file

383838

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Audio Pipelines This folder contains preconfigured audio pipelines for the FFVA application.

Table 6.23: FFVA Audio Pipelines

Filename/Directory Description

api directory include folder for audio pipeline modules
src directory contains preconfigured XMOS DSP audio pipelines
audio_pipeline.cmake cmake for adding audio pipeline targets

Major Components The audio pipeline module provides the application with three API functions:

Listing 6.19: Audio Pipeline API (audio_pipeline.h)
void audio_pipeline_init(

void *input_app_data,

void *output_app_data);

void audio_pipeline_input(

void *input_app_data,

int32_t **input_audio_frames,

size_t ch_count,

size_t frame_count);

int audio_pipeline_output(

void *output_app_data,

int32_t **output_audio_frames,

size_t ch_count,

size_t frame_count);

audio_pipeline_init This function has the role of creating the audio pipeline task(s) and initializing DSP stages.

audio_pipeline_input This function is application defined and populates input audio frames used by the audio
pipeline. In FFVA, this function is defined in main.c.

audio_pipeline_output This function is application defined and populates input audio frames used by the audio
pipeline. In FFVA, this function is defined in main.c.

src This folder contains the core application source.

393939

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Table 6.24: FFVA src

Filename/Directory Description

gpio_test directory contains general purpose input handling task
usb directory contains intent handling code
ww_model_runner directory contains placeholder wakeword model runner task
app_conf_check.h header to validate app_conf.h
app_conf.h header to describe app configuration
config.xscope xscope configuration file
ff_appconf.h default fatfs configuration header
FreeRTOSConfig.h header to describe FreeRTOS configuration
main.c main application source file

Main The major components of main are:

Listing 6.20: Main components (main.c)
void startup_task(void *arg)

void tile_common_init(chanend_t c)

void main_tile0(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)

void main_tile1(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)

void i2s_rate_conversion_enable(void)

size_t i2s_send_upsample_cb(rtos_i2s_t *ctx, void *app_data, int32_t *i2s_frame, size_t i2s_

→˓frame_size, int32_t *send_buf, size_t samples_available)

size_t i2s_send_downsample_cb(rtos_i2s_t *ctx, void *app_data, int32_t *i2s_frame, size_t␣

→˓i2s_frame_size, int32_t *receive_buf, size_t sample_spaces_free)

startup_task This function has the role of launching tasks on each tile. For those familiar with XCORE, it is
comparable to the main par loop in an XC main.

tile_common_init This function is the common tile initialization, which initializes the bsp_config, creates the
startup task, and starts the FreeRTOS kernel.

main_tile0 This function is the application C entry point on tile 0, provided by the SDK.

main_tile1 This function is the application C entry point on tile 1, provided by the SDK.

i2s_rate_conversion_enable This application features 16kHz and 48kHz audio input and output. The XMOS
DPS blocks operate on 16kHz audio. Input streams are downsampled when needed. Output streams are upsam-
pled when needed. When in I2S modes This function is called by the bsp_config to enable the I2S sample rate
conversion.

i2s_send_upsample_cb This function is the I2S upsampling callback.

404040

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

i2s_send_downsample_cb This function is the I2S downsampling callback.

414141

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

6.2.5.5 Software Modifications

The FFVA example design consists of three major software blocks, the audio interface, audio pipeline, and place-
holder for a keyword handler. This section will go into detail on how to modify each/all of these subsystems.

It is highly recommended to be familiar with the application as a whole before attempting replacing these func-
tional units.

See Memory and CPU Requirements for more details on the memory footprint and CPU usage of the major soft-
ware components.

Replacing XCORE-VOICE DSP Block The audio pipeline can be replaced by making changes to the
audio_pipeline.c file.

It is up to the user to ensure that the input and output frames of the audio pipeline remain the same, or the
remainder of the application will not function properly.

This section will walk through an example of replacing the XMOS NS stage, with a custom stage foo.

Declaration and Definition of DSP Context Replace:

424242

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Listing 6.21: XMOS NS (audio_pipeline_t0.c)
static ns_stage_ctx_t DWORD_ALIGNED ns_stage_state = {};

With:

Listing 6.22: Foo (audio_pipeline_t0.c)
typedef struct foo_stage_ctx {

/* Your required state context here */

} foo_stage_ctx_t;

static foo_stage_ctx_t foo_stage_state = {};

DSP Function Replace:

Listing 6.23: XMOS NS (audio_pipeline_t0.c)
static void stage_ns(frame_data_t *frame_data)

{

if appconfAUDIO_PIPELINE_SKIP_NS

else

int32_t DWORD_ALIGNED ns_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];

configASSERT(NS_FRAME_ADVANCE == appconfAUDIO_PIPELINE_FRAME_ADVANCE);

ns_process_frame(

&ns_stage_state.state,

ns_output,

frame_data->samples[0]);

memcpy(frame_data->samples, ns_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE *␣

→˓sizeof(int32_t));

endif

}

With:

Listing 6.24: Foo (audio_pipeline_t0.c)
static void stage_foo(frame_data_t *frame_data)

{

int32_t foo_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];

foo_process_frame(

&foo_stage_state.state,

foo_output,

frame_data->samples[0]);

memcpy(frame_data->samples, foo_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE *␣

→˓sizeof(int32_t));

}

Runtime Initialization Replace:

434343

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Listing 6.25: XMOS NS (audio_pipeline_t0.c)
ns_init(&ns_stage_state.state);

With:

Listing 6.26: Foo (audio_pipeline_t0.c)
foo_init(&foo_stage_state.state);

Audio Pipeline Setup Replace:

Listing 6.27: XMOS NS (audio_pipeline_t0.c)
const pipeline_stage_t stages[] = {

(pipeline_stage_t)stage_vnr_and_ic,

(pipeline_stage_t)stage_ns,

(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_

→˓SIZE(audio_pipeline_input_i),

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_ns),

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_

→˓SIZE(audio_pipeline_output_i),

};

With:

Listing 6.28: Foo (audio_pipeline_t0.c)
const pipeline_stage_t stages[] = {

(pipeline_stage_t)stage_vnr_and_ic,

(pipeline_stage_t)stage_foo,

(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_

→˓SIZE(audio_pipeline_input_i),

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_foo),

configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_

→˓SIZE(audio_pipeline_output_i),

};

It is also possible to add or remove stages. Refer to the RTOS Framework documentation on the generic pipeline
sw_service.

Populating a Keyword Engine Block To add a keyword engine block, a user may populate the existing
model_runner_manager() function with their model:

444444

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Listing 6.29: Model Runner (model_runner.c)
configSTACK_DEPTH_TYPE model_runner_manager_stack_size = 287;

void model_runner_manager(void *args)

{

StreamBufferHandle_t input_queue = (StreamBufferHandle_t)args;

int16_t buf[appconfWW_FRAMES_PER_INFERENCE];

/* Perform any initialization here */

while (1)

{

/* Receive audio frames */

uint8_t *buf_ptr = (uint8_t*)buf;

size_t buf_len = appconfWW_FRAMES_PER_INFERENCE * sizeof(int16_t);

do {

size_t bytes_rxed = xStreamBufferReceive(input_queue,

buf_ptr,

buf_len,

portMAX_DELAY);

buf_len -= bytes_rxed;

buf_ptr += bytes_rxed;

} while(buf_len > 0);

/* Perform inference here */

// rtos_printf("inference\n");

}

}

Populate initialization and inference engine calls where commented. After adding user code, the stack size of
the task will need to be adjusted accordingly based on the engine being used. The input streambuffer must be
emptied at least at the rate of the audio pipeline otherwise frames will be lost.

Replacing Example Design Interfaces It may be desired to have a different input or output interfaces to talk to
a host.

Hybrid Audio Peripheral IO One example use case may be to create a hybrid audio solution where reference
frames or output audio streams are used over an interface other than I2S or USB.

Listing 6.30: Audio Pipeline Input (main.c)
void audio_pipeline_input(void *input_app_data,

int32_t **input_audio_frames,

size_t ch_count,

size_t frame_count)

{

(void) input_app_data;

int32_t **mic_ptr = (int32_t **)(input_audio_frames + (2 * frame_count));

static int flushed;

(continues on next page)

454545

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

(continued from previous page)

while (!flushed) {

size_t received;

received = rtos_mic_array_rx(mic_array_ctx,

mic_ptr,

frame_count,

0);

if (received == 0) {

rtos_mic_array_rx(mic_array_ctx,

mic_ptr,

frame_count,

portMAX_DELAY);

flushed = 1;

}

}

rtos_mic_array_rx(mic_array_ctx,

mic_ptr,

frame_count,

portMAX_DELAY);

/* Your ref input source here */

}

Refer to documentation inside the RTOS Framework on how to instantiate different RTOS peripheral drivers. Pop-
ulate the above code snippet with your input frame source. Refer to the default application for an example of
populating reference via I2S or USB.

Listing 6.31: Audio Pipeline Output (main.c)
int audio_pipeline_output(void *output_app_data,

int32_t **output_audio_frames,

size_t ch_count,

size_t frame_count)

{

(void) output_app_data;

/* Your output sink here */

if appconfWW_ENABLED

ww_audio_send(intertile_ctx,

frame_count,

(int32_t(*)[2])output_audio_frames);

endif

return AUDIO_PIPELINE_FREE_FRAME;

}

Refer to documentation inside the RTOS Framework on how to instantiate different RTOS peripheral drivers. Pop-
ulate the above code snippet with your output frame sink. Refer to the default application for an example of
outputting the ASR channel via I2S or USB.

464646

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Different Peripheral IO To add or remove a peripheral IO, modify the bsp_config accordingly. Refer to documen-
tation inside the RTOS Framework on how to instantiate different RTOS peripheral drivers.

Application Filesystem Usage This application is equipped with a FAT filesystem in flash for general use. To
add files to the filesystem, simply place them in the filesystem_support directory before running the filesystem
setup commands in Deploying the Firmware with Linux or macOS or Deploying the Firmware with Native Windows.

The application can access the filesystem via the FatFS API.

6.3 Automated Speech Recognition Porting

6.3.1 Overview

This is the XCORE-VOICE automated speech recognition (ASR) porting example design. This example can be
used by 3rd-party ASR developers and ISVs to port their ASR library to xcore.ai.

The example reads a 1 channel, 16-bit, 16kHz wav file, slices it up into bricks, and calls the ASR library with each
brick. The default brick length is 240 samples but this is configurable. ASR ports that implement the public API
defined in asr/api/asr.h can easily be added to current and future XCORE-VOICE example designs that support
speech recognition.

An oversimplified ASR port example is provided. This ASR port recognizes the “Hello XMOS” keyword if any
acoustic activity is observed in 75 consecutive bricks.

6.3.2 Supported Hardware

This example is supported on the XCORE-AI-EXPLORER board. However, the XK-VOICE-L71 board can be sup-
ported with some minor modifications.

6.3.2.1 Setting up the Hardware

This example design requires an XCORE.AI Evaulation Kit.

474747

https://www.xmos.ai/xcore-ai/#eval-kit
https://www.digikey.co.uk/en/products/detail/xmos/XK-VOICE-L71/15761172

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Connect the XCORE.AI Evaluation Kit as described in the xcore.ai Explorer Board Quick Start guide.

6.3.3 Deploying the Firmware with Linux or macOS

This document explains how to deploy the software using CMake and Make.

6.3.3.1 Building the Host Server

This application requires a host application to serve files to the device. The served file must be named test.wav.
This filename is defined in src/app_conf.h.

Run the following commands in the root folder to build the host application using your native Toolchain:

Note: Permissions may be required to install the host applications.

cmake -B build_host

cd build_host

make xscope_host_endpoint

make install

The host application, xscope_host_endpoint, will be installed at /opt/xmos/bin, and may be moved if desired.
You may wish to add this directory to your PATH variable.

Before running the host application, you may need to add the location of xscope_endpoint.so to your
LD_LIBRARY_PATH environment variable. This environment variable will be set if you run the host application in the

484848

https://www.xmos.ai/download/xcore.ai-Explorer-Board-Quick-Start(6).pdf

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

XTC Tools command-line environment. For more information see Configuring the command-line environment.

6.3.3.2 Building the Firmware

Run the following commands in the root folder to build the firmware:

cmake -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

make example_asr

6.3.3.3 Flashing the Model

Run the following commands in the build folder to flash the model:

xflash --force --quad-spi-clock 50MHz --factory example_asr.xe --boot-partition-size␣

→˓0x100000 --target-file ../examples/speech_recognition/XCORE-AI-EXPLORER.xn --data ../

→˓examples/speech_recognition/asr/port/example/asr_example_model.dat

6.3.3.4 Running the Firmware

From the build folder run:

make run_example_asr

In a second console, run the following command in the examples/speech_recognition folder to run the host
server:

xscope_host_endpoint 12345

6.3.4 Deploying the Firmware with Native Windows

This document explains how to deploy the software usingCMake andNMake. If you are not using nativeWindows
MSVC build tools and instead using a Linux emulation tool, refer to Deploying the Firmware with Linux or macOS.

6.3.4.1 Building the Host Server

This application requires a host application to serve files to the device. The served file must be named test.wav.
This filename is defined in src/app_conf.h.

Run the following commands in the root folder to build the host application using your native Toolchain:

Note: Permissions may be required to install the host applications.

Before building the host application, you will need to add the path to the XTC Tools to your environment.

set "XMOS_TOOL_PATH=<path-to-xtc-tools>"

Then build the host application:

494949

https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/tools-guide/install-configure/getting-started.html

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

cmake -G "NMake Makefiles" -B build_host

cd build_host

nmake xscope_host_endpoint

nmake install

The host application, xscope_host_endpoint.exe, will install at <USERPROFILE>\.xmos\bin, and may bemoved
if desired. You may wish to add this directory to your PATH variable.

Before running the host application, you may need to add the location of xscope_endpoint.dll to your PATH.
This environment variable will be set if you run the host application in the XTC Tools command-line environment.
For more information see Configuring the command-line environment.

6.3.4.2 Building the Firmware

Run the following commands in the root folder to build the firmware:

cmake -G "NMake Makefiles" -B build -D CMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

nmake example_asr

6.3.4.3 Flashing the Model

Run the following commands in the build folder to flash the model:

xflash --force --quad-spi-clock 50MHz --factory example_asr.xe --boot-partition-size␣

→˓0x100000 --target-file ../examples/speech_recognition/XCORE-AI-EXPLORER.xn --data ../

→˓examples/speech_recognition/asr/port/example/asr_example_model.dat

6.3.4.4 Running the Firmware

From the build folder run:

nmake run_example_asr

In a second console, run the following command in the examples/speech_recognition folder to run the host
server:

xscope_host_endpoint.exe 12345

6.3.5 Modifying the Software

6.3.5.1 Implementing the ASR API

Begin your ASR port by creating a new folder under example/speech_recognition/asr/port. Be sure to include
asr/api/asr.h in your port’smain source file. The asr.h and device_memory.h files include comments detailing
the public API methods and parameters. ASR ports that implement the public API defined can easily be added to
current and future XCORE-VOICE example designs that support speech recognition.

Pay close attention to the functions: - asr_printf - devmem_malloc - devmem_free - devmem_read_ext -
devmem_read_ext_async - devmem_read_ext_wait

505050

https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/tools-guide/install-configure/getting-started.html

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

ASR libraries should call asr_printf instead of printf or xcore’s debug_printf.

ASR libraries must not call malloc directly to allocate dynamic memory. Instead call the devmem_malloc and
devmem_free functions. This allows the application to provide alternative implementations of these functions -
like pvPortMalloc and vPortFree in a FreeRTOS application.

The devmem_read_ext function is provided to load data directly from external memory (QSPI flash or LPDDR) into
SRAM. This is the recommended way to load coefficients or blocks of data from a model. It is far more efficient
to load the data into SRAM and perform anymath on the data while it is in SRAM. The devmem_read_ext function
a signature similar to memcpy. The caller is responsible for allocating the destination buffer.

Like devmem_read_ext, the devmem_read_ext_async function is provided to load data directly from exter-
nal memory (QSPI flash or LPDDR) into SRAM. devmem_read_ext_async differs in that it does not block
the caller’s thread. Instead it loads the data in another thread. One must have a free core when calling
devmem_read_ext_async or an exception will be raised. devmem_read_ext_async returns a handle that can later
be used to wait for the load to complete. Call devmem_read_ext_wait to block the callers thread until the load is
complete. Currently, each call to devmem_read_ext_asyncmust be followed by a call to devmem_read_ext_wait.
You can not have more than one read in flight at a time.

Note: XMOS provides an arithmetic and DSP library which leverages the XS3 Vector Processing Unit (VPU) to
accelerate costly operations on vectors of 16- or 32-bit data. Included are functions for block floating-point arith-
metic, fast Fourier transforms, discrete cosine transforms, linear filtering andmore. See the XMath Programming
Guide for more information.

Note: To minimize SRAM scratch space usage, some ASR ports load coefficients into SRAM in chunks. This
is useful when performing a routine such as a vector matrix multiply as this operation can be performed on a
portion of the matrix at a time.

Note: You may also need to modify BRICK_SIZE_SAMPLES in app_conf.h to match the number of au-
dio samples expected per process for your ASR port. In other example designs, this is defined by
appconfINTENT_SAMPLE_BLOCK_LENGTH. This is set to 240 in the existing example designs.

In the current source code, the model data (and optional grammar data) are set in src/process_file.c. Modify
these variables to reflect your data. The remainder of the API should be familiar to ASR developers. The API can
be extended if necessary.

6.3.5.2 Flashing Models

To flash your model, modify the --data argument passed to xflash command in the Flashing the Model section.

See asr/port/example/asr_example_model.h to see how the model’s flash address is defined.

6.3.5.3 Placing Models in SRAM

Small models (near or under 100kB in size)may be placed in SRAM. See asr/port/example/asr_example_model.h`
and asr/port/example/asr_example_model.c for more information on placing your model in SRAM.

6.3.6 ASR API

515151

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

enum asr_error_enum

Enumerator type representing error return values.

Values:

enumerator ASR_OK
Ok.

enumerator ASR_ERROR
General error

enumerator ASR_INSUFFICIENT_MEMORY
Insufficient memory for given model.

enumerator ASR_NOT_SUPPORTED
Function not supported for given model.

enumerator ASR_INVALID_PARAMETER
Invalid Parameter.

enumerator ASR_MODEL_INCOMPATIBLE
Model type or version is not compatible with the ASR library.

enumerator ASR_MODEL_CORRUPT
Model malformed.

enumerator ASR_NOT_INITIALIZED
Not Initialized.

enumerator ASR_EVALUATION_EXPIRED
Evaluation period has expired.

enum asr_keyword_enum

Enumerator type representing each supported keyword.

Values:

enumerator ASR_KEYWORD_UNKNOWN
Keyword is unknown.

enumerator ASR_KEYWORD_HELLO_XMOS

enumerator ASR_KEYWORD_ALEXA

enumerator ASR_NUMBER_OF_KEYWORDS

525252

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

enum asr_command_enum

Enumerator type representing each supported command.

Values:

enumerator ASR_COMMAND_UNKNOWN
Command is unknown.

enumerator ASR_COMMAND_TV_ON

enumerator ASR_COMMAND_TV_OFF

enumerator ASR_COMMAND_VOLUME_UP

enumerator ASR_COMMAND_VOLUME_DOWN

enumerator ASR_COMMAND_CHANNEL_UP

enumerator ASR_COMMAND_CHANNEL_DOWN

enumerator ASR_COMMAND_LIGHTS_ON

enumerator ASR_COMMAND_LIGHTS_OFF

enumerator ASR_COMMAND_LIGHTS_UP

enumerator ASR_COMMAND_LIGHTS_DOWN

enumerator ASR_COMMAND_FAN_ON

enumerator ASR_COMMAND_FAN_OFF

enumerator ASR_COMMAND_FAN_UP

enumerator ASR_COMMAND_FAN_DOWN

enumerator ASR_COMMAND_TEMPERATURE_UP

enumerator ASR_COMMAND_TEMPERATURE_DOWN

enumerator ASR_NUMBER_OF_COMMANDS

535353

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

typedef void *asr_port_t
Typedef to the ASR port context struct.

An ASR port can store any data needed in the context. The context pointer is passed to all API methods
and can be cast to any struct defined by the ASR port.

typedef struct asr_attributes_struct asr_attributes_t
Typedef to the ASR port and model attributes

typedef struct asr_result_struct asr_result_t
Typedef to the ASR result

typedef enum asr_error_enum asr_error_t

Enumerator type representing error return values.

typedef enum asr_keyword_enum asr_keyword_t

Enumerator type representing each supported keyword.

typedef enum asr_command_enum asr_command_t

Enumerator type representing each supported command.

void asr_printf(const char *format, ...)

String output function that allows the application

to provide an alternative implementation.

ASR ports should call asr_printf instead of printf

asr_port_t asr_init(int32_t *model, int32_t *grammar, devmem_manager_t *devmem_ctx)
Initialize an ASR port.

Parameters

• model – A pointer to the model data.

• grammar – A pointer to the grammar data (Optional).

• devmem_ctx – A pointer to the device manager (Optional). Save this pointer if calling any
device manager API functions.

Returns
the ASR port context.

asr_error_t asr_get_attributes(asr_port_t *ctx, asr_attributes_t *attributes)
Get engine and model attributes.

Parameters

• ctx – A pointer to the ASR port context.

• attributes – The attributes result.

Returns
Success or error code.

545454

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

asr_error_t asr_process(asr_port_t *ctx, int16_t *audio_buf, size_t buf_len)
Process an audio buffer.

Parameters

• ctx – A pointer to the ASR port context.

• audio_buf – A pointer to the 16-bit PCM samples.

• buf_len – The number of PCM samples.

Returns
Success or error code.

asr_error_t asr_get_result(asr_port_t *ctx, asr_result_t *result)
Get the most recent results.

Parameters

• ctx – A pointer to the ASR port context.

• result – The processed result.

Returns
Success or error code.

asr_error_t asr_reset(asr_port_t *ctx)
Reset ASR port (if necessary).

Called before the next call to asr_process.

Parameters

• ctx – A pointer to the ASR port context.

Returns
Success or error code.

asr_error_t asr_release(asr_port_t *ctx)
Release ASR port (if necessary).

The ASR port must deallocate any memory.

Parameters

• ctx – A pointer to the ASR port context.

Returns
Success or error code.

asr_keyword_t asr_get_keyword(asr_port_t *ctx, int16_t asr_id)
Return the XCORE-VOICE supported keyword type.

Parameters

• ctx – A pointer to the ASR port context.

• asr_id – The ASR port keyword identifier.

Returns
XCORE-VOICE supported keyword type

asr_command_t asr_get_command(asr_port_t *ctx, int16_t asr_id)
Return the XCORE-VOICE supported command type.

Parameters

555555

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

• ctx – A pointer to the ASR port context.

• asr_id – The ASR port command identifier.

Returns
XCORE-VOICE supported command type

struct asr_attributes_struct
#include <asr.h> Typedef to the ASR port and model attributes

struct asr_result_struct
#include <asr.h> Typedef to the ASR result

6.3.7 Device Memory API

void *devmem_malloc(devmem_manager_t *ctx, size_t size)
Memory allocation function that allows the application to provide an alternative implementation.

Call devmem_malloc instead of malloc

Parameters

• ctx – A pointer to the device memory context.

• size – Number of bytes to allocate.

Returns
A pointer to the beginning of newly allocated memory, or NULL on failure.

void devmem_free(devmem_manager_t *ctx, void *ptr)
Memory deallocation function that allows the application to provide an alternative implementation.

Call devmem_free instead of free

Parameters

• ctx – A pointer to the device memory context.

• ptr – A pointer to the memory to deallocate.

void devmem_read_ext(devmem_manager_t *ctx, void *dest, const void *src, size_t n)

Synchronous extended memory read function that allows the application

to provide an alternative implementation. Blocks the callers thread until the read is completed.

Call devmem_read_ext instead of any other functions to read memory from flash, LPDDR or SDRAM. Mod-
ules are free to use memcpy if the dest and src are both SRAM addresses.

Parameters

• ctx – A pointer to the device memory context.

• dest – A Pointer to the destination array where the content is to be read.

• src – A Pointer to the source of data to be read.

• n – Number of bytes to read.

565656

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

int devmem_read_ext_async(devmem_manager_t *ctx, void *dest, const void *src, size_t n)

Asynchronous extended memory read function that allows the application

to provide an alternative implementation.

Call asr_read_ext_async instead of any other functions to read memory from flash, LPDDR or SDRAM.

Parameters

• ctx – A pointer to the device memory context.

• dest – A Pointer to the destination array where the content is to be read.

• src – A Pointer to the source of data to be read.

• n – Number of bytes to read.

Returns
A handle that can be used in a call to devmem_read_ext_wait.

void devmem_read_ext_wait(devmem_manager_t *ctx, int handle)
Wait in the caller’s thread for an asynchronous extended memory read to finish.

Parameters

• ctx – A pointer to the device memory context.

• handle – The devmem_read_ext_asyc handle to wait on.

IS_SRAM(a)

IS_SWMEM(a)

IS_FLASH(a)

575757

7 Memory and CPU Requirements

7.1 Memory

The table below lists the approximate memory requirements for the larger software components. All memory
use estimates in the table below are based on the default configuration for the feature. Alternate configurations
will require more or less memory. The estimates are provided as guideline to assist application developers judge
the memory cost of extending the application or benefit of removing an existing feature. It can be assumed that
the memory requirement of components not listed in the table below are under 5 kB.

Table 7.1: Memory Requirements

Component Memory Use (kB)

Stereo Adaptive Echo Canceler (AEC) 275
Wanson Speech Recognition Engine 194
Interference Canceler (IC) + Voice To Noise Ratio Es-
timator (VNR)

130

USB 20
Noise Suppressor (NS) 15
Adaptive Gain Control (AGC) 11

7.2 CPU

The table below lists the approximate CPU requirements for the larger software components. All CPU use es-
timates in the table below are based on the default configuration for the feature. Alternate configurations will
require more or less MIPS. The estimates are provided as guideline to assist application developers judge the
MIP cost of extending the application or benefits of removing an existing feature. It can be assumed that the
memory requirement of components not listed in the table below are under 1%.

The following formula was used to convert CPU% to MIPS:

MIPS = (CPU% / 100%) * (600 MHz / 5 cores)

Table 7.2: CPU Requirements (@ 600 MHz)

Component CPU Use (%) MIPS Use

USB XUD 100 120
I2S (slave mode) 80 96
Stereo Adaptive Echo Canceler
(AEC)

80 96

Wanson Speech Recognition En-
gine

80 96

Interference Canceler (IC) + Voice
To Noise Ratio Estimator (VNR)

25 30

Noise Suppressor (NS) 10 12
Adaptive Gain Control (AGC) 5 6

585858

8 Frequently Asked Questions

8.1 CMake hides XTC Tools commands

If you want to customize the XTC Tools commands like xflash and xrun, you can see what commands CMake is
running by adding VERBOSE=1 to your build command line. For example:

make run_my_target VERBOSE=1

8.2 fatfs_mkimage: not found

This issue occurs when the fatfs_mkimage host utility cannot be found. The most common cause for these
issues are an incomplete installation of XCORE-VOICE.

Ensure that the host applications build and install has been completed. Verify that the fatfs_mkimage binary is
installed to a location on PATH, or that the default application installation folder is added to PATH.

8.3 FFD Crash At Start

One potential issue with the FFD application is a crash when trying to run:

Wanson init

xrun: Program received signal ET_ECALL, Application exception.

[Switching to tile[0] core[3]]

0x0008d308 in __xcore_ecallf ()

This generally occurs when the model was not properly loaded into flash. To flash the model and filesystem,
see Deploying the Firmware with Linux or macOS or Deploying the Firmware with Native Windows based on host
platform.

8.4 FFD pdm_rx_isr() Crash

One potential issue with the low power FFD application is a crash after adding new code:

xrun: Program received signal ET_ECALL, Application exception.

[Switching to tile[1] core[1]]

0x0008a182 in pdm_rx_isr ()

This generally occurs when there is not enough processing time available on tile 1, or when interrupts were dis-
abled for too long, causing the mic array driver to fail to meet timing. To resolve reduce the processing time,
minimize context switching and other actions that require kernel locks, and/or increase the tile 1 core clock fre-
quency.

595959

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

8.5 Debugging low-power

The clock dividers are set high to minimize core power consumption. This can make debugging a challenge or
impossible. Even adding a simple printf can cause critical timing to be missed. In order to debug with the
low-power features enabled, temporarily modify the clock dividers in app_conf.h.

define appconfLOW_POWER_SWITCH_CLK_DIV 1 // Resulting clock freq 600MHz.

define appconfLOW_POWER_OTHER_TILE_CLK_DIV 1 // Resulting clock freq 600MHz.

define appconfLOW_POWER_CONTROL_TILE_CLK_DIV 1 // Resulting clock freq 600MHz.

8.6 xcc2clang.exe: error: no such file or directory

Those strange characters at the beginning of the path are known as a byte-order mark (BOM). CMake adds them
to the beginning of the response files it generates during the configure step. Why does it add them? Because the
MSVC compiler toolchain requires them. However, some compiler toolchains, like gcc and xcc, do not ignore the
BOM. Why did CMake think the compiler toolchain was MSVC and not the XTC toolchain? Because of a bug in
which certain versions of CMake and certain versions of Visual Studio do not play nice together. The good news
is that this appears to have been addressed in CMake version 3.22.3. Update to CMake version 3.22.2 or newer.

606060

9 Copyright & Disclaimer

Copyright © 2023, XMOS Ltd

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. XMOS Ltd makes no representation that the Information, or any particular implementation thereof, is or
will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom
and other countries and may not be used without written permission. Company and product names mentioned
in this document are the trademarks or registered trademarks of their respective owners.

616161

10 Licenses

10.1 XMOS

All original source code is licensed under the XMOS License.

10.2 Third-Party

Additional third party code is included under the following copyrights and licenses:

Table 10.1: Third Party Module Copyrights & Licenses

Module Copyright & License

dr_wav Copyright (C) 2022 David Reid, licensed under a public domain license
Wanson Speech Recognition Li-
brary

The Wanson speech recognition library is Copyright 2022. Shanghai
Wanson Electronic Technology Co. Ltd (“WANSON”) and is subject to
the Wanson Restrictive License

626262

https://github.com/xmos/sln_voice/blob/develop/LICENSE.rst
https://github.com/mackron/dr_libs
https://github.com/mackron/dr_libs/blob/master/LICENSE
https://github.com/xmos/sln_voice/blob/develop/examples/ffd/asr/port/wanson/lib/LICENSE.md

10 Index

A
asr_attributes_struct (C struct), 56
asr_attributes_t (C type), 54
asr_command_enum (C enum), 52
asr_command_enum.ASR_COMMAND_CHANNEL_DOWN (C

enumerator), 53
asr_command_enum.ASR_COMMAND_CHANNEL_UP (C enu-

merator), 53
asr_command_enum.ASR_COMMAND_FAN_DOWN (C enu-

merator), 53
asr_command_enum.ASR_COMMAND_FAN_OFF (C enu-

merator), 53
asr_command_enum.ASR_COMMAND_FAN_ON (Cenumera-

tor), 53
asr_command_enum.ASR_COMMAND_FAN_UP (Cenumera-

tor), 53
asr_command_enum.ASR_COMMAND_LIGHTS_DOWN (C

enumerator), 53
asr_command_enum.ASR_COMMAND_LIGHTS_OFF (C enu-

merator), 53
asr_command_enum.ASR_COMMAND_LIGHTS_ON (C enu-

merator), 53
asr_command_enum.ASR_COMMAND_LIGHTS_UP (C enu-

merator), 53
asr_command_enum.ASR_COMMAND_TEMPERATURE_DOWN

(C enumerator), 53
asr_command_enum.ASR_COMMAND_TEMPERATURE_UP (C

enumerator), 53
asr_command_enum.ASR_COMMAND_TV_OFF (Cenumera-

tor), 53
asr_command_enum.ASR_COMMAND_TV_ON (C enumera-

tor), 53
asr_command_enum.ASR_COMMAND_UNKNOWN (C enu-

merator), 53
asr_command_enum.ASR_COMMAND_VOLUME_DOWN (C

enumerator), 53
asr_command_enum.ASR_COMMAND_VOLUME_UP (C enu-

merator), 53
asr_command_enum.ASR_NUMBER_OF_COMMANDS (C enu-

merator), 53
asr_command_t (C type), 54
asr_error_enum (C enum), 51
asr_error_enum.ASR_ERROR (C enumerator), 52
asr_error_enum.ASR_EVALUATION_EXPIRED (C enu-

merator), 52
asr_error_enum.ASR_INSUFFICIENT_MEMORY (C enu-

merator), 52
asr_error_enum.ASR_INVALID_PARAMETER (C enu-

merator), 52
asr_error_enum.ASR_MODEL_CORRUPT (C enumerator),

52
asr_error_enum.ASR_MODEL_INCOMPATIBLE (C enu-

merator), 52
asr_error_enum.ASR_NOT_INITIALIZED (C enumera-

tor), 52
asr_error_enum.ASR_NOT_SUPPORTED (C enumerator),

52
asr_error_enum.ASR_OK (C enumerator), 52
asr_error_t (C type), 54
asr_get_attributes (C function), 54
asr_get_command (C function), 55
asr_get_keyword (C function), 55
asr_get_result (C function), 55
asr_init (C function), 54
asr_keyword_enum (C enum), 52
asr_keyword_enum.ASR_KEYWORD_ALEXA (C enumera-

tor), 52
asr_keyword_enum.ASR_KEYWORD_HELLO_XMOS (C enu-

merator), 52
asr_keyword_enum.ASR_KEYWORD_UNKNOWN (C enu-

merator), 52
asr_keyword_enum.ASR_NUMBER_OF_KEYWORDS (C enu-

merator), 52
asr_keyword_t (C type), 54
asr_port_t (C type), 53
asr_printf (C function), 54
asr_process (C function), 54
asr_release (C function), 55
asr_reset (C function), 55
asr_result_struct (C struct), 56
asr_result_t (C type), 54

D
devmem_free (C function), 56
devmem_malloc (C function), 56
devmem_read_ext (C function), 56
devmem_read_ext_async (C function), 56
devmem_read_ext_wait (C function), 57

I
IS_FLASH (C macro), 57
IS_SRAM (C macro), 57
IS_SWMEM (C macro), 57

636363

XCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming GuideXCORE-VOICE SOLUTION - Programming Guide

Copyright © 2023, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. XMOS Ltd makes no representation that the Information, or any particular implementation thereof, is or
will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom
and other countries and may not be used without written permission. Company and product names mentioned
in this document are the trademarks or registered trademarks of their respective owners.

646464

	Product Description
	Key Features
	Obtaining the Hardware
	Obtaining the Software
	Development Tools
	Application Demonstrations
	Source Code
	Cloning the Repository

	Prerequisites
	Windows
	libusb

	macOS

	Example Designs
	Far-field Voice Local Command
	Overview
	Supported Hardware
	Setting up the Hardware
	xTAG
	Speakers (OPTIONAL)

	Configuring the Firmware
	Deploying the Firmware with Linux or macOS
	Building the Host Applications
	Building the Firmware
	Running the Firmware
	Debugging the Firmware

	Deploying the Firmware with Native Windows
	Building the Host Applications
	Building the Firmware
	Running the Firmware
	Debugging the Firmware

	Modifying the Software
	Host Integration
	Overview
	UART
	I2C
	GPIO

	Audio Pipeline
	Software Description
	Overview
	asr
	bsp_config
	ext
	filesystem_support
	src
	Audio Pipeline
	audio_pipeline_init
	audio_pipeline_input
	audio_pipeline_output
	Main
	startup_task
	vApplicationMinimalIdleHook
	tile_common_init
	main_tile0
	main_tile1

	src/intent_engine
	Major Components
	intent_engine_create
	intent_engine_sample_push
	intent_engine_process_asr_result
	Miscellaneous Functions

	src/intent_handler
	Major Components
	intent_handler_create

	src/power
	Configuration Notes

	Software Modifications
	Overview
	Replacing XCORE-VOICE DSP Block
	Declaration and Definition of DSP Context
	DSP Function
	Runtime Initialization
	Audio Pipeline Setup
	Replacing ASR Engine Block
	Replacing Example Design Interfaces
	Different Peripheral IO
	Direct Control

	Wanson Speech Recognition
	License
	Overview
	Dictionary command table
	State Machine
	Application Integration

	Far-field Voice Assistant
	Overview
	Supported Hardware
	Setting up the Hardware
	xTAG

	Deploying the Firmware with Linux or macOS
	Building the Host Applications
	Building the Firmware
	Running the Firmware
	Upgrading the Firmware
	Debugging the Firmware

	Deploying the Firmware with Native Windows
	Building the Host Applications
	Building the Firmware
	Running the Firmware
	Upgrading the Firmware
	Debugging the Firmware

	Modifying the Software
	Host Integration
	Out of the Box Integration
	Single Controller Solution

	Design Architecture
	Audio Pipeline
	Software Description
	Overview
	bsp_config
	filesystem_support
	Audio Pipelines
	Major Components
	audio_pipeline_init
	audio_pipeline_input
	audio_pipeline_output

	src
	Main
	startup_task
	tile_common_init
	main_tile0
	main_tile1
	i2s_rate_conversion_enable
	i2s_send_upsample_cb
	i2s_send_downsample_cb

	Software Modifications
	Replacing XCORE-VOICE DSP Block
	Declaration and Definition of DSP Context
	DSP Function
	Runtime Initialization
	Audio Pipeline Setup

	Populating a Keyword Engine Block
	Replacing Example Design Interfaces
	Hybrid Audio Peripheral IO
	Different Peripheral IO
	Application Filesystem Usage

	Automated Speech Recognition Porting
	Overview
	Supported Hardware
	Setting up the Hardware

	Deploying the Firmware with Linux or macOS
	Building the Host Server
	Building the Firmware
	Flashing the Model
	Running the Firmware

	Deploying the Firmware with Native Windows
	Building the Host Server
	Building the Firmware
	Flashing the Model
	Running the Firmware

	Modifying the Software
	Implementing the ASR API
	Flashing Models
	Placing Models in SRAM

	ASR API
	Device Memory API

	Memory and CPU Requirements
	Memory
	CPU

	Frequently Asked Questions
	CMake hides XTC Tools commands
	fatfs_mkimage: not found
	FFD Crash At Start
	FFD pdm_rx_isr() Crash
	Debugging low-power
	xcc2clang.exe: error: no such file or directory

	Copyright & Disclaimer
	Licenses
	XMOS
	Third-Party

	Index

