fwk_voice - User Guide

Release: 0.5.1
Publication Date: 2023/03/20

2 MOS

Table of Contents

1 Audio Processing 2
11 Audio Features 2
111 Acoustic Echo Canceller Library 2
Repository Structure 2
Requirements 2
APISTIrUCtUre . . . o o 2
Gettingand Building 3

AEC OQverview 3
APIReference 4
OnGitHUb 21

APl 21

112 Noise Suppression Library 21
Repository Structure 21
Requirements 21
Gettingand Building 21

NS OVEIVIEW 22
APIReference 22
OnGitHub 26

AP 26

1.1.3 Automatic Gain Control Library 26
Repository Structure 26
Requirements 26
Gettingand Building 27

AGC OVErVIEW 27
APIReference 27
OnGitHUb 33

AP 33

1.1.4 Automatic Delay Estimation and Correction Library 33
Repository Structure 33
Gettingand Building 33

ADEC OVEIVIEW o o 34
APIReference 34
OnGitHub 41

APl 11

115 Interference Canceller Library 41
Repository Structure 41
Requirements 41
APISTruCtUre o 41
Gettingand Building 41
[COVEIrVIEW 42
APIReference 42
OnGitHUb 52

APl 52

1.1.6 Voice To Noise Ratio Estimator Library 52
Repository Structure 52
Requirements 53
APIStructure o 53

X

Getting and Building

VNR Inference Model
VNR Overview
API Reference
OnGitHub

2 Example Applications
Building Examples
2.2 Running Examples

2.1

Index

221

2272

223

224

225

226

227

228

aec_1_thread
Building
Running
Output
aec_2_threads . ..
Building
Running
Output
VA

Building
Running
Output
agc
Building
Running
Output

pipeline_single_threaded

Building
Running

pipeline_multi_threaded

Building
Running
Output
pipeline_alt_arch . .
Building
Running
Output

fwk_voice - User Guide

The Voice Framework Design Guide is written for system architects and engineers designing Far-field voice sys-
tems using the XCORE.Al processor. The document describes typical usage models, the processor architecture,
key feature operation, and interface definitions. In conjunction with the product datasheet, these two documents
provide all the information required for system design, from concept to production testing and verification.

It is expected that this document is read in conjunction with the relevant datasheet and that the user is familiar
with basic voice processing terminology.

1 Audio Processing

At the core of the Voice Framework are high-performance audio processing algorithms. The algorithms are con-
nected in a pipeline that takes its input from a pair of the microphone and executes a series of signal processing
algorithms to extract a voice signal from a complex soundscape. The audio pipeline can accept a reference signal
from a host system which is used to perform Acoustic Echo Cancellation (AEC) to remove audio being played by
the host. The audio pipeline provides two different output channels - one that is optimized for Automatic Speech
Recognition systems and the other for voice communications.

A flexible audio signal routing infrastructure and a range of digital inputs and outputs enables the Voice Frame-
work to be integrated into a wide range of system configurations, that can be configured at start up and during
operation through a set of control registers. In addition, all source code is provided to allow for full customization
or the addition of other audio processing algorithms.

1.1 Audio Features

1.1.1 Acoustic Echo Canceller Library

lib_aec is a library which provides functions that can be put together to perform Acoustic Echo Cancellation
(AEC) on input mic data using the input reference data to model the room echo characteristics. 1ib_aec library
functions make use of functionality provided in 1ib_xcore_math to perform DSP operations. For more details
refer to AEC Overview.

Repository Structure
* modules/1lib_aec - The actual 1ib_aec library directory within https://github.com/xmos/fwk_voice/.
Within 1ib_aec
— api/ - Headers containing the public API for 1ib_aec.
- doc/ - Library documentation source (for non-embedded documentation) and build directory.

- src/ - Library source code.

Requirements

1lib_aec is included as part of the fwk_voice github repository and all requirements for cloning and building
fwk_voice apply. lib_aec is compiled as a static library as part of overall fwk_voice build. It depends on
lib_xcore_math.

API Structure

The API can be categorised into high level and low level functions.

High level API has fewer input arguments and is simpler. However, it provides limited options for calling functions
in parallel across multiple threads. Keeping API simplicity in mind, most of the high level API functions accept a
pointer to the AEC state structure as an input and modify the relevant part of the AEC state. API and example

https://github.com/xmos/lib_xcore_math/

fwk_voice - User Guide

documentation provides more details about the fields within the state modified when calling a given function.
High level API functions allow 2 levels of parallelism:

- Single level of parallelism where for a given function, main and shadow filter processing can happen in
parallel.

- Two levels of parallelism where a for a given function, processing across multiple channels as well as main
and shadow filter can be done in parallel.

Low level APl has more input arguments but allows more freedom for running in parallel across multiple threads.
Low level API function names begin with a aec_12_ prefix. Depending on the low level API used, functions can
be run in parallel to work over a range of bins or a range of phases. This APl is still a work in progress and will be
fully supported in the future.

Getting and Building

This repo is got as part of the parent fwk_voice repo clone. It is compiled as a static library as part of fwk_voice
compilation process.

Toinclude 1ib_aecin an application as a static library, the generated 1ibfwk_voice_module_lib_aec.acanthen
be linked into the application. Be sure to also add 1ib_aec/api as an include directory for the application.

AEC Overview

The lib_aec library provides functions that can be put together to perform Automatic Echo Cancellation on input
microphone data by using input reference data to model the echo characteristics of the room.

The echo canceller takes in one or more channels of microphone (mic) input and one or more channels of ref-
erence input data. The mic input is the input captured by the device microphones. Reference input is the audio
that is played out of the device speakers. The echo canceller uses the reference input to model the room echo
characteristics for each mic-loudspeaker pair and outputs an echo cancelled version of the mic input. AEC uses
adaptive filters, one per mic-speaker pair to constantly remove echo from the the mic input. The filters continu-
ally adapt to the acoustic environment to accommodate changes in the room created by events such as doors
opening or closing and people moving about.

Echo cancellation is performed on a frame by frame basis. Each frame is made of 15msec chunks of data, which
is 240 samples at 16kHz input sampling frequency, per input channel. For example, for a 2 mic channel and 2
reference channel input configuration, an input frame is made of 2x240 samples of mic data and 2x240 samples
of reference data. Input data is expected to be in fixed point 32bit 1.31 format. Further, in this example, there will
be a total of 4 adaptive filters; Hyoz0, Hyoz1, Hy1z0 and H,1,1, monitoring the echo seen in mic channel 0 from
reference channel 0 and 1 and echo seen in mic channel 1 from reference channel 0 and 1.

Microphone data is referred to as y when in time domain and Y when in frequency domain. In general throughout
the code, names starting with lower case represent time domain and those beginning with upper case represent
frequency domain. For example error is the filter error and Error is the spectrum of the filter error. Reference
input is referred to as z in time domain and X when in frequency domain. Filter is referred to as A in time domain
and H in frequency domain.

A filter has multiple phases. The term phases refers to the tail length of the filter. A filter with more phases or a
longer tail length will be able to model a more reverberant room response leading to better echo cancellation.

There are 2 types of adaptive filters used in the AEC. These are referred to as main filter and shadow filter. The
main filter as the name suggests is the main filter that is used to generate the echo cancelled output of the AEC.
Shadow filter is a filter that used to quickly detect and respond to changes in the room transfer function. There
is one main filter and one shadow filter per z-y pair. Typically the main filter has more phases than the shadow

fwk_voice - User Guide

filter. Fewer phases in the shadow filter enable it to rapidly detect and respond to changes while more phases in
main filter lead to deeper convergence and hence better echo cancellation at the AEC output.

Before starting AEC processing or every time there’s a configuration change, the user needs to call aec_init() to
initialise the echo canceller for a desired configuration. Once the AEC is initialised, the library functions can be
called in a logical order to perform echo cancellation on a frame by frame basis. Refer to the aec_1_thread and
aec_2_threads examples to see how the functions are called to perform echo cancellation using one thread or 2
threads.

API Reference

AEC Data Structure and Enum Definitions

group aec_types

Enums

€num aec_adaption_e
Values:

enumerator AEC_ADAPTION_AUTO
Compute filter adaption config every frame.

enumerator AEC_ADAPTION_FORCE_ON
Filter adaption always ON.

enumerator AEC_ADAPTION_FORCE_OFF
Filter adaption always OFF.

enum shadow_state_e
Values:

enumerator LOW_REF
Not much reference so no point in acting on AEC filter logic.

enumerator ERROR
something has gone wrong, zero shadow filter

enumerator ZERO
shadow filter has been reset multiple times, zero shadow filter

enumerator RESET
copy main filter to shadow filter

enumerator EQUAL
main filter and shadow filter are similar

fwk_voice - User Guide

enumerator SIGMA
shadow filter bit better than main, reset sigma_xx for faster convergence

enumerator COPY
shadow filter much better, copy to main

struct coherence_mu_config_params_t

Public Members

float_s32_t coh_alpha
Update rate of coh.

float_s32_t coh_slow_alpha
Update rate of coh_slow.

float_s32_t coh_thresh_slow
Adaption frozen if coh below (coh_thresh_slow*coh_slow)

float_s32_t coh_thresh_abs
Adaption frozen if coh below coh_thresh_abs.

float_s32_t mu_scalar
Scalefactor for scaling the calculated mu.

float_s32_t eps
Parameter to avoid divide by O in coh calculation.

float_s32_t thresh_minus20dB
-20dB threshold

float_s32_t x_energy_thresh

X_energy threshold used for determining if the signal has enough reference energy for sensible
coherence mu calculation

unsigned mu_coh_time
Number of frames after low coherence, adaption frozen for.

unsigned mu_shad_time
Number of frames after shadow filter use, the adaption is fast for

aec_adaption_e adaption_config
Filter adaption mode. Auto, force ON or force OFF

fwk_voice - User Guide

int32_t force_adaption_mu_q30
Fixed mu value used when filter adaption is forced ON

struct shadow_filt_config_params_t

Public Members

float_s32_t shadow_sigma_thresh
threshold for resetting sigma_XX.

float_s32_t shadow_copy_thresh
threshold for copying shadow filter.

float_s32_t shadow_reset_thresh
threshold for resetting shadow filter.

float_s32_t shadow_delay_thresh
threshold for turning off shadow filter reset if reference delay is large

float_s32_t x_energy_thresh

X energy threshold used for deciding whether the system has enough reference energy for main
and shadow filter comparison to make sense

float_s32_t shadow_mu
fixed mu value used during shadow filter adaption.

int32_t shadow_better_thresh
Number of times shadow filter needs to be better before it gets copied to main filter.

int32_t shadow_zero_thresh
Number of times shadow filter is reset by copying the main filter to it before it gets zeroed.

int32_t shadow_reset_timer

Number of frames between zeroing resets of shadow filter.

struct aec_core_config_params_t

Public Members

int bypass
bypass AEC flag.

fwk_voice - User Guide

int gamma_log?2

parameter for deriving the gamma value that used in normalisation spectrum calculation. gamma
is calculated as 2*gamma_log2

uint32_t sigma_xx_shift
parameter used for deriving the alpha value used while calculating EMA of X_energy to calculate

sigma_XX.

float_s32_t delta_adaption_force_on
delta value used in normalisation spectrum computation when adaption is forced as always ON.

float_s32_t delta_min
Lower limit of delta computed using fractional regularisation.

uint32_t coeff_index

coefficient index used to track H_hat index when sending H_hat values over the host control inter-
face.

uq2_30 ema_alpha_q30
alpha used while calculating y_ema_energy, x_ema_energy and error_ema_energy.

struct aec_config_params_t

#include <aec_state.h> AEC control parameters.

This structure contains control parameters that the user can modify at run time.

Public Members

coherence_mu_config_params_t coh_mu_conf
Coherence mu related control params.

shadow_filt_config_params_t shadow_filt_conf
Shadow filter related control params.

aec_core_config_params_t aec_core_conf
All AEC control params except those for coherence mu and shadow filter.

struct coherence_mu_params_t

Public Members

float_s32_t coh
Moving average coherence.

fwk_voice - User Guide

float_s32_t coh_slow
Slow moving average coherence.

iNt32_t mu_coh_count

Counter for tracking number of frames coherence has been low for.

int32_t mu_shad_count
Counter for tracking number of frames shadow filter has been used in.

float_s32_t coh_mu[AEC_LIB.MAX X_CHANNELS]
Coherence mu.

struct shadow_filter_params_t

Public Members

int32_t shadow_flag[AFC_LIB_-MAX_Y_CHANNELS]
shadow_state_e enum indicating shadow filter status

int shadow_reset_count[AEC_[IB_MAX_Y_CHANNELS]
counter for tracking shadow filter resets

int shadow_better_count[AEC_[IB_MAX_Y_CHANNELS]
counter for tracking shadow filter copy to main filter

struct aec_shared_state_t
#include <aec_state.h> AEC shared state structure.

Data structures holding AEC persistent state that is common between main filter and shadow filter.
aec_state_t:shared_state for both main and shadow filter point to the common aec_shared_t structure.
[aec_shared_state_t]

Public Members

bfp_complex_s32_t X_fifolAEC_LIB_MAX_X_CHANNELSIJAEC_LIB_-MAX_PHASES]

BFP array pointing to the reference input spectrum phases. The term phase refers to the spectrum
data for a frame. Multiple phases means multiple frames of data.

For example, 10 phases would mean the 10 most recent frames of data. Each phase spectrum,
pointed to by X_fifoli][j]->data is stored as a length AEC_FD_FRAME_LENGTH, complex 32bit array.

The phases are ordered from most recent to least recent in the X_fifo. For example, for an AEC
configuration of 2 x-channels and 10 phases per x channel, 10 frames of X data spectrum is stored
in the X_fifo. For a given x channel, say x channel 0, X_fifo[0][0] points to the most recent frame's
X spectrum and X_fifo[0][9] points to the last phase, i.e the least recent frame's X spectrum.

fwk_voice - User Guide

bfp_complex_s32_t X[AEC_LIB_MAX_X_CHANNELS]

BFP array pointing to reference input signal spectrum. The X data values are stored as a length
AEC_FD_FRAME_LENGTH complex 32bit array per x channel.

bfp_complex_s32_t YIAEC_LIB_MAX_Y_CHANNELS]

BFP array pointing to mic input signal spectrum. The Y data values are stored as a length
AEC_FD_FRAME_LENGTH complex 32bit array per y channel.

bfp_s32_t y[AEC_LIB_MAX_Y_CHANNELS]

BFP array pointing to time domain mic input processing block. The y data values are stored as
length AEC_PROC_FRAME_LENGTH, 32bit integer array per y channel.

bfp_s32_t x[AEC_LIB_MAX_X_CHANNELS]

BFP array pointing to time domain reference input processing block. The x data values are stored
as length AEC_PROC_FRAME_LENGTH, 32bit integer array per x channel.

bfp_s32_t prev_yl[AEC_LIB_MAX_Y_CHANNELS]

BFP array pointing to time domain mic input values from the previous frame. These are put to-
gether with the new samples received in the current frame to make a AEC_PROC_FRAME_LENGTH
processing block. The prev_y data values are stored as length (AEC_PROC_FRAME_LENGTH -
AEC_FRAME_ADVANCE), 32bit integer array per y channel.

bfp_s32_t prev_x[AEC_LIB_MAX_X_CHANNELS]

BFP array pointing to time domain reference input values from the previous frame.
These are put together with the new samples received in the current frame to make a
AEC_PROC_FRAME_LENGTH processing block. The prev_x data values are stored as length
(AEC_PROC_FRAME_LENGTH - AEC_FRAME_ADVANCE), 32bit integer array per x channel.

bfp_s32_t sigma_XX[AEC_LIB_MAX_X_CHANNELS]

BFP array pointing to sigma_XX values which are the weighted average of the X_energy signal.
The sigma_XX data is stored as 32bit integer array of length AEC_FD_FRAME_LENGTH

float_s32_t y_ema_energy[AEC_LIB_MAX_Y_CHANNELS]

Exponential moving average of the time domain mic signal energy. This is calculated by calculat-
ing energy per sample and summing across all samples. Stored in a y channels array with every
value stored as a 32bit integer mantissa and exponent.

float_s32_t x_ema_energy[ALC_LIB_MAX_X_CHANNELS]

Exponential moving average of the time domain reference signal energy. This is calculated by
calculating energy per sample and summing across all samples. Stored in a x channels array with
every value stored as a 32bit integer mantissa and exponent.

float_s32_t overall Y[AEC_LIB_MAX_Y_CHANNELS]

Energy of the mic input spectrum. This is calculated by calculating the energy per bin and sum-
ming across all bins. Stored in a y channels array with every value stored as a 32bit integer man-
tissa and exponent.

10

fwk_voice - User Guide

float_s32_t sum_X_energy[ALC_LIB_MAX_X_CHANNELS]

Sum of the X_energy across all bins for a given x channel. Stored in a x channels array with every
value stored as a 32bit integer mantissa and exponent.

coherence_mu_params_t coh_mu_statelAEC_[IB_MAX_Y_CHANNELS]
Structure containing coherence mu calculation related parameters.

shadow._filter_params_t shadow_filter_params
Structure containing shadow filter related parameters.

aec_config_params_t config_params

Structure containing AEC control parameters. These are initialised to the default values and can
be changed at runtime by the user.

unsigned num_y_channels

Number of mic input channels that the AEC is configured for. This is the input parameter
num_y_channels that aec_init() gets called with.

unsigned num_x_channels

Number of reference input channels that the AEC is configured for. This is the input parameter
num_x_channels that aec_init() gets called with.

struct aec_state_t

#include <aec_state.h> [aec_shared_state_t]
AEC state structure.

Data structures holding AEC persistent state. There are 2 instances of aec_state_t maintained within
AEC; one for main filter and one for shadow filter specific state. [aec_state_t]

Public Members

bfp_complex_s32_t Y_hat[AEC_LIB_MAX_Y_CHANNELS]

BFP array pointing to estimated mic signal spectrum. The Y_data data values are stored as length
AEC_FD_FRAME_LENGTH, complex 32bit array per y channel.

bfp_complex_s32_t Exrror[AEC_LIB_MAX_Y_CHANNELS]

BFP array pointing to adaptive filter error signal spectrum. The Error data is stored as length
AEC_FD_FRAME_LENGTH, complex 32bit array per y channel.

bfp_complex_s32_t H_hat[AEC_LIB_MAX_Y_CHANNELS|AEC_LIB_MAX_PHASES]

BFP array pointing to the adaptive filter spectrum. The filter spectrum is stored as a
num_y_channels x total_phases_across_all_x_channels array where each H_hat[i][j] entry points
to the spectrum of a single phase.

Number of phases in the filter refers to its tail length. A filter with more phases would be able to
model a longer echo thereby causing better echo cancellation.

1

fwk_voice - User Guide

For example, for a 2 y-channels, 3 x-channels, 10 phases per x channel configuration, the filter
spectrum phases are stored in a 2x30 array. For a given y channel, say y channel 0, H_hat[0][0]
to H_hat[0][9] points to 10 phases of H_hat,oxo, H_hat[0][10] to H_hat[0][19] points to 10 phases of
H_hat,gx and H_hat[0][20] to H_hat[0][29] points to 10 phases of H_hatyqye.

Each filter phase data which is pointed to by H_hat[i][j].data is stored as AEC_FD_FRAME_LENGTH
complex 32bit array.

bfp_complex_s32_t X_fifo_1d[AEC_LIB_MAX_PHASES]

BFP array pointing to all phases of reference input spectrum across all x channels. Here, the
reference input spectrum is saved in a 1 dimensional array of phases, with x channel 0 phases
followed by x channel 1phases and so on. For example, for a 2 x-channels, 10 phases per x channel
configuration, X_fifo_1d[0] to X_fifo_1d[9] points to the 10 phases for channel 0 and X_fifo[10] to
X_fifo[19] points to the 10 phases for channel 1.

Each X data spectrum phase pointed to by X_fifo_1d[i][.data is stored as length
AEC_FD_FRAME_LENGTH complex 32bit array.

bfp_complex_s32_t T[AEC_LIB_MAX_X_CHANNELS]

BFP array pointing to T values which are stored as a length AEC_FD_FRAME_LENGTH, complex
array per x channel.

bfp_s32_t inv_X_energy[AEC_LIB_MAX_X_CHANNELS]

BFP array pointing to the normalisation spectrum which are stored as a length
AEC_FD_FRAME_LENGTH, 32bit integer array per x channel.

bfp_s32_t X_energylAEC_LIB_-MAX_X_CHANNELS]

BFP array pointing to the X_energy data which is the energy per bin of the X spectrum summed over
all phases of the X data. X_energy data is stored as a length AEC_FD_FRAME_LENGTH, integer
32bit array per x channel.

bfp_s32_t overlap[AEC_LIB_MAX_Y_CHANNELS]

BFP array pointing to time domain overlap data values which are used in the overlap add operation
done while calculating the echo canceller time domain output. Stored as a length 32, 32 bit integer
array per y channel.

bfp_s32_t y_hat[AEC_LIB_MAX_Y_CHANNELS]

BFP array pointing to the time domain estimated mic signal. Stored as length
AEC_PROC_FRAME_LENGTH, 32 bit integer array per y channel.

bfp_s32_t error[AEC_LIB_MAX_Y_CHANNELS]

BFP array pointing to the time domain adaptive filter error signal. Stored as length
AEC_PROC_FRAME_LENGTH, 32 bit integer array per y channel.

float_s32_t mu[AEC_LIB_MAX_Y_CHANNELSIAEC_LIB_MAX_X_CHANNELS]
mu values for every x-y pair stored as 32 bit integer mantissa and 32 bit integer exponent

float_s32_t error_ema_energylAFC_LIB_MAX_Y_CHANNELS]

Exponential moving average of the time domain adaptive filter error signal energy. Stored in an x
channels array with every value stored as a 32bit integer mantissa and exponent.

fwk_voice - User Guide

float_s32_t overall_Error[AEC_LIB_MAX_Y_CHANNELS]

Energy of the adaptive filter error spectrum. Stored in a y channels array with every value stored
as a 32bit integer mantissa and exponent.

float_s32_t max_X_energy[AFC_LIB_MAX_X_CHANNELS]

Maximum X energy across all values of X_energy for a given x channel. Stored in an x channels
array with every value stored as a 32bit integer mantissa and exponent.

float_s32_t delta_scale
fractional regularisation scalefactor.

float_s32_t delta
delta parameter used in the normalisation spectrum calculation.

aec_shared_state_t *shared_state
pointer to the state data shared between main and shadow filter.

unsigned num_phases

Number of filter phases per x-y pair that AEC filter is configured for. This is the input argument
num_main_filter_phases or num_shadow_filter_phases, depending on which filter the aec_state_t
is instantiated for, passed in aec_init() call.

AEC #define constants

group aec_defines

12

Defines

AEC_LIB_MAX_Y_CHANNELS

Maximum number of microphone input channels supported in the library. Microphone input to the
AEC refers to the input from the device’'s microphones from which AEC removes the echo created in
the room by the device’s loudspeakers.

AEC functions follow the convention of using y and Y for referring to time domain and frequency
domain representation of microphone input.

The num_y_channels passed into aec_init() call should be less than or equal to
AEC_LIB_LMAX_Y_CHANNELS. This define is only used for defining data structures in the aec_state.
The library code implementation uses only the num_y_channels aec is initialised for in the aec_init()
call.

AEC_LIB_MAX_X_CHANNELS

Maximum number of reference input channels supported in the library. Reference input to the AEC
refers to a copy of the device's speaker output audio that is also sent as an input to the AEC. It is used
to model the echo characteristics between a mic-loudspeaker pair.

AEC functions follow the convention of using =z and X for referring to time domain and frequency
domain representation of reference input.

fwk_voice - User Guide

The num_x_channels passed into aec_init() call should be less than or equal to
AEC_LIB_LMAX_X_CHANNELS. This define is only used for defining data structures in the aec_state.
The library code implementation uses only the num_x_channels aec is initialised for in the aec_init()
call.

AEC_FRAME_ADVANCE

AEC frame size This is the number of samples of new data that the AEC works on every frame. 240
samples at 16kHz is 1omsec. Every frame, the echo canceller takes in 15msec of mic and reference
data and generates 15msec of echo cancelled output.

AEC_PROC_FRAME_LENGTH

Time domain samples block length used internally in AEC’s block LMS algorithm

AEC_FD_FRAME_LENGTH

Number of bins of spectrum data computed when doing a DFT of a AEC_PROC_FRAME_LENGTH
length time domain vector. The AEC_FD_FRAME_LENGTH spectrum values represent the bins from
DC to Nyquist.

AEC_LIB_MAX_PHASES

Maximum total number of phases supported in the AEC library This is the maximum number of total
phases supported in the AEC library. Total phases are calculated by summing phases across adaptive
filters for all x-y pairs.

For example. for a 2 y-channels, 2 x-channels, 10 phases per x channel configuration, there
are 4 adaptive filters, H_hatyoxo, H_hatyox, H_hat,1xo and H_haty,, each filter having 10 phases,
so the total number of phases is 40. When aec_init() is called to initialise the AEC, the
num_y_channels, num_x_channels and num_main_filter_phases parameters passed in should be
such that num_y_channels * num_x_channels * num_main_filter_phases is less than equal to
AEC_LIB_.MAX_PHASES.

This define is only used when defining data structures within the AEC state structure. The AEC algo-
rithm implementation uses the num_main_filter_phases and num_shadow_filter_phases values that
are passed into aec_init().

AEC_UNUSED_TAPS_PER_PHASE

Overlap data length

AEC_FFT_PADDING

AEC API

Extra 2 samples you need to allocate in time domain so that the full spectrum (DC to nyquist) can be
stored after the in-place FFT. NOT USER MODIFIABLE.

AEC High Level API Functions

group aec_func

Functions

13

14

fwk_voice - User Guide

void aec_init (aec_state_t *main_state, aec_state_t *shadow_state, aec_shared_state_t *shared_state,

uint8_t *main_mem_pool, uint8_t *shadow_mem_pool, unsigned num_y_channels,
unsigned num_x_channels, unsigned num_main_filter_phases, unsigned
num_shadow_filter_phases)

Initialise AEC data structures.

This function initializes AEC data structures for a given configuration. The configuration parame-
ters num_y_channels, num_x_channels, num_main_filter_phases and num_shadow_filter_phases are
passed in as input arguments.

This function needs to be called at startup to first initialise the AEC and subsequently whenever the
AEC configuration changes.

main_state, shadow_state and shared_state structures must start at double word aligned addresses.

main_mem_pool and shadow_mem_pool must point to memory buffers big enough to support main
and shadow filter processing. AEC state aec_state_t and shared state aec_shared_state_t structures
contain only the BFP data structures used in the AEC. The memory these BFP structures will point to
needs to be provided by the user in the memory pool main and shadow filters memory pool. An exam-
ple memory pool structure is present in aec_memory_pool_t and aec_shadow_filt_memory_pool_t.

main_mem_pool and shadow_mem_pool must also start at double word aligned addresses.

Example

#include "aec_memory_pool.h"

aec_state_t DWORD_ALIGNED main_state;

aec_state_t DWORD_ALIGNED shadow_state;

aec_shared_state_t DWORD_ALIGNED aec_shared_state;

uint8_t DWORD_ALIGNED aec_mem[sizeof (aec_memory_pool_t)];

uint8_t DWORD_ALIGNED aec_shadow_mem[sizeof (aec_shadow_filt_memory_pool_t)];
unsigned y_chans = 2, x_chans = 2;

unsigned main_phases = 10, shadow_phases = 5;

// There is one main and one shadow filter per z-y channel pair, so for thisy
—~ezxzample there will be 4 main and 4

// shadow filters. Each main filter will have 10 phases and each shadow filter,
—wtll have 5 phases.

aec_init(&main_state, &shadow_state, &shared_state, aec_mem, aec_shadow_mem, y_
—.chans, x_chans, main_phases, shadow_phases);

Parameters
 main_state — [inout] AEC state structure for holding main filter specific state
- shadow_state — [inout] AEC state structure for holding shadow filter specific state

- shared_state — [inout] Shared state structure for holding state that is common to main
and shadow filter

* main_mem_pool — [inout] Memory pool containing main filter memory buffers

+ shadow_mem_pool — [inout] Memory pool containing shadow filter memory buffers
+ num_y_channels — [in] Number of mic input channels

* num_x_channels - [in] Number of reference input channels

* num_main_filter_phases — [in] Number of phases in the main filter

fwk_voice - User Guide

+ num_shadow_filter_phases — [in] Number of phases in the shadow filter

void aec_frame_init (aec_state_t *main_state, aec_state_t *shadow_state, const int32_t
(*y_data)[AEC_FRAME_ADVANCE], const int32_t (*x_data)[AEC_FRAME_ADVANCE])

Initialise AEC data structures for processing a new frame.

This is the first function that is called when a new frame is available for processing. It takes the new
samples as input and combines the new samples and previous frame’s history to create a processing
block on which further processing happens. It also initialises some data structures that need to be
initialised at the beginning of a frame.

Note:
y_data and x_data buffers memory is free to be reused after this function call.

Parameters
+ main_state — [inout] main filter state
- shadow_state — [inout] shadow filter state
- y_data - [in] pointer to mic input buffer

- x_data — [in] pointer to reference input buffer

void aec_calc_freq_domain_energy (float_s32_t *fd_energy, const bfp_complex_s32_t *input)
Calculate energy in the spectrum.

This function calculates the energy of frequency domain data used in the AEC. Frequency domain data
in AEC is in the form of complex 32bit vectors and energy is calculated as the squared magnitude of
the input vector.

Parameters
- fd_energy — [out] energy of the input spectrum
» input - [in] input spectrum BFP structure

void aec_calc_time_domain_ema_energy (float_s32_t *ema_energy, const bfp_s32_t *input, unsigned
start_offset, unsigned length, const aec_config_params_t
*conf)

Calculate exponential moving average (EMA) energy of a time domain (TD) vector.

This function calculates the EMA energy of AEC time domain data which is in the form of real 32bit
vectors.

This function can be called to calculate the EMA energy of subsets of the input vector as well.
Parameters
- ema_energy — [out] EMA energy of the input
» input - [in] time domain input BFP structure

- start_offset — [in] offset in the input vector from where to start calculating EMA en-
ergy
+ length — [in] length over which to calculate EMA energy

- conf — [in] AEC configuration parameters.

fwk_voice - User Guide

void aec_forward_fft (bfp_complex_s32_t *output, bfp_s32_t *input)
Calculate Discrete Fourier Transform (DFT) spectrum of an input time domain vector.

This function calculates the spectrum of a real 32bit time domain vector. It calculates an N point real
DFT where N is the length of the input vector to output a complex N/2+1 length complex 32bit vector.
The N/2+1 complex output values represent spectrum samples from DC up to the Nyquist frequency.

The DFT calculation is done in place. After this function call the input and output BFP structures data
flelds point to the same memory. Since DFT is calculated in place, use of the input BFP struct is
undefined after this function.

To allow for inplace transform from N real 32bit values to N/2+1 complex 32bit values, the input vector
should have 2 extra real 32bit samples worth of memory. This means that input->data should point
to a buffer of length input->length+2

After this function input->data and output->data point to the same memory address.
Parameters
- output — [out] DFT output BFP structure
+ input - [in] DFT input BFP structure

void aec_inverse_fft (bfp_s32_t *output, bfp_complex_s32_t *input)
Calculate inverse Discrete Fourier Transform (DFT) of an input spectrum.

This function calculates a N point inverse real DFT of a complex 32bit where N is 2*(length-1) where
length is the length of the input vector. The output is a real 32bit vector of length N.

The inverse DFT calculation is done in place. After this operation the input and the output BFP struc-
tures data fields point to the same memory. Since the calculation is done in place, use of input BFP
struct after this function is undefined.

After this function input->data and output->data point to the same memory address.
Parameters
- output — [out] inverse DFT output BFP structure
» input - [in] inverse DFT input BFP structure

void aec_calc_X_fifo_energy(aec_state_t *state, unsigned ch, unsigned recalc_bin)
Calculate total energy of the X FIFO.

X FIF0 is a FIFO of the most recent X frames, where X is spectrum of one frame of ref-
erence input. Theres a common X FIFO that is shared between main and shadow fil-
ters. It holds num_main_filter_phases most recent X frames and the shadow filter uses
num_shadow_filter_phases most recent frames out of it.

This function calculates the energy per X sample index summed across the X FIFO phases. This
function also calculates the maximum energy across all samples indices of the output energy vector

Note:

This function implements some speed optimisations which introduce quantisation error. To stop
quantisation error build up, in every call of this function, energy for one sample index, which is spec-
ifled in the recalc_bin argument, is recalculated without the optimisations. There are a total of

fwk_voice - User Guide

AEC_FD_FRAME_LENGTH samples in the energy vector, so recalc_bin keeps cycling through indexes
0 to AEC_PROC_FRAME_LENGTH/2.

Parameters

- state — [inout] AEC state. state->X_energy[ch] and state->max_X_energy(ch] are up-
dated

+ ch — [in] channel index for which energy calculations are done

* recalc_bin — [in] The sample index for which energy is recalculated to eliminate quan-
tisation errors

void aec_update_X_fifo_and_calc_sigmaXX(aec_state_t *state, unsigned ch)
Update X FIFO with the current X frame.

This function updates the X FIFO by removing the oldest X frame from it and adding the current X
frame to it. This function also calculates sigmaXX which is the exponential moving average of the
current X frame energy

Parameters

- state — [inout] AEC state structure. state->shared_state->X_fifo[ch] and state-
>shared_state->sigma_XX[ch] are updated.

+ ch - [in] X channel index for which to update X FIFO

void aec_calc_Error_and_Y_hat(aec_state_t *state, unsigned ch)
Calculate error spectrum and estimated mic signal spectrum.

This function calculates the error spectrum (Error) and estimated mic input spectrum (Y_hat) Y_hat
is calculated as the sum of all phases of the adaptive filter multiplied by the respective phases of the
reference input spectrum. Error is calculated by subtracting Y_hat from the mic input spectrum Y

Parameters
- state — [inout] AEC state structure. state->Error[ch] and state->Y_hat[ch] are updated
+ ch - [in] mic channel index for which to compute Error and Y_hat

void aec_calc_coherence (aec_state_t *state, unsigned ch)
Calculate coherence.
This function calculates the average coherence between mic input signal (y) and estimated mic signal
(y_hat). A metric is calculated using y and y_hat and the moving average (coh) and a slow moving

average (coh_slow) of that metric is calculated. The coherence values are used to distinguish between
situations when filter adaption should continue or freeze and update mu accordingly.

Parameters

- state — [inout] AEC state structure. state->shared_state->coh_mu_state[ch].coh
and state->shared_state->coh_mu_statel[ch].coh_slow are updated

+ ch — [in] mic channel index for which to calculate average coherence

void aec_calc_output (aec_state_t *state, int32_t (*output)[AEC_FRAME_ADVANCE], unsigned ch)
Calculate AEC filter output signal.

This function is responsible for windowing the filter error signal and creating AEC filter output that can
be propagated to downstream stages. output is calculated by overlapping and adding current frame's
windowed error signal with the previous frame windowed error. This is done to smooth discontinuities
in the output as the filter adapts.

fwk_voice - User Guide

Parameters
- state — [inout] AEC state structure. state->error[ch]
- output — [out] pointer to the output buffer
» ch — [in] mic channel index for which to calculate output

void aec_calc_normalisation_spectrum(aec_state_t *state, unsigned ch, unsigned is_shadow)
Calculate normalisation spectrum.

This function calculates the normalisation spectrum of the reference input signal. This normalised
spectrum is later used during filter adaption to scale the adaption to the size of the input signal. The
normalisation spectrum is calculated as a time and frequency smoothed energy of the reference input
spectrum.

The normalisation spectrum is calculated differently for main and shadow filter, so a flag indicating
whether this calculation is being done for the main or shadow filter is passed as an input to the function

Parameters
- state — [inout] AEC state structure. state->inv_X_energy[ch] is updated
« ch — [in] reference channel index for which to calculate normalisation spectrum
- is_shadow — [in] flag indicating filter type. O: Main filter, 1: Shadow filter

void aec_compare_filters_and_calc_mu(aec_state_t *main_state, aec_state_t *shadow_state)
Compare and update filters. Calculate the adaption step size mu.

This function has 2 responsibilities. First, it compares the energies in the error spectrums of the main
and shadow filter with each other and with the mic input spectrum energy, and makes an estimate of
how well the filters are performing. Based on this, it optionally modifies the filters by either resetting
the filter coefficients or copying one filter into another. Second, it uses the coherence values calculated
in aec_calc_coherence as well as information from filter comparison done in step 1 to calculate the
adaption step size mu.

Parameters
 main_state — [inout] AEC state structure for the main filter
+ shadow_state — [inout] AEC state structure for the shadow filter

void aec_calc_T(aec_state_t *state, unsigned y_ch, unsigned x_ch)
Calculate the parameter T

This function calculates a parameter referred to as T that is later used to scale the reference input
spectrum in the filter update step. T is a function of the adaption step size mu, normalisation spectrum
inv_X_energy and the filter error spectrum Error.

Parameters
- state — [inout] AEC state structure. state->T[x_ch] is updated
+ y_ch — [in] mic channel index
+ x_ch — [in] reference channel index

void aec_filter_adapt (aec_state_t *state, unsigned y_ch)
Update filter.

This function updates the adaptive filter spectrum (H_hat). It calculates the delta update that is applied
to the filter by scaling the X FIFO with the T values computed in aec_compute_T () and applies the delta
update to H_hat. A gradient constraint FFT is then applied to constrain the length of each phase of the
filter to avoid wrapping when calculating y_hat

fwk_voice - User Guide

Parameters
state — [inout] AEC state structure. state->H_hat [y_ch] is updated

+ y_ch — [in] mic channel index

void aec_update_X_fifo_1d(aec_state_t *state)
Update the X FIFO alternate BFP structure.
The X FIFO BFP structure is maintained in 2 forms - as a 2 dimensional [x_channels][num_phases]
and as a [x_channels * num_phases] 1 dimensional array. This is done in order to optimally access
the X FIFO as needed in different functions. After the X FIFO is updated with the current X frame, this
function is called in order to copy the 2 dimensional BFP structure into it's 1 dimensional counterpart.

Parameters
state — [inout] AEC state structure. state->X_fifo_1d is updated

float_s32_t aec_calc_corr_factor (aec_state_t *state, unsigned ch)
Calculate a correlation metric between the microphone input and estimated microphone signal.

This function calculates a metric of resemblance between the mic input and the estimated mic signal.
The correlation metric, along with reference signal energy is used to infer presence of near and far end

signals in the AEC mic input.

Parameters
state — [in] AEC state structure. state->y and state->y_hat are used to calculate

the correlation metric
« ch - [in] mic channel index for which to calculate the metric

Returns
correlation metric in float_s32_t format

float_s32_t aec_calc_max_input_energy (const int32_t (*xinput_data)[AFC_FRAME_ADVANCE], int
num_channels)

Calculate the energy of the input signal.
This function calculates the sum of the energy across all samples of the time domain input channel

and returns the maximum energy across all channels.

Parameters
input_data — [in] Pointer to the input data buffer. The input is assumed to be in Q1.31

fixed point format.
+ num_channels — [in] Number of input channels.

Returns
Maximum energy in float_s32_t format.

void aec_reset_state(aec_state_t *main_state, aec_state_t *shadow_state)
Reset parts of aec state structure.
This function resets parts of AEC state so that the echo canceller starts adapting from a zero filter.

Parameters
+ pointer - [in] to AEC main filter state structure.

- pointer - [in] to AEC shadow filter state structure

19

fwk_voice - User Guide

Uint32_t aec_detect_input_activity(const int32_t (*xinput_data)[AEC_FRAME_ADVANCE], float_s32_t
active_threshold, int32_t num_channels)

Detect activity on input channels.

This function implements a quick check for detecting activity on the input channels. It detects sig-
nal presence by checking if the maximum sample in the time domain input frame is above a given

threshold.
Parameters
- input_data - [in] Pointer to input data frame. Input is assumed to be in Q1.31 fixed
point format.
* active_threshold — [in] Threshold for detecting signal activity
* num_channels — [in] Number of input data channels
Returns

0 if no signal activity on the input channels, 1 if activity detected on the input channels

AEC Low Level API Functions (STILL WIP)

group aec_low_level_func

Functions

void aec_12_calc_Error_and_Y_hat (bfp_complex_s32_t *Error, bfp_complex_s32_t *Y_hat, const
bfp_complex_s32_t *Y, const bfp_complex_s32_t *X_fifo, const
bfp_complex_s32_t *H_hat, unsigned num_x_channels, unsigned
num_phases, unsigned start_offset, unsigned length, int32_t
bypass_enabled)

Calculate Error and Y_hat for a channel over a range of bins.
void aec_12_adapt_plus_fft_gc(bfp_complex_s32_t *H_hat_ph, const bfp_complex_s32_t *X_fifo_ph,
const bfp_complex_s32_t *T_ph)
Adapt one phase of the adaptive filter.

void aec_12_bfp_complex_s32_unify_exponent (bfp_complex_s32_t *chunks, int32_t *final_exp,
uint32_t *final_hr, const uint32_t *mapping, uint32_t
array_len, uint32_t desired_index, uint32_t
min_headroom)

Unify bfp_complex_s32_t chunks into a single exponent and headroom.

void aec_12_bfp_s32_unify_exponent (bfp_s32_t *chunks, int32_t *final_exp, uint32_t *final_hr, const
uint32_t *mapping, uint32_t array_len, uint32_t desired_index,
uint32_t min_headroom)

Unify bfp_s32_t chunks into a single exponent and headroom.

lib_aec Header Files

aec_defines.h

page page_aec_defines_h

20

This header contains lib_aec public defines

fwk_voice - User Guide

aec_state.h

page page_aec_state_h
This header contains definitions for data structures and enums used in lib_aec.

aec_api.h

page page_aec_api_h
lib_aec public functions API.

On GitHub

lib_aec is present as part of fwk_voice. Get the latest version of fwk_voice from https://github.com/xmos/
fwk_voice. 1lib_aec is present within the modules/lib_aec directory in fwk_voice

API

To use the functions in this library in an application, include aec_api.h in the application source file

1.1.2 Noise Suppression Library

1lib_nsis a library which performs Noise Suppression (NS), by estimating the noise and subtracting it from frame.
lib_ns library functions make use of functionality provided in 1ib_xcore_math to perform DSP operations. For
more details, refer to NS Overview.

Repository Structure
+ modules/lib_ns - The actual 1lib_ns library directory within https://github.com/xmos/fwk_voice/.
Within 1ib_ns
— api/ - Headers containing the public API for 1ib_ns.
- doc/ - Library documentation source (for non-embedded documentation) and build directory.

- src/ - Library source code.

Requirements

1lib_ns is included as part of the fwk_voice github repository and all requirements for cloning and building
fwk_voice apply. 1ib_ns is compiled as a static library as part of the overall fwk_voice build. It depends on
lib_xcore_math.

Getting and Building

This module is part of the parent fwk_voice repo clone. It is compiled as a static library as part of fwk_voice
compilation process.

To include 1ib_ns in an application as a static library, the generated 1ibfwk_voice_module_lib_ns.a can then
be linked into the application. Add 1ib_ns/api to the include directories when building the application.

21 y,

https://github.com/xmos/lib_xcore_math/

fwk_voice - User Guide

NS Overview

The 1ib_ns library provides an API to implement Noise Suppression within an application.

The noise suppressor estimates the probability of speech presence and dynamically adapts its coefficients to
estimate the noise levels to subtract from the input. The filter will automatically reset its noise estimations every
10 frames.

The NS takes as input a frame of data from an audio channel. This could be the microphone input or the output
of another module in the application.

Noise Suppression is performed on a frame-by-frame basis. Each frame consists of 15ms of data, which is 240
samples at 16kHz input sampling frequency. Input data is expected to be in a fixed-point 32-bit 1.31 format.

Before processing any frames, the application must configure and initialise the NS instance by callingns_init ().
Then for each frame, ns_process_frame() will update the NS instance’s internal state and produce the output
frame by applying the NS algorithm to the input frame.

If multiple channels need to be processed by the application, or multiple outputs are required, an independent
instance of the NS must be run for each channel.

API Reference

NS API Functions

group ns_func

Functions

void ns_init (ns_state_t *ns)
Initialise the NS.

This function initialises the NS state with the provided configuration. It must be called at startup to
initialise the NS before processing any frames, and can be called at any time after that to reset the NS
instance, returning the internal NS state to its defaults.

Example

ns_state_t ns;
ns_init(&ns);

Parameters
« ns — [out] NS state structure

void ns_process_frame (ns_state_t *ns, int32_t output[NS_FRAME_ADVANCE], const int32_t
inputNS_FRAME_ADVANCE])

Perform NS processing on a frame of input data.

This function updates the NS’s internal state based on the input 1.31 frame, and returns an output 1.31
frame containing the result of the NS algorithm applied to the input.

The input and output pointers can be equal to perform the processing in-place.

22 p,

fwk_voice - User Guide

Example

int32_t input[NS_FRAME_ADVANCE];
int32_t output [NS_FRAME_ADVANCE] ;
ns_state_t ns;

ns_init(&ns);

ns_process_frame(&ns, output, input);

Parameters
« ns — [inout] NS state structure
- output — [out] Array to return the resulting frame of data

+ input - [in] Array of frame data on which to perform the NS

NS API Structure Definitions

group ns_defs

23

Defines

NS_FRAME_ADVANCE
Length of the frame of data on which the NS will operate.

NS_PROC_FRAME_LENGTH
Time domain samples block length used internally.

NS_PROC_FRAME_BINS

Number of bins of spectrum data computed when doing a DFT of a NS_PROC_FRAME_LENGTH length
time domain vector. The NS_PROC_FRAME_BINS spectrum values represent the bins from DC to
Nyquist.

NS_INT_EXP
The exponent used internally to keep q1.31 format.

NS_WINDOW_LENGTH
The length of the window applied in time domain

struct ns_state_t
#include <ns_state.h> NS state structure.
This structure holds the current state of the NS instance and members are updated each time that
ns_process_frame() runs. Many of these members are exponentially-weighted moving averages
(EWMA) which influence the behaviour of the NS filter. The user should not directly modify any of
these members.

24

Public Members

bfp_s32_t s
BFP structure to hold the local energy.

bfp_s32_t S_min
BFP structure to hold the minimum local energy within 10 frames.

bfp_s32_t S_tmp
BFP structure to hold the temporary local energy.

bfp_s32_tp
BFP structure to hold the conditional signal presence probability

bfp_s32_t alpha_d_tilde
BFP structure to hold the time-varying smoothing parameter.

bfp_s32_t 1ambda_hat
BFP structure to hold the noise estimation.

int32_t data_S[NS_PROC_FRAME_BINS]
int32_t array to hold the data for S.

int32_t data_S_min[NS_PROC_FRAME_BINS]
int32_t array to hold the data for S_min.

int32_t data_S_tmp[NS_PROC_FRAME_BINS]
int32_t array to hold the data for S_tmp.

int32_t data_p[NS_PROC_FRAME_BINS]
int32_t array to hold the data for p.

int32_t data_adt[NS_PROC_FRAME_BINS]
int32_t array to hold the data for alpha_d_tilde.

iNnt32_t data_lambda_hat[NS_PROC_FRAME_BINS]
int32_t array to hold the data for lambda_hat.

bfp_s32_t prev_frame
BFP structure to hold the previous frame.

bfp_s32_t overlap
BFP structure to hold the overlap.

fwk_voice - User Guide

fwk_voice - User Guide

bfp_s32_t wind
BFP structure to hold the first part of the window.

bfp_s32_t rev_wind
BFP structure to hold the second part of the window.

int32_t data_prev_frame[NS_PROC_FRAME_LENGTH - NS_FRAME_ADVANCE]
int32_t array to hold the data for prev_frame.

int32_t data_ovelap[NS_FRAME_ADVANCE]
int32_t array to hold the data for overlap.

int32_t data_rev_wind[NS_WINDOW_LENGTH / 2]
int32_t array to hold the data for rev_wind.

float_s32_t delta
EWMA of the energy ratio to calculate p.

float_s32_t alpha_d
EWMA of the smoothing parameter for alpha_d_tilde.

float_s32_t alpha_s
EWMA of the smoothing parameter for S.

float_s32_t alpha_p
EWMA of the smoothing parameter for p.

float_s32_t one_minus_aplha_d
EWMA of the 1- alpha_d parameter.

float_s32_t one_minus_alpha_s
EWMA of the 1- alpha_s parameter.

float_s32_t one_minus_alpha_p
EWMA of the 1 - alpha_p parameter.

unsigned reset_period
Filter reset period value for auto-reset.

unsigned reset_counter
Filter reset counter.

NS Header Files

25 y,

fwk_voice - User Guide

ns_api.h

page page_ns_api_h
This header should be included in application source code to gain access to the lib_ns public functions API.

ns_state.h

page page_ns_state_h
This header contains definitions for data structure and defines.
This header is automatically included by ns_api.h

On GitHub

lib_ns is present as part of fwk_voice. Get the latest version of fwk_voice from https://github.com/xmos/
fwk_voice. 1ib_ns is present within the modules/lib_ns directory in fwk_voice.

API

To use the functions in this library in an application, include ns_api.h in the application source file.

1.1.3 Automatic Gain Control Library

1lib_agc is a library which performs Automatic Gain Control (AGC), with support for Loss Control. For more
details, refer to AGC Overview.

Repository Structure
+ modules/lib_agc - The actual 1ib_agc library directory within https://github.com/xmos/fwk_voice/.
Within 1ib_agc
- api/ - Headers containing the public API for 1ib_agc.
- doc/ - Library documentation source (for non-embedded documentation) and build directory.

- src/ - Library source code.

Requirements

lib_agc is included as part of the fwk_voice github repository and all requirements for cloning and building
fwk_voice apply. 1ib_agc is compiled as a static library as part of the overall fwk_voice build. It depends on
lib_xcore_math.

26 y,

https://github.com/xmos/lib_xcore_math/

fwk_voice - User Guide

Getting and Building

This module is part of the parent fwk_voice repo clone. It is compiled as a static library as part of fwk_voice
compilation process.

Toinclude 1ib_agcin an application as a static library, the generated 1ibfwk_voice_module_lib_agc.acanthen
be linked into the application. Add 1ib_agc/api to the include directories when building the application.

AGC Overview

The 1ib_agc library provides an API to implement Automatic Gain Control within an application. The goal of the
AGC algorithm is to provide consistent output levels for voice audio.

The gain control can adapt to maintain the amplitude of the peak of the frame within an upper and lower bound
configured for the AGC instance. When used in an application with a Voice to Noise Ratio estimator (VNR), the
AGC will adapt only when voice activity is detected, so that speech in the input signal is amplified above other
sounds.

The AGC also has a Loss Control feature which can be used when the application has an Acoustic Echo Canceller
(AEC). This feature uses data from the AEC to adjust the gain applied to reduce residual echoes by attenuating
the audio when near-end speech is not present.

The AGC takes as input a frame of data from an audio channel. This could be the microphone input or the output
of another module in the application.

Gain control is performed on a frame-by-frame basis. Each frame consists of 15ms of data, which is 240 samples
at 16kHz input sampling frequency. Input data is expected to be in a fixed-point 32-bit 1.31 format.

Before processing any frames, the application must configure and initialise the AGC instance by calling
agc_init (). Then for each frame, agc_process_frame () will update the AGC instance’s internal state and pro-
duce the output frame by applying the AGC algorithm to the input frame.

The gain values in this module for AGC gain and Loss Control gain are multiplicative factors that are applied to
scale the input frame. Therefore, a fixed gain value of 1.0 (without loss control) will create no change to the input.

If multiple channels need to be processed by the application, or multiple outputs are required, an independent
instance of the AGC must be run for each channel.

API Reference

AGC API Functions

group agc_func

Functions

void agc_init (agc_state_t *agc, agc_config_t *config)
Initialise the AGC.

This function initialises the AGC state with the provided configuration. It must be called at startup to
initialise the AGC before processing any frames, and can be called at any time after that to reset the
AGC instance, returning the internal AGC state to its defaults.

Example with an unmodified profile

27 y,

fwk_voice - User Guide

agc_state_t agc;
agc_init(&agc, &AGC_PROFILE_ASR);

Example with modification to the profile

agc_config_t conf = AGC_PROFILE_FIXED_GAIN;
conf.gain = £32_to_float_s32(100);
agc_state_t agc;

agc_init(&agc, &conf);

Parameters
- agc — [out] AGC state structure
- config — [in] Initial configuration values
void agc_process_frame (agc_state_t *agc, int32_t output/AGC_FRAME_ADVANCE], const int32_t
iNputfAGC_FRAME_ADVANCE], agc_meta_data_t *meta_data)
Perform AGC processing on a frame of input data.

This function updates the AGC's internal state based on the input frame and meta-data, and returns
an output containing the result of the AGC algorithm applied to the input.

The input and output pointers can be equal to perform the processing in-place.

Example

int32_t input[AGC_FRAME_ADVANCE];

int32_t output [AGC_FRAME_ADVANCE] ;
agc_meta_data md;

md.vnr_flag = AGC_META_DATA_NO_VNR;
md.aec_ref_power = AGC_META_DATA_NO_AEC;
md.aec_corr_factor = AGC_META_DATA_NO_AEC;
agc_process_frame(&agc, output, input, &md);

Parameters
- agc - [inout] AGC state structure
- output — [out] Array to return the resulting frame of data
- input - [in] Array of frame data on which to perform the AGC
+ meta_data — [in] Meta-data structure with VNR/AEC data

AGC Pre-Defined Profiles

group agc_profiles

Defines

28 p,

fwk_voice - User Guide

AGC_PROFILE_ASR
AGC profile tuned for Automatic Speech Recognition (ASR).

AGC_PROFILE_FIXED_GAIN
AGC profile tuned to apply a fixed gain.

AGC API Structure Definitions

group agc_defs

29

Defines

AGC_FRAME_ADVANCE
Length of the frame of data on which the AGC will operate.

AGC_META_DATA_NO_VNR

If the application has no VNR, adapt_on_vnr must be disabled in the configuration. This pre-processor
definition can be assigned to the var_flag in agc_meta_data_t in that situation to make it clear in
the code that there is no VNR.

AGC_META_DATA_NO_AEC

If the application has no AEC, 1c_enabled must be disabled in the configuration. This pre-processor
definition can be assigned to the aec_ref_power and aec_corr_factor in agc_meta_data_t in that
situation to make it clear in the code that there is no AEC.

struct agc_config_ t
#include <agc_api.h> AGC configuration structure.

This structure contains configuration settings that can be changed to alter the behaviour of the AGC
instance.

Members with the “Ic_" prefix are parameters for the Loss Control feature.
Public Members

int adapt

Boolean to enable AGC adaption; if enabled, the gain to apply will adapt based on the peak of the
input frame and the upper/lower threshold parameters.

int adapt_on_vnr

Boolean to enable adaption based on the VNR meta-data; if enabled, adaption will always be per-
formed when voice activity is detected. This must be disabled if the application doesn't have a
VNR.

30

fwk_voice - User Guide

int soft_clipping
Boolean to enable soft-clipping of the output frame.

float_s32_t gain
The current gain to be applied, not including loss control.

float_s32_t max_gain
The maximum gain allowed when adaption is enabled.

float_s32_tmin_gain
The minimum gain allowed when adaption is enabled.

float_s32_t upper_threshold
The upper limit for the gained peak of the frame when adaption is enabled.

float_s32_t lower_threshold
The lower limit for the gained peak of the frame when adaption is enabled.

float_s32_t gain_inc
Factor by which to increase the gain during adaption.

float_s32_t gain_dec
Factor by which to decrease the gain during adaption.

int 1c_enabled
Boolean to enable loss control. This must be disabled if the application doesn't have an AEC.

int lc_n_frame_far

Number of frames required to consider far-end audio active.

int lc_n_frame_near

Number of frames required to consider near-end audio active.

float_s32_t 1c_corr_threshold
Threshold for far-end correlation above which to indicate far-end activity only.

float_s32_t 1c_bg_power_gamma
Gamma coefficient for estimating the power of the far-end background noise.

float_s32_t 1c_gamma_inc
Factor by which to increase the loss control gain when less than target value.

float_s32_t 1c_gamma_dec
Factor by which to decrease the loss control gain when greater than target value.

31

fwk_voice - User Guide

float_s32_t 1c_far_delta
Delta multiplier used when only far-end activity is detected.

float_s32_t 1c_near_delta
Delta multiplier used when only near-end activity is detected.

float_s32_t 1c_near_delta_far_active
Delta multiplier used when both near-end and far-end activity is detected.

float_s32_t 1c_gain_max
Loss control gain to apply when near-end activity only is detected.

float_s32_t 1c_gain_double_talk
Loss control gain to apply when double-talk is detected.

float_s32_t 1lc_gain_silence
Loss control gain to apply when silence is detected.

float_s32_t lc_gain_min
Loss control gain to apply when far-end activity only is detected.

struct agc_state_t

#include <agc_api.h> AGC state structure.

This structure holds the current state of the AGC instance and members are updated each time that
agc_process_frame() runs. Many of these members are exponentially-weighted moving averages
(EWMA) which influence the adaption of the AGC gain or the loss control feature. The user should not
directly modify any of these members, except the config.

Public Members

agc_config_t config

The current configuration of the AGC. Any member of this configuration structure can be modified
and that change will take effect on the next run of agc_process_frame() .

float_s32_t x_slow

EWMA of the frame peak, which is used to identify the overall trend of a rise or fall in the input
signal.

float_s32_t x_fast
EWMA of the frame peak, which is used to identify a rise or fall in the peak of frame.

float_s32_t x_peak
EWMA of x_fast, which is used when adapting to the agc_config_t: :upper_threshold.

fwk_voice - User Guide

int lc_t_far
Timer counting down until enough frames with far-end activity have been processed.

int lc_t_near

Timer counting down until enough frames with near-end activity have been processed.

float_s32_t 1c_near_power_est
EWMA of estimates of the near-end power.

float_s32_t 1c_far_power_est
EWMA of estimates of the far-end power.

float_s32_t 1c_near_bg_power_est
EWMA of estimates of the power of near-end background noise.

float_s32_t lc_gain
Loss control gain applied on top of the AGC gainin agc_config_t.

float_s32_t 1c_far_bg_power_est
EWMA of estimates of the power of far-end background noise.

float_s32_t 1c_corr_val
EWMA of the far-end correlation for detecting double-talk.

struct agc_meta_data_t
#include <agc_api.h> AGC meta data structure.

This structure holds meta-data about the current frame to be processed, and must be updated to
reflect the current frame before calling agc_process_ frame() .

Public Members

int var_flag
Boolean to indicate the detection of voice activity in the current frame.

float_s32_t aec_ref_power
The power of the most powerful reference channel.

float_s32_t aec_corr_factor
Correlation factor between the microphone input and the AEC’s estimated microphone signal.

AGC Header Files

32 p,

fwk_voice - User Guide

agc_api.h

page page_agc_api_h

This header should be included in application source code to gain access to the lib_agc public functions
API.

agc_profiles.h

page page_agc_profiles_h

This header contains pre-defined profiles for AGC configurations. These profiles can be used to initialise
the agc_config_t data for use with agc_init ().

This header is automatically included by agc_api.h.
On GitHub

lib_agc is present as part of fwk_voice. Get the latest version of fwk_voice from https://github.com/xmos/
fwk_voice. 1ib_agc is present within the modules/lib_agc directory in fwk_voice.

API

To use the functions in this library in an application, include agc_api.h in the application source file.

1.1.4 Automatic Delay Estimation and Correction Library

1lib_adec is a library which provides functions for measuring and correcting delay offsets between the reference
and loudspeaker signals. 1ib_adec depends on 1ib_aec and 1ib_xcore_math libraries. For more details about
the ADEC, refer to ADEC Overview

Repository Structure
+ modules/lib_adec - The actual 1ib_adec library directory within https://github. com/xmos/fwk_voice/.
Within 1ib_adec
— api/ - Headers containing the public API for 1ib_adec.
- doc/ - Library documentation source (for non-embedded documentation) and build directory.

- src/ - Library source code.

Getting and Building

1ib_adec is included as part of the fwk_voice github repository and all requirements for cloning and building
fwk_voice apply. 1lib_adec is compiled as a static library as part of overall fuk_voice build. Toinclude 1ib_adec
in an application as a static library, the generated 1ibfwk_voice_module_lib_adec.a can then be linked into the
application. Be sure to also add 1ib_adec/api as an include directory for the application.

33 p,

fwk_voice - User Guide

ADEC Overview

The ADEC module provides functions to estimate and automatically correct for delay offsets between the refer-
ence and the loudspeakers.

Acoustic echo cancellation is an adaptive filtering process which compares the reference audio to that received
from the microphones. It models the reverberation time of a room, i.e. the time it takes for acoustic reflections
to decay to insignificance. The time window modelled by the AEC is finite, and to maximise its performance it is
important to ensure that the reference audio is presented to the AEC time aligned to the audio being reproduced
by the loudspeakers. The reference audio path delay and the audio reproduction path delay may be significantly
different, requiring additional delay to be inserted into one of the two paths, to correct this delay difference.

The ADEC module provides functionality for
+ Measuring the current delay

+ Using the measured delay along with AEC performance related metadata collected from the echo canceller
to monitor AEC and make decisions about reconfiguring the AEC and correcting bulk delay offsets.

The metadata collected from AEC contains statistics such as the ERLE, the peak power seen in the adaptive filter
and the peak power to average power ratio of the adaptive filter.

The ADEC algorithm works in 2 modes - normal mode and delay estimation mode. In its normal mode ADEC
monitors the AEC performance and requests small delay corrections. Using the statistics from the AEC, the
ADEC estimates a metric called the AEC goodness which is an estimate of how well the echo canceller is per-
forming. Based on the estimated AEC goodness and the current measured delay, the ADEC can request for a
delay correction to be applied at the input of the echo canceller.

If the AEC is seen as consistently bad, the ADEC transitions to a delay estimation mode and requests for

- Aspecial delay to be applied at AEC input that will enable measuring the actual delay in both delay scenarios;
microphone input arriving at the AEC earlier in time than the reference input as well as microphone input
arriving late in time wrt reference input.

- Arestart of AEC in a new configuration that has more adaptive filter phases, in order of have a longer filter
tail length that is suitable for delay estimation.

Once the ADEC has a measure of the new delay, it requests a delay correction and a reconfiguration of the AEC
back to its normal mode and goes back to its normal mode of monitoring AEC performance and correcting for
small delay offsets.

Before processing any frames, the application must configure and initialise the ADEC instance by calling
adec_init(). Then for each frame, adec_estimate_delay() will estimate the current delay and adec_process_frame()
will use the current frame's AEC statistics and the estimated delay to monitor the AEC and request possible AEC
and delay configuration changes.

API Reference

ADEC API Functions

group adec_func

Functions

34).

fwk_voice - User Guide

void adec_init (adec_state_t *state, adec_config_t *config)
Initialise ADEC data structures.

This function initialises ADEC state for a given configuration. It must be called at startup to initialise
the ADEC data structures before processing any frames, and can be called at any time after that to
reset the ADEC instance, returning the internal ADEC state to its defaults.

Example with ADEC configured for delay estimation only at startup

adec_state_t adec_state;

adec_config_t adec_conf;

adec_conf.bypass = 1; // Bypass automatic DE correction
adec_conf.force_de_cycle_trigger = 1; // Force a delay correction cycle, so,
—that delay correction happens once after initialisation
adec_init(&adec_state, &adec_conf);

// Application needs to ensure that adec_state->adec_config.force_de_cycle_
—trigger 1s set to 0 after ADEC has requested a transition to delay,
—estimation mode once in order to ensure that delay ts corrected only aty
—startup.

Example with ADEC configured for automatic delay estimation and correction

adec_state_t adec_state;

adec_conf .bypass = 0;
adec_conf.force_de_cycle_trigger = 0;
adec_init (&adec_state, &adec_conf);

Parameters
. state — [out] Pointer to ADEC state structure

- config - [in] Pointer to ADEC configuration structure.

void adec_process_frame (adec_state_t *state, adec_output_t *adec_output, const adec_input_t *adec_in)
Perform ADEC processing on an input frame of data.

This function takes information about the latest AEC processed frame and the latest measured delay
estimate as input, and decides if a delay correction between input microphone and reference signals
is required. If a correction is needed, it outputs a new requested input delay, optionally accompanied
with a request for AEC restart in a different configuration. It updates the internal ADEC state structure
to reflect the current state of the ADEC process.

Parameters
- state — [inout] ADEC internal state structure
- adec_output — [out] ADEC output structure
* adec_in ~ [in] ADEC input structure

void adec_estimate_delay(de_output_t *de_output, const bfp_complex_s32_t *H_hat, unsigned
num_phases)

Estimate microphone delay.

This function measures the microphone signal delay wrt the reference signal. It does so by looking for
the phase with the peak energy among all AEC filter phases and uses the peak energy phase index as
the estimate of the microphone delay. Along with the measured delay, it also outputs information about

fwk_voice - User Guide

the peak phase energy that can then be used to gauge the AEC filter convergence and the reliability of
the measured delay.

Parameters
- de_state — [out] Delay estimator output structure
* H_hat — [in] bfp_complex_s32_t array storing the AEC filter spectrum
+ Number - [in] of phases in the AEC filter

ADEC #define constants

group adec_defines

Defines

ADEC_PEAK_TO_AVERAGE_HISTORY_DEPTH
Number of frames far we look back to smooth the peak to average filter power ratio history.

ADEC_PEAK_LINREG_HISTORY_SIZE

Number of frames of peak power history we look at while computing AEC goodness metric. Not NOT
USER MODIFIABLE.

ADEC Data Structure and Enum definitions

group adec_types

Enums

enum adec_mode_t
Values:

enumerator ADEC_NORMAL_AEC_MODE
ADEC processing mode where it monitors AEC performance and requests small delay correction.

enumerator ADEC_DELAY_ESTIMATOR_MODE
ADEC processing mode for bulk delay correction in which it measures for a new delay offset.

struct adec_config_t
#include <adec_state.h> ADEC configuration structure.

This is used to provide configuration when initialising ADEC at startup. A copy of this structure is
present in the ADEC state structure and available to be modified by the application for run time control
of ADEC configuration.

36 y,

fwk_voice - User Guide

Public Members

int32_t bypass

Bypass ADEC decision making process. When set to 1, ADEC evaluates the current input frame
metrics but doesn't make any delay correction or aec reset and reconfiguration requests

iNt32_t force_de_cycle_trigger
Force trigger a delay estimation cycle. When set to 1, ADEC bypasses the ADEC monitoring pro-

cess and transitions to delay estimation mode for measuring delay offset.

struct de_output_t
#include <adec_state.h> Delay estimator output structure.

Public Members

iNt32_t measured_delay_samples
Estimated microphone delay in time domain samples.

int32_t peak_power_phase_index
Phase index of peak energy AEC filter phase.

float_s32_t peak_phase_power
Maximum per phase energy across all AEC filter phases.

float_s32_t sum_phase_powers
Sum of filter energy across all filter phases.

float_s32_t peak_to_average_ratio
Ratio of peak filter phase energy to average filter phase energy. Used to evaluate how well the filter

has converged.

float_s32_t phase_power[AEC_LIB_MAX_PHASES]
Phase energy of all AEC filter phases.

struct adec_output_t
#include <adec_state.h> ADEC output structure.

Public Members

iNt32_t delay_change_request_flag
Flag indicating if ADEC is requesting an input delay correction

37 p,

fwk_voice - User Guide

iNt32_t requested_mic_delay_samples

Mic delay in samples requested by ADEC. Relevant when delay_change_request_flag is 1.
Note that this value is a signed integer. A positive requested_mic_delay_samples requires
the microphone to be delayed so the application needs to delay the input mic signal by
requested_mic_delay_samples samples. A negative requested_mic_delay_samples means
ADEC is requesting the input mic signal to be moved earlier in time. This, the application should
do my delaying the input reference signal by abs (requested_mic_delay_samples) samples.

iNt32_t reset_aec_flag

flag indicating ADEC's request for a reset of part of the AEC state to get AEC filter to start adapting
from a O filter. ADEC requests this when a small delay correction needs to be applied that doesn't
require a full reset of the AEC.

iNt32_t delay_estimator_enabled_flag
Flag indicating if AEC needs to be run configured in delay estimation mode.

iNt32_t requested_delay_samples_debug

Requested delay samples without clamping to + MAX_DELAY_SAMPLES. Used only for debug-
ging.

struct aec_to_adec_t
#include <adec_state.h> Input structure containing current frame's information from AEC.

Public Members

float_s32_t y_ema_energy_ch0
EWMA energy of AEC input mic signal channel 0

float_s32_t error_ema_energy_chO
EWMA energy of AEC filter error output signal channel 0

int32_t shadow_flag_chO
shadow_flag value for the current frame computed within the AEC

struct adec_input_t
#include <adec_state.h> ADEC input structure.

Public Members

de_output_t from_de
ADEC input from the delay estimator

aec_to_adec_t from_aec
ADEC input from AEC

38 p,

39

fwk_voice - User Guide

iNt32_t far_end_active_flag
Flag indicating if there is activity on reference input channels.

struct adec_state_t

#include <adec_state.h> ADEC state structure.

This structure holds the current state of the ADEC instance and members are updated each time that
adec_process_frame() runs. Many of these members are statistics from tracking the AEC perfor-
mance. The user should not directly modify any of these members, except the config.

Public Members

float_s32_t max_peak_to_average_ratio_since_reset

Maximum peak to average AEC filter phase energy ratio seen since a delay correction was last
requested.

float_s32_t peak_to_average_ratio_history[ADEC_PEAK_TO_AVERAGE_HISTORY_DEPTH + 1]

Last ADEC_PEAK_TO_AVERAGE_HISTORY_DEPTH frames peak_to_average_ratio of phase ener-
gies.

float_s32_t peak_power_history[ADEC_PEAK_LINREG_HISTORY_SIZE]
Last ADEC_PEAK_LINREG_HISTORY_SIZE frames peak phase power.

float_s32_t aec_peak_to_average_good_aec_threshold
Threshold was considering peak to average ratio as good.

08_24 agm_q24
AEC goodness metric indicating a measure of how well AEC filter is performing.

08_24 erle_bad_bits_q24
log2 of threshold below which AEC output’'s measured ERLE is considered bad

g8_24 erle_good_bits_q24
log2 of threshold above which AEC output’s measured ERLE is considered good

08_24 peak_phase_energy_trend_gain_q24
Multiplier used for scaling agm’s sensitivity to peak phase energy trend.

g8_24 erle_bad_gain_q24

Multiplier determining how steeply we reduce aec’s goodness when measured erle falls below the
bad erle threshold.

adec_mode_t mode
ADEC's mode of operation. Can be operating in normal AEC or delay estimation mode.

fwk_voice - User Guide

iNt32_t gated_milliseconds_since_mode_change

milliseconds elapsed since a delay change was last requested. Used to ensure that delay correc-
tions are not requested too early without allowing enough time for aec filter to converge.

iNt32_t last_measured_delay
Last measured delay.

iNt32_t peak_power_history_idx
index storing the head of the peak_power_history circular buffer

iNt32_t peak_power_history_valid
Flag indicating whether the peak_power_history buffer has been filled at least once.

iNt32_t sf_copy_=flag
Flag indicating if shadow to main filter copy has happened at least once in the AEC.

iNt32_t convergence_counter

Counter indicating number of frames the AEC shadow filter has been attempting to converge.

iNt32_t shadow_flag_counter
Counter indicating number of frame the AEC shadow filter has been better than the main filter.

adec_config_t adec_config

ADEC configuration parameters structure. Can be modified by application at run-time to reconfig-
ure ADEC.

ADEC Header Files

adec_defines.h

page page_adec_defines_h
This header contains lib_adec public defines

adec_state.h

page page_adec_state_h
This header contains definitions for data structures and enums used in lib_adec.

adec_api.h

page page_adec_api_h
lib_adec public functions API.

40).

fwk_voice - User Guide

On GitHub

lib_adecis present as part of fwk_voice. Get the latest version of fuk_voice fromhttps://github.com/xmos/
fwk_voice. 1ib_adec is present within the modules/lib_adec directory in fwk_voice

API

To use the functions in this library in an application, include adec_api.h in the application source file

1.1.5 Interference Canceller Library

1ib_ic is a library which provides functions that together perform Interference Cancellation (IC) on two channel
input mic data by adapting to and modelling the room transfer characteristics. 1ib_ic library functions make use
of functionality provided in 1ib_aec for the core normalised LMS blocks which in turn uses 1ib_xcore_math to
perform DSP low-level optimised operations. For more details refer to /C Overview.

Repository Structure
+ modules/lib_ic - The actual 1ib_ic library directory within https://github.com/xmos/fwk_voice/.
Within 1ib_ic:
- api/ - Headers containing the public APl for 1ib_ic.
- doc/ - Library documentation source (for non-embedded documentation) and build directory.

- src/ - Library source code.

Requirements

lib_ic is included as part of the fwk_voice github repository and all requirements for cloning and building
fwk_voice apply. 1ib_ic is compiled as a static library as part of overall fwk_voice build. It depends on 1ib_aec
and 1ib_xcore_math.

API Structure

The API is presented as three simple functions. These are initialisation, filtering and adaption. Initialisation is
called once at startup and filtering and adaption is called once per frame of samples. The performance require-
ment is relative low (around 12MIPS) and as such is supplied as a single threaded implementation only.

Getting and Building

This repo is obtained as part of the parent fwk_voice repo clone. It is compiled as a static library as part of
fwk_voice compilation process.

To include 1ib_ic in an application as a static library, the generated 1ibfwk_voice_module_lib_ic.a can then
be linked into the application. Be sure to also add 1ib_ic/api as an include directory for the application.

41 y,

fwk_voice - User Guide

IC Overview

The Interference Canceller (IC) suppresses static noise from point sources such as cooker hoods, washing ma-
chines, or radios for which there is no reference audio signal available. When the Voice to Noise Ratio estimator
(VNR) input indicates the absence of voice, the IC adapts to remove noise from point sources in the environment.
When the VNR signal indicates the presence of voice, the IC suspends adaptation which allows the voice source
to be passed but maintains suppression of the interfering noise sources which have been previously adapted to.

It can offer much greater, and automatic, cancellation of broad-band noise sources when compared to beam
forming techniques.

It is designed to work at a sample rate of 16kHz and has a fixed configuration of two input microphones and a
single output channel.

The interference canceller is based on an AEC architecture and attempts to cancel one microphone signal from
the other in the absence of voice. In this way, it builds an estimate of the difference in transfer functions between
the two microphones for any present noise sources. Since the transfer function includes spatial information
about the noise sources, applying this filter to the mic input allows any signals originating from the noise source
to be cancelled.

The IC uses an adaptive filter which continually adapts to the acoustic environment to accommodate changes in
the room created by events such as doors opening or closing and people moving about. However, it will hold the
current transfer function in the presence of voice meaning it does not adapt to desired audio sources, which can
be a person speaking.

The cancellation is performed on a frame by frame basis. Each frame is made of 15msec chunks of data, which
is 240 new samples at 16kHz input sampling frequency, per input channel. This is combined with previous audio
data to form a 512 sample frame which allows for sufficient overlap for effective operation of the filter.

The first channel of input microphone data is referred to as y when in time domain and Y when in frequency
domain. The second channel of input microphone data is referred to as x when in time domain and X when in
frequency domain. The y signal is effectively used as the signal containing noise that needs to be cancelled and
the x signal is the reference from which the transfer function is estimated and consequently the noise signal
estimated before it is subtracted from'y.

In general throughout the code, names starting with lower case represent time domain and those beginning with
upper case represent frequency domain. For example error is the filter error and Error is the spectrum of the
filter error. The filter coefficient array referred to as h_hat in time domain and H_hat in frequency domain.

The filter has multiple phases each of 15ms. The term phases refers to the tail length of the filter. A filter with
more phases or a longer tail length will be able to model a more reverberant room response leading to better
interference cancellation but, as with all normalised LMS based architectures, will be slower to converge in the
case of a transfer function change.

Before starting the IC processing the user must call ic_init() to initialise the IC. If the configuration parameters
are to be set to non-defaults please modify these after ic_init() or in the lib_ic API Definitions file. Once the IC is
initialised, the library functions can be called in a order to perform interference cancellation on a frame by frame
basis.

API Reference

lib_ic API Functions

group ic_func

42).

fwk_voice - User Guide

Functions

int32_t ic_init (/c_state_t *state)
Initialise IC and VNR data structures and set parameters according to ic_defines.h.

This is the first function that must called after creating an ic_state_t instance.

Parameters
- state — [inout] pointer to IC state structure

Returns
Error status of the VNR inference engine initialisation that is done as part of ic_init. 0 if no

error, one of TfLiteStatus error enum values in case of error.

void ic_filter (jc_state_t *state, int32_t y_data[/C_FRAME_ADVANCE], int32_t
x_data[/C_FRAME_ADVANCE], int32_t output[/C_FRAME_ADVANCE])

Filter one frame of audio data inside the IC.

This should be called once per new frame of IC_LFRAME_ADVANCE samples. The y_data array con-
tains the microphone data that is to have the noise subtracted from it and x_data is the noise refer-
ence source which is internally delayed before being fed into the adaptive filter. Note that the y_data
input array is internally delayed by the call to ic_filter() and so contains the delayed y_data afterwards.
Typically it does not matter which mic channel is connected to x or y_data as long as the separation is
appropriate. The performance of this filter has been optimised for a 71mm mic separation distance.

Parameters
- state — [inout] pointer to IC state structure
- y_data - [inout] array reference of mic 0 input buffer. Modified during call
- x_data — [in] array reference of mic 1input buffer
- output — [out] array reference containing IC processed output buffer

void ic_calc_vnr_pred(ic_state_t *state, float_s32_t *input_vnr_pred, float_s32_t *output_vnr_pred)
Calculate voice to noise ratio estimation for the input and output of the IC.

This function can be called after each call to ic_filter. It will calculate voice to noise ratio which can be
used to give information to ic_adapt and to the AGC.

Parameters
- state — [inout] pointer to IC state structure
- input_vnr_pred — [inout] voice to noise estimate of the IC input
+ output_vnr_pred — [inout] voice to noise estimate of the IC output

void ic_adapt (jc_state_t *state, float_s32_t vnr)
Adapts the IC filter according to previous frame’s statistics and VNR input.

This function should be called after each call to ic_filter. Filter and adapt functions are separated so
that the external VNR can operate on each frame.

Parameters
- state — [inout] pointer to IC state structure

« vnr — [in] VNR Voice-to-Noise ratio estimation

43).

fwk_voice - User Guide

lib_ic API State Structure

group ic_state

Enums

enum adaption_config_e
Values:

enumerator IC_ADAPTION_AUTO
enumerator IC_ADAPTION_FORCE_ON
enumerator IC_ADAPTION_FORCE_OFF

€num control_flag_e
Values:

enumerator HOLD
enumerator ADAPT
enumerator ADAPT_SLOW
enumerator UNSTABLE
enumerator FORCE_ADAPT
enumerator FORCE_HOLD

struct ic_config_params_t
#include <ic_state.h> IC configuration structure.

This structure contains configuration settings that can be changed to alter the behaviour of
the IC instance. An instance of this structure is is automatically included as part of the IC
state.

It controls the behaviour of the main filter and normalisation thereof. The initial values for
these configuration parameters are defined in ic_defines.h and are initialised by ic_init().

Public Members

44).

fwk_voice - User Guide

uint8_t bypass

Boolean to control bypassing of filter stage and adaption stage. When set the delayed y
audio samples are passed unprocessed to the output. It is recommended to perform an
initialisation of the instance after bypass is set as the room transfer function may have
changed during that time.

iNt32_t gamma_log2
Up scaling factor for X energy calculation used for normalisation.

uint32_t sigma_xx_shift
Down scaling factor for X energy for used for normalisation.

g2_30 ema_alpha_q30
Alpha used for calculating error_ema_energy in adapt.

float_s32_t delta
Delta value used in denominator to avoid large values when calculating inverse X energy.

struct ic_adaption_controller_config_t
#include <ic_state.h> IC adaption controller configuration structure.

This structure contains configuration settings that can be changed to alter the behaviour
of the adaption controller. This includes processing of the raw VNR probability input and
optional stability controller logic. It is automatically included as part of the IC state and
initialised by ic_init().

The initial values for these configuration parameters are defined in ic_defines.h.

Public Members

g2_30 energy_alpha_q30
Alpha for EMA input/output energy calculation.

float_s32_t fast_ratio_threshold
Fast ratio threshold to detect instability.

float_s32_t high_input_vnr_hold_leakage_alpha
Setting of H_hat leakage which gets set if vnr detects high voice probability.

float_s32_t instability_recovery_leakage_alpha
Setting of H_hat leakage which gets set if fast ratio exceeds a threshold.

float_s32_t input_vnr_threshold
VNR input threshold which decides whether to hold or adapt the filter.

fwk_voice - User Guide

float_s32_t input_vnr_threshold_high
VNR high threshold to leak the filter is the speech level is high.

float_s32_t input_vnr_threshold_low
VNR low threshold to adapt faster when the speech level is low.

Uint32_t adapt_counter_limit
Limits number of frames for which mu and leakage_alpha could be adapted.

uint8_t enable_adaption
Boolean which controls whether the IC adapts when ic_adapt() is called.

adaption_config_e adaption_config
Enum which controls the way mu and leakage_alpha are being adjusted.

struct ic_adaption_controller_state_t
#include <ic_state.h> IC adaption controller state structure.

This structure contains state used for the instance of the adaption controller logic. It is
automatically included as part of the IC state and initialised by ic_init().

Public Members

float_s32_t input_energy
EMWA of input frame energy.

float_s32_t output_energy
EMWA of output frame energy.

float_s32_t fast_ratio
Ratio between output and input EMWA energies.

uint32_t adapt_counter
Adaption counter which counts number of frames has been adapted.

control_flag_e control_flag
Flag that represents the state of the filter,

ic_adaption_controller_config_t adaption_controller_config
Configuration parameters for the adaption controller.

struct ic_state_t
#include <ic_state.h> IC state structure.

47

fwk_voice - User Guide

This is the main state structure for an instance of the Interference Canceller. Before use it
must be initialised using the ic_init() function. It contains everything needed for the IC in-
stance including configuration and internal state of both the filter, adaption logic and adap-
tion controller.

Public Members

bfp_s32_t y_bfp[/C_Y_CHANNELS]
BFP array pointing to the time domain y input signal.

bfp_complex_s32_t Y_bfp[/C_Y_CHANNELS]
BFP array pointing to the frequency domain Y input signal.

int32_t y[IC_Y_CHANNELS][IC_FRAME_LENGTH + FFT_PADDING]

Storage for y and Y mantissas. Note FFT is done in-place so the y storage is reused for
Y.

bfp_s32_t x_bfp[/C_X_CHANNELS]
BFP array pointing to the time domain x input signal.

bfp_complex_s32_t X_bfp[/C_X_CHANNELS]
BFP array pointing to the frequency domain X input signal.

int32_t x[IC_X_CHANNELS][IC_FRAME_LENGTH + FFT_PADDING]

Storage for x and X mantissas. Note FFT is done in-place so the x storage is reused for
X

bfp_s32_t prev_y_bfp[/C_Y_CHANNELS]
BFP array pointing to previous y samples which are used for framing.

int32_t y_prev_samples[/C_Y_CHANNELS|IC_FRAME_LENGTH - IC_FRAME_ADVANCE]
Storage for previous y mantissas.

bfp_s32_t prev_x_bfp[/C_X_CHANNELS]
BFP array pointing to previous x samples which are used for framing.

int32_t x_prev_samples[/C_X_CHANNELS][IC_FRAME_LENGTH - IC_FRAME_ADVANCE]
Storage for previous x mantissas.

bfp_complex_s32_t Y_hat_bfp[/C_Y_CHANNELS]
BFP array pointing to the estimated frequency domain Y signal.

complex_s32_t Y_hat[/C_Y_CHANNELS][IC_FD_FRAME_LENGTH]
Storage for Y_hat mantissas.

48

fwk_voice - User Guide

bfp_complex_s32_t Error_bfp[/C_Y_CHANNELS]
BFP array pointing to the frequency domain Error output.

bfp_s32_t error_bfp[/C_Y_CHANNELS]
BFP array pointing to the time domain Error output.

complex_s32_t Error[/C_Y_CHANNELS]IC_FD_FRAME_LENGTH]

Storage for Error and error mantissas. Note IFFT is done in-place so the Error storage is
reused for error.

bfp_complex_s32_t H_hat_bfp[/C_Y_CHANNELS][IC_X_CHANNELS * IC_FILTER_PHASES]
BFP array pointing to the frequency domain estimate of transfer function.

complex_s32_t H_hat[/C_Y_CHANNELS|IC_FILTER_PHASES *
IC_X_CHANNELS][IC_FD_FRAME_LENGTH]

Storage for H_hat mantissas.

bfp_complex_s32_t X_fifo_bfp[/C_X_CHANNELS]IC_FILTER_PHASES]

BFP array pointing to the frequency domain X input history used for calculating normal-
isation.

bfp_complex_s32_t X_fifo_1d_bfp[/C_X_CHANNELS * |C_FILTER_PHASES]
1D alias of the frequency domain X input history used for calculating normalisation.

complex_s32_t X_fifol/C_X_CHANNELS][IC_FILTER_PHASES][IC_FD_FRAME_LENGTH]
Storage for X_fifo mantissas.

bfp_complex_s32_t T_bfp[/C_X_CHANNELS]

BFP array pointing to the frequency domain T used for adapting the filter coefficients (H).
Note there is no associated storage because we re-use the x input array as a memory
optimisation.

bfp_s32_t inv_X_energy_bfpl/C_X_CHANNELS]
BFP array pointing to the inverse X energies used for normalisation.

int32_t inv_X_energy[/C_X_CHANNELS)IC_FD_FRAME_LENGTH]
Storage for inv_X_energy mantissas.

bfp_s32_t X_energy_bfp[/C_X_CHANNELS]
BFP array pointing to the X energies.

int32_t X_energy[/C_X_CHANNELS][IC_FD_FRAME_LENGTH]
Storage for X_energy mantissas.

unsigned X_energy_recalc_bin
Index state used for calculating energy across all X bins.

fwk_voice - User Guide

bfp_s32_t overlap_bfp[/C_Y_CHANNELS]
BFP array pointing to the overlap array used for windowing and overlap operations.

int32_t overlap|/C_Y_CHANNELS][IC_FRAME_OVERLAP]
Storage for overlap mantissas.

iNt32_t y_input_delay[/C_Y_CHANNELS][IC_Y_CHANNEL_DELAY_SAMPS]
FIFO for delaying y channel (w.r.t x) to enable adaptive filter to be effective.

uint32_t y_delay_idx[/C_Y_CHANNELS]
Index state used for keeping track of y delay FIFO.

float_s32_t mu[/C_Y_CHANNELS][IC_X_CHANNELS]
Mu value used for controlling adaption rate.

float_s32_t leakage_alpha
Alpha used for leaking away H_hat, allowing filter to slowly forget adaption.

float_s32_t max_X_energy[/C_X_CHANNELS]
Used to keep track of peak X energy.

bfp_s32_t sigma_XX_bfp[/C_X_CHANNELS]
BFP array pointing to the EMA filtered X input energy.

int32_t sigma_XX[/C_X_CHANNELS][IC_FD_FRAME_LENGTH]
Storage for sigma_XX mantissas.

float_s32_t sum_X_energy[/C_X_CHANNELS]
X energy sum used for maintaining the X FIFQ.

ic_config_params_t config_params
Configuration parameters for the IC.

ic_adaption_controller_state_t ic_adaption_controller_state
State and configuration parameters for the IC adaption controller.

vnr_pred_state_t var_pred_state
Input and Output VNR Prediction related state

lib_ic API Definitions

49

group ic_defines

50

fwk_voice - User Guide

Defines

IC_INIT_MU

Initial MU value applied on startup. MU controls the adaption rate of the IC and is normally
adjusted by the adaption rate controller during operation.

IC_INIT_EMA_ALPHA
Alpha used for calculating y_ema_energy, x_ema_energy and error_ema_energy.

IC_INIT_LEAKAGE_ALPHA

Alpha used for leaking away H_hat, allowing filter to slowly forget adaption. This value is
adjusted by the adaption rate controller if instability is detected.

IC_FILTER_PHASES

The number of filter phases supported by the IC. Each filter phase represents 15ms of filter
length. Hence a 10 phase filter will allow cancellation of noise sources with up to 150ms of
echo tail length. There is a tradeoff between adaption speed and maximum cancellation of
the filter; increasing the number of phases will increase the maximum cancellation at the
cost of increased xCORE resource usage and slower adaption times.

IC_Y_CHANNEL_DELAY_SAMPS

This is the delay, in samples that one of the microphone signals is delayed in order for the
filter to be effective. A larger number increases the delay through the filter but may improve
cancellation. The group delay through the IC filter is 32 + this number of samples.

IC_INIT_SIGMA_XX_SHIFT
Down scaling factor for X energy calculation used for normalisation.

IC_INIT_GAMMA_LOG2
Up scaling factor for X energy calculation for used for LMS normalisation.

IC_INIT_DELTA
Delta value used in denominator to avoid large values when calculating inverse X energy.

IC_INIT_FAST_RATIO_THRESHOLD
Fast ratio threshold to detect instability.

IC_INIT_ENERGY_ALPHA
Alpha for EMA input/output energy calculation.

IC_INIT_HIGH_INPUT_VNR_HOLD_LEAKAGE_ALPHA
Leakage alpha used in case vnr detects high voice probability.

IC_INIT_INSTABILITY_RECOVERY_LEAKAGE_ALPHA

Leakage alpha used in the case where instability is detected. This allows the filter to stabilise
without completely forgetting the adaption.

fwk_voice - User Guide

IC_INIT_ADAPT_COUNTER_LIMIT
Limits number of frames for which mu and leakage_alpha could be adapted.

IC_INIT_INPUT_VNR_THRESHOLD
VNR input threshold which decides whether to hold or adapt the filter.

IC_INIT_INPUT_VNR_THRESHOLD_HIGH
VNR high threshold to leak the filter is the speech level is high.

IC_INIT_INPUT_VNR_THRESHOLD_LOW
VNR low threshold to adapt faster when the speech level is low.

IC_INIT_VNR_PRED_ALPHA
Alpha for EMA VNR prediction calculation.

IC_INIT_INPUT_VNR_PRED
Initial value for the input VNR prediction.

IC_INIT_QUTPUT_VNR_PRED
Initial value for the output VNR prediction.

IC_Y_CHANNELS

Number of Y channels input. This is fixed at 1forthe IC. The Y channel is delayed and used to
generate the estimated noise signal to subtract from X. In practical terms it does not matter
which microphone is X and which is Y. NOT USER MODIFIABLE.

IC_X_CHANNELS

Number of X channels input. This is fixed at 1 for the IC. The X channel is the microphone
from which the estimated noise signal is subtracted. In practical terms it does not matter
which microphone is X and which is Y. NOT USER MODIFIABLE.

IC_FRAME_LENGTH

Time domain samples block length used internally in the IC's block LMS algorithm. NOT
USER MODIFIABLE.

IC_FRAME_ADVANCE

IC new samples frame size This is the number of samples of new data that the IC works on
every frame. 240 samples at 16kHz is 15msec. Every frame, the IC takes in 15msec of mic
data and generates 15msec of interference cancelled output. NOT USER MODIFIABLE.

IC_FD_FRAME_LENGTH

Number of bins of spectrum data computed when doing a DFT of a IC_LFRAME_LENGTH
length time domain vector. The IC_FD_FRAME_LENGTH spectrum values represent the bins
from DC to Nyquist. NOT USER MODIFIABLE.

FFT_PADDING

fwk_voice - User Guide

Extra 2 samples you need to allocate in time domain so that the full spectrum (DC to nyquist)
can be stored after the in-place FFT. NOT USER MODIFIABLE.

lib_ic Header Files

ic_defines.h

page page_ic_defines_h

This header contains lib_ic public defines that are used to configure the interference canceller when ic_init()
is called.

ic_state.h

page page_ic_state_h

This header contains definitions for data structures used in lib_ic. It also contains the configuration sub-
structures which control the operation of the interference canceller during run-time.

ic_api.h

page page_ic_api_h
lib_ic public functions API.

On GitHub

lib_ic is present as part of fwk_voice. Get the latest version of fwk_voice from https://github.com/xmos/
fwk_voice. The 1ib_ic module can be found in the modules/lib_ic directory in fwk_voice.

API

To use the functions in this library in an application, include ic_api.h in the application source file

1.1.6 Voice To Noise Ratio Estimator Library

1lib_vnr is a library which estimates the ratio of speech signal in noise for an input audio stream. 1ib_vnr library
functions uses 1ib_xcore_math to perform DSP using low-level optimised operations, and 1ib_tflite_micro
and 1ib_nn to perform inference using an optimised TensorFlow Lite model.

Repository Structure
+ modules/lib_vnr - The 1ib_vnar library directory within https://github.com/xmos/fwk_voice/. Within
lib_vnr:
— api/ - Header files containing the public API for 1ib_vnr.
- doc/ - Library documentation source (for non-embedded documentation) and build directory.

- src/ - Library source code.

52 y,

fwk_voice - User Guide

Requirements

1lib_vnr is included as part of the fwk_voice github repository and all requirements for cloning and building
fwk_voice apply. It depends on 1ib_xcore_math, 1ib_tflite_micro and 1lib_nn.

API Structure

The API is split into 2 parts; feature extraction and inference. The feature extraction API processes an input
audio frame to extract features that are input to the inference stage. The inference API has functions for running
inference using the VNR TensorFlow Lite model to predict the speech to noise ratio. Both feature extraction
and inference APIs have initialisation functions that are called only once at device initialisation and processing
functions that are called every frame. The performance requirement is relative low, around 5 MIPS for initialisation
and 3 MIPS for processing, and as such is supplied as a single threaded implementation only.

Getting and Building

The VNR estimator module is obtained as part of the parent fwk_voice repo clone. It is present in fwk_voice/
modules/lib_vnr

The feature extraction part of lib_vnr can be compiled as a static library. The application can link against
libfwk_voice_module_lib_vnr_features.aand add lib_vnr/api/features and 1ib_vnr/api/common as in-
clude directories. VNR inference engine compilation however, requires the runtime HW target to be specified,
information about which is not available at library compile time. To include VNR inference engine in an applica-
tion, it needs to compile the VNR inference related files from source. lib_vnr module CMake file demonstrates the
VNR inference engine compiled as an INTERFACE library and if compiling using CMake, the application can sim-
ply link against the fwk_voice:vnr:inference library. For an example of compiling an application with VNR using
CMake, refer to VNR example CMake file.

VNR Inference Model

The VNR estimator module uses a neural network model to predict the SNR of speech in noise for incoming data.
The model used is a pre trained TensorFlow Lite model that has been optimised for the XCORE architecture using
the xmos-ai-tools xformer. The optimised model is compiled as part of the VNR Inference Engine. Changing the
model at runtime is not supported. If changing to a different model, the application needs to generate the model
related files, copy them to the appropriate directory within the VNR module and recompile. Part of this process
is automated through a python script, as described below.

Integrating a TensorFlow Lite model into the VNR module This document describes the process for integrating
a TensorFlow Lite model into the VNR module. Starting with an unoptimised model, follow the steps below to
optimise it for XCORE by running it through the xmos-ai-tools xformer and integrate it into the VNR module.

1. Use the xformer to optimise the model for XCORE architecture.

2. Run the tflite_micro_compiler on the XCORE optimised model to generate the compiled .cpp and .h files that
can be integrated in the VNR module.

3. Update the TensorFlow Lite 8-bit quantization spec for the new model in vnr_quant_spec_defines.h.

The xform_model.py script automates the above steps. It creates the files mentioned in steps 1-3 above and
copies them to the VNR module directory. In addition to that, it also lists down the steps that the user is expected
to do manually post running this script. These steps include things making sure any old model files if present are

53 y,

https://github.com/xmos/fwk_voice/blob/develop/modules/lib_vnr/CMakeLists.txt
https://github.com/xmos/fwk_voice/blob/develop/examples/bare-metal/vnr/CMakeLists.txt
https://pypi.org/project/xmos-ai-tools/
https://pypi.org/project/xmos-ai-tools/
https://github.com/xmos/fwk_voice/blob/develop/modules/lib_vnr/src/inference/model/vnr_quant_spec_defines.h
https://github.com/xmos/fwk_voice/blob/develop/modules/lib_vnr/python/utils/xformer/xform_model.py

fwk_voice - User Guide

deleted and the new files are added to git and all changes are committed. The script does provide a list of files
that need removing and adding to git before committing to make this manual step easier.

Ensure you have installed Python 3 and the python requirements listed in requirements.txt in order to run the
script. To use the script, run,

$ python xform_model.py <Unoptimised TensorFlow Lite model> --copy-files --module-path
—<path to model related files in lib_vnr module>

The above command will generate the relevant files and copy them into the VNR module.

For example, to run it for the existing model that we have, run,

$ python xform_model.py fwk_voice/modules/lib_vnr/python/model/model_output/trained_model.
—tflite --copy-files --module-path=fwk_voice/modules/lib_vnr/src/inference/model/

The process described above only generates an optimised model that would run on a single core.

Also worth mentioning is, since the feature extraction code is fixed and compiled as part of the VNR module, any
new models replacing the existing one should have the same set of input features, input and output size and data
types as the existing model.

VNR Overview

The VNR (Voice to Noise Ratio) estimator predicts the signal to noise ratio of a speech signal in noise, using a
pre-trained neural network. The VNR neural network model outputs a value between 0 and 1, with Tindicating the
strongest speech, and 0, the weakest speech compared to noise in a frame of audio data.

The VNR module processes VNR_FRAME_ADVANCE new audio pcm samples every frame. The time domain input
is transformed to frequency domain using a 512 point DFT. A MEL filterbank is then applied to compress the DFT
output spectrum into fewer data points. The MEL filter outputs of VNR_PATCH_WIDTH most recent frames are
normalised and fed as input features to the VNR prediction model which runs an inference over the features to
output the VNR estimate value.

VNR estimations can be very helpful in voice processing pipelines. Applications for VNR include intelligent power
management, control of adaptive filters for reducing noise sources and improved performance of AGC (Automatic
Gain Control) blocks that provide a more natural listening experience.

The VNR APl is splitinto 2 parts; feature extraction and inference. This is done to allow multiple sets of features to
use the same inference engine. The VNR feature extraction is further split into 2 parts; a function to form the input
frame that the feature extraction can run on, and a function to do the actual feature extraction. The function for
forming the input frame starts from VNR_FRAME_ADVANCE new pcm samples and creates the DFT output that
is used as input to the MEL filterbank. This has been separated from the rest of the feature extraction to support
cases where the VNR might be using the DFT output computed in another module for extracting features.

The pre-trained, optimised for XCORE TensorFlow Lite model, that is used for VNR inference has been compiled
as part of the VNR inference static library. There's no support for providing a new model to the inference engine
at run time.

Before starting the feature extraction, the wuser must call vnr_input_state_init() and
vnr_feature_state_init() to initialise the form input frame and feature extraction state. Before starting
inference, the user must call var_inference_init () to initialise the inference engine.

There are no user configurable parameters within the VNR and so no arguments are required and no configuration
structures need be tuned.

Once the VNR is initialised, the vnr_form_input_frame(), vnr_extract_features() and vnr_inference()
functions should be called on a frame by frame basis.

54 p,

https://github.com/xmos/fwk_voice/blob/develop/modules/lib_vnr/python/utils/xformer/requirements.txt

fwk_voice - User Guide

API Reference

lib_vnr feature extraction API Functions

group var_features_api

Functions

void var_input_state_init (vnr_input_state_t *input_state)

Initialise previous frame samples buffer that is used when creating an input frame for processing
through the VNR estimator.

This function should be called once at device startup.
Parameters
- input_state — [inout] pointer to the VNR input state structure

void var_form_input_frame (vnr_input_state_t *input_state, bfp_complex_s32_t *X, complex_s32_t
X_data[VNR_FD_FRAME_LENGTH], const int32_t
new_x_frame[VNR_FRAME_ADVANCE])

Create the input frame for processing through the VNR estimator.

This function takes in VNR_FRAME_ADVANCE new samples, combines them with previous frame's
samples to form a VNR_PROC_FRAME_LENGTH samples input frame of time domain data, and out-
puts the DFT spectrum of the input frame. The DFT spectrum is output in the BFP structure and data
memory provided by the user.

The frequency spectrum output from this function is processed through the VNR feature extraction
stage.

If sharing the DFT spectrum calculated in some other module, vnr_form_input_frame() is not needed.

Example

#include "vnr_features_api.h"

complex_s32_t DWORD_ALIGNED input_frame[VNR_FD_FRAME_LENGTH] ;
bfp_complex_s32_t X;

vnr_form_input_frame(&vnr_input_state, &X, input_frame, new_data);

Parameters
- input_state — [inout] pointer to the VNR input state structure

+ X - [out] pointer to a variable of type bfp_complex_s32_t that the user allocates. The
user doesn't need to initialise this bfp variable. After this function, X is updated to point
to the DFT output spectrum and can be passed as input to the feature extraction stage.

+ X_data — [out] pointer to VNR_FD_FRAME_LENGTH values of type complex_s32_t that
the user allocates. After this function, the DFT spectrum values are written to this array,
and X->data points to X_data memory.

* new_x_frame — [in] Pointer to VNR_FRAME_ADVANCE new time domain samples

55 y,

fwk_voice - User Guide

void vor_feature_state_init (vnr feature_state_t *feature_state)

Initialise the state structure for the VNR feature extraction stage.
This function is called once at device startup.
Parameters

- feature_state — [inout] pointer to the VNR feature extraction state structure

void vnr_extract_features (vnr_feature_state_t *vnr_feature_state, bfp_s32_t *feature_patch, int32_t

feature_patch_data[VNR_PATCH_WIDTH * VNR_MEL_FILTERS], const
bfp_complex_s32_t *X)

Extract features.

This function takes in DFT spectrum of the VNR input frame and does the feature extraction. The
features are written to the feature_patch BFP structure and feature_patch_data memory provided by
the user. The feature output from this function are passed as input to the VNR inference engine.

Parameters
- vnr_feature_state — [inout] Pointer to the VNR feature extraction state structure

- feature_patch — [out] Pointer to the bfp_s32_t structure allocated by the user. The
user doesn't need to initialise this BFP structure before passing it to this function. After
this function call feature_patch will be updated and will point to the extracted features.
It can then be passed to the inference stage.

. feature_patch_data — [out] Pointer to the VNR_PATCH_WIDTH * VNR_MEL_FILTERS
int32_t values allocated by the user. The extracted features will be written to the fea-
ture_patch_data array and the BFP structure’s feature_patch->data will point to this
array.

lib_vnr inference engine API Functions

group var_inference_api

56

Functions

int32_t vor_inference_init ()

Initialise the inference_engine object and load the VNR model into the inference engine.

This function calls lib_tflite_micro functions to initialise the inference engine and load the VNR model
into it. It is called once at startup. The memory required for the inference engine object as well as the
tensor arena size required for inference is statically allocated as global buffers in the VNR module. The
VNR model is compiled as part of the VNR module.

void vnr_inference (float_s32_t *vnr_output, bfp_s32_t *features)

Run model prediction on a feature patch.

This function invokes the inference engine. It takes in a set of features corresponding to an input frame
of data and outputs the VNR prediction value. The VNR output is a single value ranging between 0 and
1 returned in float_s32_t format, with O being the lowest SNR and 1 being the strongest possible SNR
in speech compared to noise.

Parameters

- vor_output — [out] VNR prediction value.

fwk_voice - User Guide

- features — [in] Input feature vector. Note that this is not passed as a const pointer and
the feature memory is overwritten as part of the inference computation.

lib_vnr #defines common to feature extraction and inference

group vnr_defines

Defines

VNR_MEL_FILTERS
Number of filters in the MEL filterbank used in the VNR feature extraction.

VNR_PATCH_WIDTH
Number of frames that make up a full set of features for the inference to run on.
lib_vnr feature extraction #defines and data structure definitions

group vnr_features_state

Defines

VNR_PROC_FRAME_LENGTH

Time domain samples block length used internally in VNR DFT computation. NOT USER
MODIFIABLE.

<>

VNR_FRAME_ADVANCE

VNR new samples frame size This is the number of samples of new data that the VNR
processes every frame. 240 samples at 16kHz is 15msec. NOT USER MODIFIABLE.

VNR_FD_FRAME_LENGTH
Number of bins of spectrum data computed when doing a DFT of a

VNR_PROC_FRAME_LENGTH length time domain vector. The VNR_FD_FRAME_LENGTH
spectrum values represent the bins from DC to Nyquist. NOT USER MODIFIABLE.

struct var_input_state_t
#include <vnr_features_state.h> VNR form_input state structure.

Public Members

57 y,

fwk_voice - User Guide

int32_t prev_input_samples[VNR_PROC_FRAME_LENGTH - VNR_FRAME_ADVANCE]

Previous frame time domain input samples which are combined with
VNR_FRAME_ADVANCE new samples to form the VNR input frame.

struct var_feature_config_t
#include <vnr_features_state.h> VNR feature extraction config structure.

Public Members

int32_t enable_highpass
Enable highpass filtering of VNR MEL filter output. Disabled by default

struct var_feature_state_t
#include <vnr_features_state.h> State structure used in VNR feature extraction.

Public Members

iNt32_t feature_buffers[VNR_PATCH_WIDTHI[VNR_MEL_FILTERS]

Feature buffer containing the most recent VNR_MEL_FILTERS frames’ MEL frequency
spectrum.

lib_vnr Header Files

vnr_features_api.h

page page_vnr_features_api_h

This header contains lib_vnr features extraction API functions.

vnr_inference_api.h

page page_vnr_inference_api_h

This header contains lib_vnr inference engine API functions.

vnr_defines.h

page page_vnr_defines_h

This header contains the lib_vnr public #defines that are common to both feature extraction and inference.

vnr_features_state.h

page page_vnr_features_state_h

58

This header contains lib_vnr feature extraction related public #defines and data structure definitions

fwk_voice - User Guide
On GitHub

lib_vnr is present as part of fwk_voice. Get the latest version of fwk_voice from https://github.com/xmos/
fwk_voice. The 1ib_vnr module can be found in the modules/lib_vnr directory in fwk_voice.

59 y,

2 Example Applications

Several examples are provided to demonstrate processing of audio using the audio processing algorithms indi-
vidually as well as put together in a pipeline.

2.1 Building Examples

After configuring the CMake project (with the BUILD_EXAMPLES enabled), all the examples can be built by using
the make command within the build directory. Individual examples can be built using make EXAMPLE_NAME, where
EXAMPLE_NAME is the example to build.

2.2 Running Examples

In order to access binary files on the host from the XCore device over xscope, the examples make use of the xs-
cope_fileio utility, which needs to be installed before running the example application. To install xscope_fileio, run
the following command from the top level fwk_voice directory in a terminal where XMOS XTC tools are sourced.
Make sure that cmake build step has been completed prior to this.

pip install -e build/fwk_voice_deps/xscope_fileio/

2.2.1 aec_1_thread

This example demonstrates how AEC functions are called on a single thread to process data through the AEC
stage of a pipeline.

In it, a 32-bit, 4 channel wav file input.wav is read and processed through the AEC stage frame by frame. The AEC
is configured for 2 mic input channels, 2 reference input channels, 10 phase main filter and a 5 phase shadow filter.
The input file input.wav has 2 channels of mic input followed by 2 channels of reference input. Echo cancelled
version of the mic input is generated as the AEC output and written to the output.wav file.

Building

Run the following commands in the fwk_voice/build folder to build the firmware for the XCORE-AI-EXPLORER
board as a target:

cmake -S.. -DCMAKE_TOOLCHAIN_FILE=../xmos_cmake_toolchain/xs3a.cmake

make fwk_voice_example_bare_metal_aec_1_thread

make sure you have the patch command available
cmake -G "NMake Makefiles" -S.. -DCMAKE_TOOLCHAIN_FILE=../xmos_cmake_toolchain/xs3a.cmake
nmake fwk_voice_example_bare_metal_aec_1_thread

60 4

fwk_voice - User Guide

Running

From the fwk_voice/build folder run:

pip install -e fwk_voice_deps/xscope_fileio

cd ../examples/bare-metal/aec_1_thread

python ../shared_src/python/run_xcoreai.py ../../../build/examples/bare-metal/aec_1_thread/
—bin/fwk_voice_example_bare_metal_aec_1_thread.xe --input ../shared_src/test_streams/aec_
—example_input.wav

pip install -e fwk_voice_deps/xscope_fileio

cd fwk_voice_deps/xscope_fileio/host

cmake -G "NMake Makefiles"

nmake

cd ../../../../examples/bare-metal/aec_1_thread

python ../shared_src/python/run_xcoreai.py ../../../build/examples/bare-metal/aec_1_thread/
—bin/fwk_voice_example_bare_metal_aec_1_thread.xe --input ../shared_src/test_streams/aec_
—example_input.wav

Output

The output file output.wav is generated in the fwk_voice/examples/bare-metal/aec_1_thread directory. The input
file input.wav is also present in the same directory. View output.wav and input.wav in Audacity to compare the
echo cancelled output against the microphone input.

2.2.2 aec_2_threads

This example demonstrates how AEC functions are called on 2 threads to process data through the AEC stage
of a pipeline.

In it, a 32-bit, 4 channel wav file input.wav is read and processed through the AEC stage frame by frame. The AEC
is configured for 2 mic input channels, 2 reference input channels, 10 phase main filter and a 5 phase shadow
filter.

The input file input.wav has 2 channels of mic input followed by 2 channels of reference input. Echo cancelled
version of the mic input is generated as the AEC output and written to the output.wav file.

Building

Run the following commands in the fwk_voice/build folder to build the firmware for the XCORE-AI-EXPLORER
board as a target:

cmake -S.. -DCMAKE_TOOLCHAIN_FILE=../xmos_cmake_toolchain/xs3a.cmake

make fwk_voice_example_bare_metal_aec_2_thread

make sure you have the patch command available
cmake -G "NMake Makefiles" -S.. -DCMAKE_TOOLCHAIN_FILE=../xmos_cmake_toolchain/xs3a.cmake
nmake fwk_voice_example_bare_metal_aec_2_thread

61 4

fwk_voice - User Guide

Running

From the fwk_voice/build folder run:

pip install -e fwk_voice_deps/xscope_fileio

cd ../examples/bare-metal/aec_2_thread

python ../shared_src/python/run_xcoreai.py ../../../build/examples/bare-metal/aec_2_thread/
—bin/fwk_voice_example_bare_metal_aec_2_thread.xe --input ../shared_src/test_streams/aec_
—example_input.wav

pip install -e fwk_voice_deps/xscope_fileio

cd fwk_voice_deps/xscope_fileio/host

cmake -G "NMake Makefiles" .

nmake

cd ../../../../examples/bare-metal/aec_2_thread

python ../shared_src/python/run_xcoreai.py ../../../build/examples/bare-metal/aec_2_thread/
—bin/fwk_voice_example_bare_metal_aec_2_thread.xe --input ../shared_src/test_streams/aec_
—example_input.wav

Output

The output file output.wav is generated in the fwk_voice/examples/bare-metal/aec_2_threads directory. The input
file input.wav is also present in the same directory. View output.wav and input.wav in Audacity to compare the
echo cancelled output against the microphone input.

2.2.3 vnr

This example demonstrates how the VNR functions are called on a single thread to generate the Voice to Noise
Ratio (VNR) estimates for an input audio stream.

In this example, a 32-bit, T channel wav file test_stream_1.wav is read and processed through the VNR frame by
frame. The neural network inference model used in the VNR is pre-trained to estimate the voice to noise ratio. It
outputs a number between 0 and 1, T being the strongest voice with respect to noise and 0 being the lowest voice
compared to noise ratio.

Building

After configuring the CMake project, the following commands can be used from the fwk_voice/examples/bare-
metal/vnr directory to build and run this example application using the XCORE-AI-EXPLORER board as a target:

cd ../../../build

make fwk_voice_example_bare_metal_vnr_fileio

cd ../examples/bare-metal/vnr

python host_app.py test_stream_1l.wav vnr_out.bin --run-with-xscope-fileio --show-plot

Alternatively, to not have the VNR output plot displayed on the screen, run,

python host_app.py test_stream_l.wav vnr_out.bin --run-with-xscope-fileio

62 4

https://github.com/xmos/fwk_voice/tree/develop/examples/bare-metal/vnr
https://github.com/xmos/fwk_voice/tree/develop/examples/bare-metal/vnr

fwk_voice - User Guide

Output

The output from the VNR is written into the vnr_out.bin file. For every frame, VNR outputs its estimate in the form
of a floating point value between 0 and 1. The floating point value is written as a 32bit mantissa, followed by a
32bit exponent in the vnr_out.bin file. Additionally, these estimates are plotted, with the plot displayed on screen
when run with the --show-plot argument. Irrespective of whether on not --show-plot is used as an option, the
plotted figure is saved in the vnr_example_plot_test_stream_1.png file.

224 ic

This example demonstrates how the IC functions are called to process data through the IC stage of a voice
pipeline.

A 32-bit, 2 channel wav file input.wav is read and processed through the IC stage frame by frame. The input file
consists of 2 channels of mic input consisting of a Alexa utterances with a point noise source consisting of pop
music. The signal and noise sources in input.wav come from different spatial locations.

The interference cancelled version of the mic input is generated as the IC output and written to the output.wav file.
In this example, a VNR is not used and so the VNR signal is set to 0 to indicate that voice is not present, meaning
adaption will occur. In a practical system, the VNR voice to noise ratio would increase during the utterances to
ensure the IC does not adapt to the voice and cause it to be attenuated. The test file has only a few short voice
utterances and so the example works and demonstrates the IC operation.

Building

Run the following commands in the fwk_voice/build folder to build the firmware for the XCORE-AI-EXPLORER
board as a target:

cmake -S.. -DCMAKE_TOOLCHAIN_FILE=../xmos_cmake_toolchain/xs3a.cmake
make fwk_voice_example_bare_metal_ic

make sure you have the patch command available
cmake -G "NMake Makefiles" -S.. -DCMAKE_TOOLCHAIN_FILE=../xmos_cmake_toolchain/xs3a.cmake
nmake fwk_voice_example_bare_metal_ic

Running

From the fwk_voice/build folder run:

pip install -e fwk_voice_deps/xscope_fileio

cd ../examples/bare-metal/ic

python ../shared_src/python/run_xcoreai.py ../../../build/examples/bare-metal/ic/bin/fuk_
—Vvoice_example_bare_metal_ic.xe

pip install -e fwk_voice_deps/xscope_fileio

cd fwk_voice_deps/xscope_fileio/host

cmake -G "NMake Makefiles" .

nmake

cd ../../../../examples/bare-metal/ic

python ../shared_src/python/run_xcoreai.py ../../../build/examples/bare-metal/ic/bin/fwk_
—voice_example_bare_metal_ic.xe

63 4

fwk_voice - User Guide

Output

The output file output.wav is generated in the fwk_voice/examples/bare-metal/ic directory. When viewing out-
put.wav in a visual audio tool, such as Audacity, you can see a stark difference between the channels emitted.
Channel 0 is the IC output and is suitable for increasing the SNR in automatic speech recognition (ASR) appli-
cations. Channel 1 is the simple beamformed (average of mic 0 and mic 1 inputs) which may be preferable in
comms (human to human) applications. The logic for channel 1is contained in the ic_test_task.c file and is
not part of the IC library.s

T -1.0 0.0 1.0 2.0

o

5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 1

x | output -
Mue | Soio

-0.003

oo bt s R

0.000
-0.001
-0.002
-0.003

A|Sslsct|

You can see the drastic reduction of the amplitude of the music noise source in channel 0 after just just a few
seconds whilst the voice signal source is preserved. By zooming in to the start of the waveform, you can also
see the 212 sample (180 y_delay + 32 framing delay) latency through the IC, when compared with the averaged
output of channel 1.

2.2.5 agc

This example demonstrates how AGC functions are called on a single thread to process data through the AGC
stage of a pipeline. A single AGC instance is run using the profile that is tuned for communication with a human
listener.

Since this example application only demonstrates the AGC module, without a VNR or an AEC, adaption based on
voice activity and the loss control feature are both disabled.

The input is a single channel, 32-bit wav file, which is read and processed through the AGC frame-by-frame.

Building

Run the following commands in the fwk_voice/build folder to build the firmware for the XCORE-AI-EXPLORER
board as a target:

cmake -S.. -DCMAKE_TOOLCHAIN_FILE=../xmos_cmake_toolchain/xs3a.cmake

make fwk_voice_example_bare_metal_agc

make sure you have the patch command available
cmake -G "NMake Makefiles" -S.. -DCMAKE_TOOLCHAIN_FILE=../xmos_cmake_toolchain/xs3a.cmake
nmake fwk_voice_example_bare_metal_agc

64 7

fwk_voice - User Guide

Running

From the fwk_voice/build folder run:

pip install -e fwk_voice_deps/xscope_fileio

cd ../examples/bare-metal/agc

python ../shared_src/python/run_xcoreai.py ../../../build/examples/bare-metal/agc/bin/fuk_
—voice_example_bare_metal_agc.xe --input ../shared_src/test_streams/agc_example_input.wav

pip install -e fwk_voice_deps/xscope_fileio

cd fwk_voice_deps/xscope_fileio/host

cmake -G "NMake Makefiles" .

nmake

cd ../../../../examples/bare-metal/agc

python ../shared_src/python/run_xcoreai.py ../../../build/examples/bare-metal/agc/bin/fwk_
—voice_example_bare_metal_agc.xe --input ../shared_src/test_streams/agc_example_input.wav

Output

The output file output.wav is generated in the fwk_voice/examples/bare-metal/agc directory. The provided input
agc_example_input.wav is low-volume white-noise and the effect of the AGC can be heard in the output by listening
to the two wav files.

2.2.6 pipeline_single_threaded

This example demonstrates how the audio processing stages are put together in a pipeline

In it, a 32-bit, 4 channel wav file input.wav is read and processed through the pipeline stages frame by frame. The
example currently demonstrates a pipeline having AEC, IC, NS and AGC stages. It also demonstrates the use of
ADEC module to do a one time estimation and correction for possible reference and loudspeaker delay offsets at
start up in order to maximise AEC performance. ADEC processing happens on the same thread as the AEC. The
VNR is introduced to give the IC and the AGC information about the speech presence in a frame.

The AEC is configured for 2 mic input channels, 2 reference input channels, 10 phase main filter and a 5 phase
shadow filter. The AEC gets reconfigured as a 1 mic input channel, 1 reference input channel, 30 main filter phases
and no shadow filter, when ADEC goes in delay estimation mode. This allows it to measure the room delay. During
this process, the AEC output is ignored and the mic input is directly sent to output. Once the new delay has been
measured and the delay correction is applied, the AEC gets configured back to its original configuration and starts
adapting and cancellation. This example supports a maximum of 150ms of delay correction, in either direction,
between the reference and microphone input. The AEC stage generates the echo cancelled version of the mic
input that is then sent for processing through the IC.

The IC only processes a two channel input. It will use the second channel as the reference to the first to output
one channel of interference cancelled output. In this manner, it tries to cancel the room noise. However, to avoid
cancelling the wanted signal, it only adapts in the absence of voice. Hence the VNR is called to calculate the
voice to noise ratio estimation. The output of the VNR will allow IC to modulate the rate at which it adapts it's
coefficients. The output of the IC is copied to the second channel as well.

The NS is a single channel API, so two instances of NS should be initialised for 2 channel processing. The NS is
configured the same way for both the channels. It will try to predict the background noise and cancel it from the
frame before passing it to AGC.

65 4

fwk_voice - User Guide

The AGC is configured for ASR engine suitable gain control on both the channels. The output of the AGC stage
is the pipeline output which is written into a 2 channel output wav file. The AGC also takes the output of the VNR
to adapt it's coefficients.

The pipeline is run on a single thread. To run the pipeline on a single xcore-Al thread a minimum thread speed of
T140MHz is recommended, for a typical pipeline configuration.

The input file input.wav has a total of 4 channels and should have bit depth of 32b. Due to the microphone inputs
being very low amplitude, 16b data would result in severe quantisation of the data. The first 2 channels in the 4
channel file are the mic inputs followed by 2 channels of reference input. Output is written to the output.wav file
consisting of 2 channels.

Building

Run the following commands in the fwk_voice/build folder to build the firmware for the XCORE-AI-EXPLORER
board as a target:

cmake -S.. -DCMAKE_TOOLCHAIN_FILE=../xmos_cmake_toolchain/xs3a.cmake
make fwk_voice_example_bare_metal_pipeline_single_thread

make sure you have the patch command available
cmake -G "NMake Makefiles" -S.. -DCMAKE_TOOLCHAIN_FILE=../xmos_cmake_toolchain/xs3a.cmake
nmake fwk_voice_example_bare_metal_pipeline_single_thread

Running

From the fwk_voice/build folder run:

pip install -e fwk_voice_deps/xscope_fileio

cd ../examples/bare-metal/pipeline_single_threaded

python ../shared_src/python/run_xcoreai.py ../../../build/examples/bare-metal/pipeline_
—single_threaded/bin/fwk_voice_example_bare_metal_pipeline_single_thread.xe --input ../
—shared_src/test_streams/pipeline_example_input.wav

pip install -e fwk_voice_deps/xscope_fileio

cd fwk_voice_deps/xscope_fileio/host

cmake -G "NMake Makefiles" .

nmake

cd ../../../../examples/bare-metal/pipeline_single_threaded

python ../shared_src/python/run_xcoreai.py ../../../build/examples/bare-metal/pipeline_
—single_threaded/bin/fwk_voice_example_bare_metal_pipeline_single_thread.xe --input ../
—shared_src/test_streams/pipeline_example_input.wav

2.2.7 pipeline_multi_threaded

This example demonstrates how the audio processing stages are put together in a pipeline where stages are run
in parallel on separate hardware threads.

In it, a 32-bit, 4 channel wav file input.wav is read and processed through the pipeline stages frame by frame. The
example currently demonstrates a pipeline having AEC, IC, NS and AGC stages. It also demonstrates the use of
ADEC module to do a one time estimation and correction for possible reference and loudspeaker delay offsets at

66 4

fwk_voice - User Guide

start up in order to maximise AEC performance. ADEC processing happens on the same thread as the AEC. The
VNR is introduced to give the IC and the AGC information about the speech presence in a frame.

The AEC is configured for 2 mic input channels, 2 reference input channels, 10 phase main filter and a 5 phase
shadow filter. This example calls AEC functions using 2 threads to process a frame through the AEC stage. The
AEC gets reconfigured as a 1 mic input channel, 1 reference input channel, 30 main filter phases and no shadow
filter, when ADEC goes in delay estimation mode. This allows it to measure the room delay. During this process,
the AEC output is ignored and the mic input is directly sent to output. Once the new delay has been measured
and the delay correction is applied, the AEC gets configured back to its original configuration and starts adapting
and cancellation. This example supports a maximum of 150ms of delay correction, in either direction, between
the reference and microphone input. The AEC stage generates the echo cancelled version of the mic input that
is then sent for processing through the IC.

The IC only processes a two channel input. It will use the second channel as the reference to the first to output
one channel of interference cancelled output. In this manner, it tries to cancel the room noise. However, to avoid
cancelling the wanted signal, it only adapts in the absence of voice. Hence the VNR is called to calculate the
voice to noise ratio estimation. The output of the VNR will allow IC to modulate the rate at which it adapts it's
coefficients. The output of the IC is copied to the second channel as well.

The NS is a single channel API, so two instances of NS should be initialised for 2 channel processing. The NS
is configured the same way for both channels. It will try to predict the background noise and cancel it from the
frame before passing it to AGC.

The AGC is configured for ASR engine suitable gain control on both channels. The output of AGC stage is the
pipeline output which is written into a 2 channel output wav file. The AGC also takes the output of the VNR to
control when to adapt. This avoids noise being amplified during the absence of voice.

In total, the audio processing stages consume 5 hardware threads; 2 for AEC stage, 1 for IC and VNR, 1 for NS
stage and 1 for AGC stage. Note that it is possible to run the full pipeline in as little as two 75MHz threads if
required using one thread for stage 1 and a second thread for all remaining blocks.

The input file input.wav has a total of 4 channels and should have bit depth of 32b. Due to the microphone inputs
being very low amplitude, 16b data would result in severe quantisation of the data. The first 2 channels in the 4
channel file are the mic inputs followed by 2 channels of reference input. Output is written to the output.wav file
consisting of 2 channels.

Building

Run the following commands in the fwk_voice/build folder to build the firmware for the XCORE-AI-EXPLORER
board as a target:

cmake -S.. -DCMAKE_TOOLCHAIN_FILE=../xmos_cmake_toolchain/xs3a.cmake
make fwk_voice_example_bare_metal_pipeline_multi_thread

make sure you have the patch command available
cmake -G "NMake Makefiles" -S.. -DCMAKE_TOOLCHAIN_FILE=../xmos_cmake_toolchain/xs3a.cmake
nmake fwk_voice_example_bare_metal_pipeline_multi_thread

Running

From the fwk_voice/build folder run:

67 y,

fwk_voice - User Guide

pip install -e fwk_voice_deps/xscope_fileio

cd ../examples/bare-metal/pipeline_multi_threaded

python ../shared_src/python/run_xcoreai.py ../../../build/examples/bare-metal/pipeline_
—multi_threaded/bin/fwk_voice_example_bare_metal_pipeline_multi_thread.xe --input ../
—shared_src/test_streams/pipeline_example_input.wav

pip install -e fwk_voice_deps/xscope_fileio

cd fwk_voice_deps/xscope_fileio/host

cmake -G "NMake Makefiles" .

nmake

cd ../../../../examples/bare-metal/pipeline_multi_threaded

python ../shared_src/python/run_xcoreai.py ../../../build/examples/bare-metal/pipeline_
—multi_threaded/bin/fwk_voice_example_bare_metal_pipeline_multi_thread.xe --input ../
—shared_src/test_streams/pipeline_example_input.wav

Output

The output file output.wav is generated in the fwk_voice/examples/bare-metal/pipeline_multi_threaded directory.
The input file input.wav is also present in the same directory. View output.wav and input.wav in Audacity to
compare the pipeline output against the microphone input.

2.2.8 pipeline_alt_arch

This example demonstrates how the audio processing stages are put together in an alternate implementation
of the pipeline, which is different from sequentially calling the stages one after the other. In this pipeline form,
the AEC and the IC frame processing are selectively enabled and disabled based on the presence of reference
input signal. Acoustic Echo Cancellation is performed only if activity is detected on the reference input channels
and disabled otherwise. Interference Cancellation is performed only when AEC is disabled so in the absence of
reference channel activity and disabled otherwise.

In this example, a 32-bit, 4 channel wav file input.wav is read and processed through the pipeline modules frame by
frame. The example currently demonstrates a pipeline having AEC, IC, NS and AGC stages. It also demonstrates
the use of ADEC module to do a one time estimation and correction for possible reference and loudspeaker delay
offsets at start up in order to maximise AEC performance. ADEC processing happens on the same thread as the
AEC. The VNR is introduced to give the IC and the AGC information about the speech presence in a frame.

The AEC is configured for 1 mic input channel, 2 reference input channels, 15 phase main filter and a 5 phase
shadow filter giving an extended tail length of 225ms which is suitable for highly reverberant environments. The
AEC gets reconfigured as a 1 mic input channel, 1 reference input channel, 30 main filter phases and no shadow
filter, when ADEC goes in delay estimation mode. This allows it to measure the room delay. During this process,
the AEC output is ignored and the mic input is directly sent to output. Once the new delay has been measured
and the delay correction is applied, the AEC gets configured back to its original configuration and starts adapting
and cancellation. This example supports a maximum of 150ms of delay correction, in either direction, between
the reference and microphone input.

In the absence of activity on the reference channels, when the AEC is disabled, the mic input is copied directly to
the output of the AEC.

When enabled, the IC processes the two channel input. It will use the second channel as the reference to the first
to output one channel of interference cancelled output. In this manner, it tries to cancel the room noise. However,
to avoid cancelling the wanted signal, it only adapts in the absence of voice. Hence the VNR is called to calculate
the voice to noise ratio estimation in a frame. The output of the VNR will allow IC to modulate the rate at which

68 4

fwk_voice - User Guide

it adapts it's coefficients. The output of the IC is copied to the second channel as well. When disabled in the
presence of reference channel activity, the IC stage configured in bypass mode.

The NS is a single channel API, so two instances of NS should be initialised for 2 channel processing. The NS
is configured the same way for both channels. It will try to predict the background noise and cancel it from the
frame before passing it to AGC.

The AGC is configured for ASR engine suitable gain control on both channels. The output of AGC stage is the
pipeline output which is written into a 2 channel output wav file. The AGC also takes the output of the VNR to
control when to adapt. This avoids noise being amplified during the absence of voice.

The example build outputs 2 executables, a single thread and a multi-thread implementation of the pipeline. The
single thread version does the entire pipeline processing on a single thread. In the multi-thread version, the audio
processing consumes 5 hardware threads; 2 for the AEC stage, 1 for the IC and VAD, 1 for the NS stage and 1 for
the AGC stage. Note that it is possible to run the full pipeline in as little as two 75MHz threads if required using
one thread for stage 1 and a second thread for all remaining blocks. Alternatively, a single 1T50MHz thread may
support all stages of the pipeline within a single thread.

The input file input.wav has a total of 4 channels and should have bit depth of 32b. Due to the microphone inputs
being very low amplitude, 16b data would result in severe quantisation of the data. The first 2 channels in the 4
channel file are the mic inputs followed by 2 channels of reference input. Output is written to the output.wav file
consisting of 2 channels.

Building

Run the following commands in the fwk_voice/build folder to build the multi-threaded firmware for the XCORE-
AI-EXPLORER board as a target:

cmake -S.. -DCMAKE_TOOLCHAIN_FILE=../xmos_cmake_toolchain/xs3a.cmake
make fwk_voice_example_bare_metal_pipeline_alt_arch_mt

make sure you have the patch command available
cmake -G "NMake Makefiles" -S.. -DCMAKE_TOOLCHAIN_FILE=../xmos_cmake_toolchain/xs3a.cmake
nmake fwk_voice_example_bare_metal_pipeline_alt_arch_mt

To build the single-threaded firmware use fwk_voice_example_bare_metal_pipeline_alt_arch_st cmake target
when doing make(nmake).

Running

To run the multi-threaded application run these commands from the fwk_voice/build folder:

pip install -e fwk_voice_deps/xscope_fileio

cd ../examples/bare-metal/pipeline_alt_arch

python ../shared_src/python/run_xcoreai.py ../../../build/examples/bare-metal/pipeline_alt_
—arch/bin/fwk_voice_example_bare_metal_pipeline_alt_arch_mt.xe --input ../shared_src/test_
—streams/pipeline_example_input.wav

pip install -e fwk_voice_deps/xscope_fileio
cd fwk_voice_deps/xscope_fileio/host
cmake -G "NMake Makefiles" .
nmake
cd ../../../../examples/bare-metal/pipeline_alt_arch
(continues on next page)

69 4

fwk_voice - User Guide

(continued from previous page)

python ../shared_src/python/run_xcoreai.py ../../../build/examples/bare-metal/pipeline_alt_
—arch/bin/fwk_voice_example_bare_metal_pipeline_alt_arch_mt.xe --input ../shared_src/test_
—streams/pipeline_example_input.wav

To run the single-threaded application use fwk_voice_example_bare_metal_pipeline_alt_arch_st.xe as an exe-
cutable for the python script.

Output

The output file output.wav is generated in the fwk_voice/examples/bare-metal/pipeline_alt_arch directory. The
input file input.wav is also present in the same directory. View output.wav and input.wav in Audacity to compare
the pipeline output against the microphone input.

70 4

2 Index

A

adaption_config_e (C enum), 44

adaption_config_e.IC_ADAPTION_AUTO (C enumera-
tor), 44

adaption_config_e.IC_ADAPTION_FORCE_OFF (C enu-
merator), 44

adaption_config_e.IC_ADAPTION_FORCE_ON (C enu-
merator), 44

adec_config_t (C struct), 36

adec_config_t.bypass (C var), 37

adec_config_t.force_de_cycle_trigger (C var), 37

adec_estimate_delay (C function), 35

adec_init (C function), 34

adec_input_t (C struct), 38

adec_input_t.far_end_active_flag (C var), 38

adec_input_t.from_aec (C var), 38

adec_input_t.from_de (C var), 38

adec_mode_t (C enum), 36

adec_mode_t.ADEC_DELAY_ESTIMATOR_MODE (C enu-
merator), 36

adec_mode_t .ADEC_NORMAL_AEC_MODE (C enumerator),
36

adec_output_t (C struct), 37

adec_output_t.delay_change_request_flag (Cvar),
37

adec_output_t.delay_estimator_enabled_flag (C
var), 38

adec_output_t.requested_delay_samples_debug (C
var), 38

adec_output_t.requested_mic_delay_samples (C
var), 37

adec_output_t.reset_aec_flag (C var), 38

ADEC_PEAK_LINREG_HISTORY_SIZE (C macro), 36

ADEC_PEAK_TO_AVERAGE_HISTORY_DEPTH (C macro), 36

adec_process_frame (C function), 35

adec_state_t (C struct), 39

adec_state_t.adec_config (C var), 40

adec_state_t.aec_peak_to_average_good_aec_thresR§fqcore-contig params_t.

(Cvar), 39
adec_state_t.agm_qg24 (C var), 39
adec_state_t.convergence_counter (C var), 40
adec_state_t.erle_bad_bits_q24 (C var), 39
adec_state_t.erle_bad_gain_q24 (C var), 39
adec_state_t.erle_good_bits_q24 (C var), 39

adec_state_t.gated_milliseconds_since_mode_change

(Cvar), 39
adec_state_t.last_measured_delay (C var), 40

adec_state_t.max_peak_to_average_rat io_since_reégg—FFT—PADDING

71

(Cvar), 39
adec_state_t.mode (C var), 39
adec_state_t.peak_phase_energy_trend_gain_q24
(Cvar), 39
adec_state_t.peak_power_history (C var), 39
adec_state_t.peak_power_history_idx (C var), 40
adec_state_t.peak_power_history_valid (C var),
40
adec_state_t.peak_to_average_ratio_history (C
var), 39
adec_state_t.sf_copy_flag (C var), 40
adec_state_t.shadow_flag_counter (C var), 40
aec_adaption_e (C enum), 4
aec_adaption_e.AEC_ADAPTION_AUTO (C enumerator),

4

aec_adaption_e.AEC_ADAPTION_FORCE_OFF (C enu-
merator), 4

aec_adaption_e.AEC_ADAPTION_FORCE_ON (C enu-
merator), 4

aec_calc_coherence (C function), 17
aec_calc_corr_factor (C function), 19
aec_calc_Error_and_Y_hat (C function), 17
aec_calc_freq_domain_energy (C function), 15
aec_calc_max_input_energy (C function), 19
aec_calc_normalisation_spectrum (C function), 18
aec_calc_output (C function), 17

aec_calc_T (C function), 18
aec_calc_time_domain_ema_energy (C function), 15
aec_calc_X_fifo_energy (C function), 16
aec_compare_filters_and_calc_mu (C function), 18
aec_config_params_t (C struct), /7
aec_config_params_t.aec_core_conf (C var),/
aec_config_params_t.coh_mu_conf (C var), 7
aec_config_params_t.shadow_filt_conf (C var), 7
aec_core_config_params_t (C struct), 6
aec_core_config_params_t.bypass (Cvar), 6
aec_core_config_params_t.coeff_index (C var), 7

(Cvar),7
aec_core_config_params_t.delta_min (C var),”
aec_core_config_params_t.ema_alpha_q30 (C var),

7
aec_core_config_params_t.gamma_log2 (C var), 6
aec_core_config_params_t.sigma_xx_shift (C var),
7
aec_detect_input_activity (C function), 19
AEC_FD_FRAME_LENGTH (C macro), 13
(C macro), 13

delta_adaption_force_on

fwk_voice - User Guide

aec_filter_adapt (C function), 18 aec_to_adec_t (C struct), 38
aec_forward_fft (C function), 15 aec_to_adec_t.error_ema_energy_chO (C var), 38
AEC_FRAME_ADVANCE (C macro), 13 aec_to_adec_t.shadow_flag_ch0 (C var), 38
aec_frame_init (C function), 15 aec_to_adec_t.y_ema_energy_chO (C var), 38
aec_init (C function), 13 AEC_UNUSED_TAPS_PER_PHASE (C macro), 13
aec_inverse_fft (C function), 16 aec_update_X_fifo_1d (C function), 19
aec_12_adapt_plus_fft_gc (C function), 20 aec_update_X_fifo_and_calc_sigmaXX (C function),
aec_12_bfp_complex_s32_unify_exponent (C func- 17

tion), 20 agc_config_t (C struct), 29
aec_12_bfp_s32_unify_exponent (C function), 20 agc_config_t.adapt (C var), 29
aec_12_calc_Error_and_Y_hat (C function), 20 agc_config_t.adapt_on_vnr (C var), 29
AEC_LIB_MAX_PHASES (C macro), 13 agc_config_t.gain (C var), 30
AEC_LIB_MAX_X_CHANNELS (C macro), 12 agc_config_t.gain_dec (C var), 30
AEC_LIB_MAX_Y_CHANNELS (C macro), 12 agc_config_t.gain_inc (C var), 30
AEC_PROC_FRAME_LENGTH (C macro), 13 agc_config_t.lc_bg_power_gamma (C var), 30
aec_reset_state (C function), 19 agc_config_t.lc_corr_threshold (C var), 30
aec_shared_state_t (C struct), 8 agc_config_t.lc_enabled (C var), 30
aec_shared_state_t.coh_mu_state (C var), 10 agc_config_t.lc_far_delta (C var), 30
aec_shared_state_t.config_params (C var), 10 agc_config_t.lc_gain_double_talk (C var), 31
aec_shared_state_t.num_x_channels (C var), 10 agc_config_t.lc_gain_max (C var), 31
aec_shared_state_t.num_y_channels (C var), 10 agc_config_t.lc_gain_min (C var), 31
aec_shared_state_t.overall_Y (Cvar), 9 agc_config_t.lc_gain_silence (C var), 31
aec_shared_state_t.prev_x (Cvar), 9 agc_config_t.lc_gamma_dec (C var), 30
aec_shared_state_t.prev_y (Cvar), 9 agc_config_t.lc_gamma_inc (C var), 30
aec_shared_state_t.shadow_filter_params (Cvar), agc_config t.lc_n_frame_far (C var), 30

10 agc_config_t.lc_n_frame_near (C var), 30
aec_shared_state_t.sigma_XX (Cvar), 9 agc_config_t.lc_near_delta (C var), 31
aec_shared_state_t.sum_X_energy (C var), 9 agc_config_t.lc_near_delta_far_active (C var),
aec_shared_state_t.X (Cvar), 8 31
aec_shared_state_t.x (Cvar),9 agc_config_t.lower_threshold (C var), 30
aec_shared_state_t.x_ema_energy (C var), 9 agc_config_t.max_gain (C var), 30
aec_shared_state_t.X_fifo (Cvar), 8 agc_config_t.min_gain (C var), 30
aec_shared_state_t.Y (Cvar), 9 agc_config_t.soft_clipping (C var), 29
aec_shared_state_t.y (Cvar), 9 agc_config_t.upper_threshold (C var), 30
aec_shared_state_t.y_ema_energy (C var), 9 AGC_FRAME_ADVANCE (C macro), 29
aec_state_t (C struct), 10 agc_init (C function), 27
aec_state_t.delta (Cvar), 12 AGC_META_DATA_NO_AEC (C macro), 29
aec_state_t.delta_scale (C var), 12 AGC_META_DATA_NO_VNR (C macro), 29
aec_state_t.Error (C var) agc_meta_data_t (C struct), 32
aec_state_t.error (Cvar), 1 agc_meta_data_t.aec_corr_factor (C var), 32
aec_state_t.error_ema_ energy (Cvar), 11 agc_meta_data_t.aec_ref_power (C var), 32
aec_state_t.H_hat (Cvar), 10 agc_meta_data_t.vnr_flag (C var), 32
aec_state_t.inv_X_energy (C var), 11 agc_process_frame (C function), 28
aec_state_t.max_X_energy (Cvar), 12 AGC_PROFILE_ASR (C macro), 28
aec_state_t.mu (C var), 11 AGC_PROFILE_FIXED_GAIN (C macro), 29
aec_state_t.num_phases (C var), 12 agc_state_t (C struct), 31
aec_state_t.overall_Error (C var), 11 agc_state_t.config (C var), 31
aec_state_t.overlap (Cvar), 11 agc_state_t.lc_corr_val (C var), 32
aec_state_t.shared_state (Cvar), 12 agc_state_t.lc_far_bg_power_est (C var), 32
aec_state_t.T (Cvar), 11 agc_state_t.lc_far_power_est (Cvar), 32
aec_state_t.X_energy (Cvar), 1 agc_state_t.lc_gain (Cvar), 32
aec_state_t.X_fifo_1d (Cvar), 11 agc_state_t.lc_near_bg_power_est (C var), 32
aec_state_t.Y_hat (Cvar), 10 agc_state_t.lc_near_power_est (C var), 32
aec_state_t.y_hat (Cvar), 11 agc_state_t.lc_t_far (Cvar), 31

72 y,

agc_state_t.lc_t_near (Cvar), 3
agc_state_t.x_fast (Cvar), 31
agc_state_t.x_peak (Cvar), 31
agc_state_t.x_slow (C var), 31

C

2

coherence_mu_config_params_t (C struct), 5

coherence_mu_config_params_t.
(Cvar), 5
coherence_mu_config params_t.
5
coherence_mu_config_params_t.
var), 5
coherence_mu_config params_t.
var), 5
coherence_mu_config params_t.
(Cvar), 5
coherence_mu_config_params_t.
coherence_mu_config_params_t.
(Cvar), 5
coherence_mu_config params_t.
var), 5
coherence_mu_config_params_t.
5
coherence_mu_config params_t.
var), 5
coherence_mu_config params_t.
(Cvar), 5
coherence_mu_config_params_t.

(Cvar), 5

adaption_config
coh_alpha (C var),
coh_slow_alpha (C
coh_thresh_abs (C
coh_thresh_slow

eps (Cvar), 5

force_adaption_mu_g30adaption_controller_config_t.

mu_coh_time (C
mu_scalar (C var),
mu_shad_time (C

thresh_minus20dB

x_energy_thresh

coherence_mu_params_t (C struct), 7

coherence_mu_params_t.
coherence_mu_params_t.
coherence_mu_params_t.

coherence_mu_params_t.mu_coh_

coh (Cvar), 7
coh_mu (C var), 8
coh_slow (Cvar), 7

count (C var), 8

coherence_mu_params_t.mu_shad_count (C var), 8

control_flag_e (C enum), 44

control_flag_e.
control_flag_e.
control_flag_e.
control_flag_e.
control_flag_e.
control_flag_e.

D

ADAPT (C enumerator), 44
ADAPT_SLOW (C enumerator), 44
FORCE_ADAPT (C enumerator), 44
FORCE_HOLD (C enumerator), 44
HOLD (C enumerator), 44
UNSTABLE (C enumerator), 44

de_output_t (C struct), 37

de_output_t .measured_delay_samples (C var), 37
de_output_t .peak_phase_power (C var), 37

de_output_t.peak_power_phase_

index (C var), 37

de_output_t.peak_to_average_ratio (C var), 37
de_output_t.phase_power (C var), 37

de_output_t.

73

sum_phase_powers (C var), 37

F

fwk_voice - User Guide

FFT_PADDING (C macro), 51

ic_adapt (C function),

43

ic_adaption_controller_config_t (C struct), 45
ic_adaption_controller_config_t.adapt_counter_limit

(Cvar), 46

ic_adaption_controller_config_t.

(Cvar), 46

ic_adaption_controller_config_t.

(Cvar), 46

ic_adaption_controller_config_t.

(Cvar), 45

adaption_config
enable_adaption

energy_alpha_q30

ic_adaption_controller_config_t.fast_ratio_threshold

(Cvar), 45

ic_adaption_controller_config_t.high_input_vnr_hold_leakage

(Cvar), 45

(Cvar), 45

ic_adaption_controller_config_t.

(Cvar), 45

ic_adaption_controller_config_t.

(Cvar), 46

input_vnr_threshold
input_vnr_threshold_high

input_vnr_threshold_low

ic_adaption_controller_config_t.instability_recovery_leakag

(Cvar), 45

ic_adaption_controller_state_t (C struct), 46
ic_adaption_controller_state_t.adapt_counter

(Cvar), 46

ic_adaption_controller_state_t.

(Cvar), 46

ic_adaption_controller_state_t.

var), 46

ic_adaption_controller_state_t.

var), 46

ic_adaption_controller_state_t.

var), 46

ic_adaption_controller_state_t.

(Cvar), 46

ic_calc_vnr_pred (C function), 43
ic_config_params_t (C struct),

ic_config_params_t.
ic_config_params_t.
ic_config params_t.
ic_config params_t.
ic_config_params_t.

adaption_controller_config
control_flag (C

fast_ratio

(c
input_energy (C

output_energy

4

44

bypass (C var), 44

delta (Cvar), 45
ema_alpha_q30 (C var), 45
gamma_log?2 (C var), 45
sigma_xx_shift (Cvar), 45

IC_FD_FRAME_LENGTH (C macro), 51
ic_filter (C function), 43

IC_FILTER_PHASES (C macro), 50
IC_FRAME_ADVANCE (C macro), 571
IC_FRAME_LENGTH (C macro), 51

ic_init (C function), 43
IC_INIT_ADAPT_COUNTER_LIMIT (C macro), 50
IC_INIT_DELTA (C macro), 50

IC_INIT_EMA_ALPHA (C macro), 50
IC_INIT_ENERGY_ALPHA (C macro), 50
IC_INIT_FAST_RATIO_THRESHOLD (C macro), 50
IC_INIT_GAMMA_L0G2 (C macro), 50
IC_INIT_HIGH_INPUT_VNR_HOLD_LEAKAGE_ALPHA (C
macro), 50
IC_INIT_INPUT_VNR_PRED (C macro), 51
IC_INIT_INPUT_VNR_THRESHOLD (C macro), 51
IC_INIT_INPUT_VNR_THRESHOLD_HIGH (C macro), 51
IC_INIT_INPUT_VNR_THRESHOLD_LOW (C macro), 51
IC_INIT_INSTABILITY_RECOVERY_LEAKAGE_ALPHA (C
macro), 50
IC_INIT_LEAKAGE_ALPHA (C macro), 50
IC_INIT_MU (C macro), 50
IC_INIT_OUTPUT_VNR_PRED (C macro), 51
IC_INIT_SIGMA_XX_SHIFT (C macro), 50
IC_INIT_VNR_PRED_ALPHA (C macro), 51
ic_state_t (C struct), 46
ic_state_t.config_params (C var), 49
ic_state_t.Error (Cvar), 48
ic_state_t.Error_bfp (Cvar), 47
ic_state_t.error_bfp (C var), 48
ic_state_t.H_hat (C var), 48
ic_state_t.H_hat_bfp (C var), 48
ic_state_t.ic_adaption_controller_state (C var),
49
ic_state_t.inv_X_energy (C var), 48
ic_state_t.inv_X_energy_bfp (C var), 48
ic_state_t.leakage_alpha (C var), 49
ic_state_t.max_X_energy (C var), 49
ic_state_t.mu (C var), 49
ic_state_t.overlap (C var), 49
ic_state_t.overlap_bfp (C var), 48
ic_state_t.prev_x_bfp (Cvar), 47
ic_state_t.prev_y_bfp (Cvar), 47
ic_state_t.sigma_XX (Cvar), 49
ic_state_t.sigma_XX_bfp (Cvar), 49
ic_state_t.sum_X_energy (C var), 49
ic_state_t.T_bfp (C var), 48
ic_state_t.vnr_pred_state (C var), 49
ic_state_t.x (Cvar), 47
ic_state_t.X_bfp (Cvar), 47
ic_state_t.x_bfp (Cvar), 47
ic_state_t.X_energy (Cvar), 48
ic_state_t.X_energy_bfp (Cvar), 48
ic_state_t.X_energy_recalc_bin (C var), 48
ic_state_t.X_fifo (Cvar), 48
ic_state_t.X_fifo_1d_bfp (Cvar), 48
ic_state_t.X_fifo_bfp (Cvar), 48
ic_state_t.x_prev_samples (C var), 47
ic_state_t.y (Cvar), 47
ic_state_t.Y_bfp (Cvar), 47
ic_state_t.y_bfp (Cvar), 47
ic_state_t.y_delay_idx (C var), 49

74

fwk_voice - User Guide

ic_state_t.Y_hat (Cvar), 47
ic_state_t.Y_hat_bfp (Cvar), 47
ic_state_t.y_input_delay (C var), 49
ic_state_t.y_prev_samples (C var), 47
IC_X_CHANNELS (C macro), 51
IC_Y_CHANNEL_DELAY_SAMPS (C macro), 50
IC_Y_CHANNELS (C macro), 51

N

NS_FRAME_ADVANCE (C macro), 23
ns_init (C function), 22

NS_INT_EXP (C macro), 23
NS_PROC_FRAME_BINS (C macro), 23
NS_PROC_FRAME_LENGTH (C macro), 23
ns_process_frame (C function), 22
ns_state_t (C struct), 23
ns_state_t.alpha_d (Cvar), 25
ns_state_t.alpha_d_tilde (Cvar), 24
ns_state_t.alpha_p (C var), 25
ns_state_t.alpha_s (Cvar), 25
ns_state_t.data_adt (Cvar), 24
ns_state_t.data_lambda_hat (C var), 24
ns_state_t.data_ovelap (C var), 25
ns_state_t.data_p (C var), 24
ns_state_t.data_prev_frame (C var), 25
ns_state_t.data_rev_wind (C var), 25
ns_state_t.data_S (C var), 24
ns_state_t.data_S_min (C var), 24
ns_state_t.data_S_tmp (C var), 24
ns_state_t.delta (Cvar), 25
ns_state_t.lambda_hat (C var), 24
ns_state_t.one_minus_alpha_p (C var), 25
ns_state_t.one_minus_alpha_s (C var), 25
ns_state_t.one_minus_aplha_d (C var), 25
ns_state_t.overlap (C var), 24
ns_state_t.p (Cvar), 24
ns_state_t.prev_frame (C var), 24
ns_state_t.reset_counter (C var), 25
ns_state_t.reset_period (Cvar), 25
ns_state_t.rev_wind (C var), 25
ns_state_t.S (Cvar), 24
ns_state_t.S_min (C var), 24
ns_state_t.S_tmp (C var), 24
ns_state_t.wind (C var), 24
NS_WINDOW_LENGTH (C macro), 23

S

shadow_filt_config_params_t (C struct), 6

shadow_filt_config_params_t.shadow_better_thresh

(Cvar), 6
shadow_filt_config_params_t.shadow_copy_thresh

(Cvar), 6
shadow_filt_config_params_t.shadow_delay_thresh

(Cvar), 6

fwk_voice - User Guide

shadow_filt_config_params_t.shadow_mu (C var), 6
shadow_filt_config_params_t.shadow_reset_thresh
(Cvar), 6
shadow_filt_config params_t.shadow_reset_timer
(Cvar), 6
shadow_filt_config_params_t.shadow_sigma_thresh
(Cvar), 6
shadow_filt_config_params_t.shadow_zero_thresh
(Cvar), 6
shadow_filt_config_params_t.x_energy_thresh (C
var), 6
shadow_filter_params_t (C struct), 8
shadow_filter_params_t.shadow_better_count (C
var), 8
shadow_filter_params_t.shadow_flag (C var), 8
shadow_filter_params_t.shadow_reset_count (C
var), 8
shadow_state_e (C enum), 4
shadow_state_e.COPY (C enumerator), 5
shadow_state_e.EQUAL (C enumerator), 4
shadow_state_e.ERROR (C enumerator), 4
shadow_state_e.LOW_REF (C enumerator), 4
shadow_state_e.RESET (C enumerator), 4
shadow_state_e.SIGMA (C enumerator), 4
shadow_state_e.ZERO (C enumerator), 4

V

vnr_extract_features (C function), 56
VNR_FD_FRAME_LENGTH (C macro), 57
vnr_feature_config_t (C struct), 58
vnr_feature_config_t.enable_highpass (C var), 58
vnr_feature_state_init (C function), 55
vnr_feature_state_t (C struct), 58
vnr_feature_state_t.feature_buffers (C var), 58
vnr_form_input_frame (C function), 55
VNR_FRAME_ADVANCE (C macro), 57

vor_inference (C function), 56

vnr_inference_init (C function), 56
vnr_input_state_init (C function), 55
vnr_input_state_t (C struct), 5/
vnr_input_state_t.prev_input_samples (C var), 5/
VNR_MEL_FILTERS (C macro), 57

VNR_PATCH_WIDTH (C macro), 57
VNR_PROC_FRAME_LENGTH (C macro), 57

75 y,

fwk_voice - User Guide

2MOS

Copyright © 2023, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you "AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. XMOS Ltd makes no representation that the Information, or any particular implementation thereof, is or
will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

XMQOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United Kingdom
and other countries and may not be used without written permission. Company and product names mentioned
in this document are the trademarks or registered trademarks of their respective owners.

76 y,

	Audio Processing
	Audio Features
	Acoustic Echo Canceller Library
	Repository Structure
	Requirements
	API Structure
	Getting and Building
	AEC Overview
	API Reference
	AEC Data Structure and Enum Definitions
	AEC #define constants
	AEC API
	AEC High Level API Functions
	AEC Low Level API Functions (STILL WIP)

	lib_aec Header Files
	aec_defines.h
	aec_state.h
	aec_api.h

	On GitHub
	API

	Noise Suppression Library
	Repository Structure
	Requirements
	Getting and Building
	NS Overview
	API Reference
	NS API Functions
	NS API Structure Definitions
	NS Header Files
	ns_api.h
	ns_state.h

	On GitHub
	API

	Automatic Gain Control Library
	Repository Structure
	Requirements
	Getting and Building
	AGC Overview
	API Reference
	AGC API Functions
	AGC Pre-Defined Profiles
	AGC API Structure Definitions
	AGC Header Files
	agc_api.h
	agc_profiles.h

	On GitHub
	API

	Automatic Delay Estimation and Correction Library
	Repository Structure
	Getting and Building
	ADEC Overview
	API Reference
	ADEC API Functions
	ADEC #define constants
	ADEC Data Structure and Enum definitions
	ADEC Header Files
	adec_defines.h
	adec_state.h
	adec_api.h

	On GitHub
	API

	Interference Canceller Library
	Repository Structure
	Requirements
	API Structure
	Getting and Building
	IC Overview
	API Reference
	lib_ic API Functions
	lib_ic API State Structure
	lib_ic API Definitions
	lib_ic Header Files
	ic_defines.h
	ic_state.h
	ic_api.h

	On GitHub
	API

	Voice To Noise Ratio Estimator Library
	Repository Structure
	Requirements
	API Structure
	Getting and Building
	VNR Inference Model
	Integrating a TensorFlow Lite model into the VNR module

	VNR Overview
	API Reference
	lib_vnr feature extraction API Functions
	lib_vnr inference engine API Functions
	lib_vnr #defines common to feature extraction and inference
	lib_vnr feature extraction #defines and data structure definitions
	lib_vnr Header Files
	vnr_features_api.h
	vnr_inference_api.h
	vnr_defines.h
	vnr_features_state.h

	On GitHub

	Example Applications
	Building Examples
	Running Examples
	aec_1_thread
	Building
	Running
	Output

	aec_2_threads
	Building
	Running
	Output

	vnr
	Building
	Output

	ic
	Building
	Running
	Output

	agc
	Building
	Running
	Output

	pipeline_single_threaded
	Building
	Running

	pipeline_multi_threaded
	Building
	Running
	Output

	pipeline_alt_arch
	Building
	Running
	Output

	Index

