
USB Bootloader Description and Standards

Version 1.0

The USB interface used to connect XS1-L devices to the XMOS
toolchain and referenced in this document is under current
development and subject to improvements and changes—the
latest version is described in the XMOS USB Device Layer
Library Guide.

Publication Date: 2010/07/22

Copyright © 2010 XMOS Ltd. All Rights Reserved.

http://www.xmos.com/published/xuddg
http://www.xmos.com/published/xuddg

USB Bootloader Description and Standards (1.0) 2/9

1 Introduction

This document explains how the XMOS toolchain can boot an XS1-L1 over USB. It is
used, for example, by the debugger (xgdb) to debug systems that are built out of
one or more XCores. The document explains how the bootloader works, the port
layout, the schematics, and the protocol to use the bootloader over USB.

This document does not discuss the USB Device Firmware Upgrade (DFU) protocol,~

which is discussed in a separate document (USB Firmware Upgrade on XMOS avail-
able soon). Firmware upgrade enables any USB device to upgrade firmware stored
in flash memory using a standard USB-protocol. USB boot enables a specific USB
device to boot over USB without using flash.

This document specifies a set of the standards that must be followed for a design
to be compatible with the XMOS toolchain. These standards are:

USB-BOOT-1: USB enumeration The USB descriptors to use when enumerating as a
bootloader.

USB-BOOT-2: Firmware upload over USB protocol The protocol to use over the two
USB endpoints.

USB-BOOT-3: Hardware design The schematics to use when designing a system
that uses a USB bootloader.

USB-BOOT-4: USB serial number assignment The meaning of serial numbers.

USB-BOOT-5: USB Serial number storage How the serial number is stored.

The use of the XMOS USB Vendor ID (VID) and the allocated Product Identifier (PID)
are allowed provided that these standards are followed.

Figure 1 shows a block diagram of a device that supports bootloading over USB.
It comprises a USB-PHY and an XS1-L1 device that is both controlling the PHY and
being booted over the PHY.

www.xmos.com

USB Bootloader Description and Standards (1.0) 3/9

USB
PHY

L1

OTP stores
bootloader

USB reset

ULPI

GPIO

GPIO

Power, clock

L1 USB bootloader hardware

Figure 1: Block diagram of booting over USB

The bootloader works as follows:

1. The L1 boots from OTP and runs code that enumerates on the USB bus and
presents itself as a device that accepts programs to execute.

2. xgdb (or other program) scans the USB bus and tries to find devices that are
a bootloader (determined by the VID, PID and version number of the device),
and that have a serial number that indicates that the device is compatible.
For example, xgdb requires a serial number that indicates that the L1 has
hardware that is compatible with the debugger.

3. xgdb (or other program) loads the new firmware into the device. When a device
receives new firmware, bootcode copies its serial number to the 16 bytes at
address 0x1B000 to 0x1B00F prior to executing the new code.

4. On boot, the new firmware picks up the serial number to use from address
0x1B000, and then enumerates as a device with that serial number.

www.xmos.com

USB Bootloader Description and Standards (1.0) 4/9

1.1 PID and VID

USB uses a PID and VID to indicate the product and vendor. These must be identi-
cal for the bootloader and new firmware if one wants to avoid Microsoft Windows
requiring multiple driver installations. The values of PID and VID are specified in
Standard USB-BOOT-1 below.

1.2 Version numbers

The version number is used to differentiate between bootloader (major version 0)
and subsequent firmware (major version not equal to 0) if identical PID, VID and
serial numbers are used.

1.3 Serial numbers

The serial number must uniquely identify the hardware. The same serial number
must be used for both the bootloader and the new firmware (again in order to
avoid windows requiring multiple drivers). The serial number is used to decide
what capabilities this device has, and must adhere to the specification in Standard
USB-BOOT-4 below.

A serial number can be programmed in by loading the programming firmware into
the device (using the bootloader).

2 Standard USB-BOOT-1: USB Enumeration

The descriptor should contain a device class, subclass and protocol that are all equal
to 0xff, and have one configuration only. The device qualifier should indicate a max
packet size of 64 bytes.

The single interface should have two endpoints, interfaceclass, subclass and proto-
col should all be 0xff. For each endpoint the max packet size should be set to 512,
and the interval should be set to 1.

Any bootloadable USB device must enumerate using the following details:

• Use VID (Vendor ID) 0x20B1.

• Use PID (Product ID) 0xF7D1.

• Enumerate with major version number 0

www.xmos.com

USB Bootloader Description and Standards (1.0) 5/9

• Enumerate with a serial number of 16 digits where the first character indicates
the class; the serial numbers are defined in Section 5 - Standard USB-BOOT-4.

The serial number must be read out from OTP; first the word on address 2040
must be read, if it is ’0’ then serial number “XXXXXXXXXXXXXXXX” (16 Xs) shall
be used. If word 2040 does not equal 0, then the entire serial number should
be read out from word 2040 using differential mode. The least significant byte
of the word at address 2040 is the first byte of the serial number. The most
significant byte of the word at address 2046 is the sixteenth byte of the serial
number.

USB bootloader firmware must be programmed into either flash or OTP. The boot-
loader must relocate itself to address 0x1B000 or higher prior to execution, and
execute from that address. If stored in OTP, the bootloader must be no larger than
8160 bytes, including the relocation code and any error correcting code, leaving 32
bytes empty for the serial number.

3 Standard USB-BOOT-2: Firmware upload over USB
protocol

The bootloader must reside at at address 0x1B000 or above in memory, allowing
programs of up to 44K of memory to be loaded into the device. The protocol of
the USB bootloader requires two endpoints (in addition to endpoint 0) that are used
as described below. Communication is synchronous: for every OUT transaction on
Endpoint 0x01, the host must issue an IN transaction on Endpoint 0x82 to verify
that the operation has completed.

3.1 Out Endpoint 1 (0x01)

Commands are received on this endpoint. A command comprises at most 512 bytes,
and consists of a single word command, and up to 508 bytes of payload.

LOADER_CMD_WRITE_MEM — 1 Carries an address (bytes 0..3), a length (bytes
4..7), and length bytes of data. The length must be a multiple of 4. After writ-
ing the data, the USB loader will send back a LOADER_CMD_WRITE_MEM_ACK,
see section 3.2. No writes should be requested to addresses 0x1B000 - 0x1FFFF
inclusive.

LOADER_CMD_JUMP — 5 Carries an address (bytes 0..3) only; it must have a pay-
load of exactly 4 bytes. The USB loader will send back a LOADER_CMD_JUMP_ACK
(see section 3.2) and then jump to the specified address prior to shutting down
all resources.

www.xmos.com

USB Bootloader Description and Standards (1.0) 6/9

3.2 IN Endpoint 2 (0x82)

On this endpoint the firmware responds to commands. Packets are up to 12 bytes
long, where the first word contains the response; there are up to 8 bytes of payload.
The last 4 bytes of payload indicate whether another command can be issued: (0)
means that another command can be issued, (-1) indicates that no other commands
can be issued.

LOADER_CMD_WRITE_MEM_ACK — 2 Has a payload of 4 bytes, indicating the suc-
cess state only (0).

LOADER_CMD_JUMP_ACK — 6 Has a payload of 4 bytes containing -1 indicating
that the device will detach itself from the bus. On receiving this response, the
host should wait for at least one millisecond and then issue a USB-reset.

4 Standard USB-BOOT-3: Hardware design

4.1 Clock frequencies

The L1 must run at 400MHz derived from a 13 MHz Crystal.

4.2 Port map

The L1 must use the following portmap. All pins labeled ULPI should be connected
to the ULPI USB-PHY. Ports M and N should be declared as input ports (they must be
tristated).

Pin Port Signal
1b 4b 8b

XD12 P1E0 ULPI_STP
XD13 P1F0 ULPI_NXT
XD14 P4C0 P8B0

ULPI_DATA[0:7]

XD15 P4C1 P8B1
XD16 P4D0 P8B2
XD17 P4D1 P8B3
XD18 P4D2 P8B4
XD19 P4D3 P8B5
XD20 P4C2 P8B6
XD21 P4C3 P8B7
XD22 P1G0 ULPI_DIR
XD23 P1H0 ULPI_CLK
XD24 P1I0 ULPI_RST_N
XD35 P1L0 Declare as input
XD36 P1M0 Declare as input

www.xmos.com

USB Bootloader Description and Standards (1.0) 7/9

Some ports are used internally when the ULPI is in operation—see the XS1-L Hard-~

ware Design Checklist for further information.

Developers are strongly encouraged to use the design in Figure 2 verbatim.

4U7

C2

TP1
TP2
TP3
TP4
TP5

USB_A_PLUG

J2

6

4

5

2
1

3DP

VBUS
DM

S1

GND

S2

TP6
1
0
K

R
8

1N

C7

+5V

+5V

+5V

TP7

+5V

100N

C24C25

100N

+3V3

1700mA
330R

FB1 1K

R4

+3V3+1V8

+1V8

2U2

C29

+3V3

2U2

C30

NCP699SN33
U5

4

51

3

2
G
N
DEN

VIN VOUT

NC

NCP699SN18
U4

4

51

3

2
G
N
DEN

VIN VOUT

NC

8
K
0
6

R
1

10N

C3

D
N
P

R
1
0

U1
USB3318

19

8
9
10
11
13
14
15

17

21

121
7

22

23

16

20
18

4

2

3

5
6

25

24RBIAS

GND

DP
DM

VBAT

VBUS

VDD33

NXT
STP

DATA0

REFCLK

RESETB

CPEN
ID CLKOUT

VDD18

VDDIO
DATA1
DATA2
DATA3
DATA4
DATA5
DATA6
DATA7

DIR

1
0
K

R
5

+1V0

100N

C6

100N

C8 C9

100N100N

C11

100N

C12

C13

100N 100N

C14

100N

C15

+3V3

100N

C16 C17

100N

XS1_L1_64LQFP
U3

CLK9

DEBUG17

MODE022

MODE123

MODE224

MODE325

PLL_AGND19PLL_AVDD
20

RST_N8

29

30
31

27

26

VDD_6161

VDD_44

VDD_1313

VDD_2121

VDD_2828

VDD_3737

VDD_4343

VDD_5252

VDDIO_6060VDDIO_53
53

VDDIO_66

VDDIO_1818

VDDIO_3232

VDDIO_4040

GND_PAD65

X0D016

X0D92

X0D101

X0D1164

X0D1263

X0D1362

X0D1459

X0D1558

X0D1657

X0D1756

X0D1855

X0D115

X0D1954

X0D2051

X0D2150

X0D2249

X0D2348

X0D2447

X0D2546

X0D2645

X0D2744

X0D3642

X0D214

X0D3741

X0D3839

X0D3938

X0D3236

X0D3335

X0D3434

X0D3533

X0D312

X0D411

X0D510

X0D67

X0D75

X0D83

+3V3

NCP1521B
U6

4

51

3

2
G
N
DEN

VIN LX

FB 6
K
8

R
3

+1V0

C19

100N

+1V0

4
R
7

R
1
1

+1V0

NC7SZU04
U2

3

5
2 4

1U

C1

+3V3

13M
ABLS2

X1

2M2

R2

4
7
0
R

R
1
2

33P

C27C28

33P

+3V3

100N

C20

330P

C4

L1

2U2

10U

C5

NCP303LSN09
U7

4

2

3

1

5CD

RST_OUT

GND

INPUT

NC

1
0
K

R
6

+3V3

+1V0

R
7

1
0
K

C22

100N

100N

C21

ULPI_DATA0

ULPI_DATA0

ULPI_CLK

ULPI_CLK

ULPI_DATA1

ULPI_DATA1

ULPI_DATA2

ULPI_DATA2

ULPI_DATA3

ULPI_DATA3

ULPI_DATA4

ULPI_DATA4

ULPI_DATA5

ULPI_DATA5

ULPI_DATA6

ULPI_DATA6

ULPI_DATA7

ULPI_DATA7

ULPI_STP

ULPI_STP

ULPI_NXT

ULPI_NXT

ULPI_DIR

ULPI_DIR

PHY_RST_N

PHY_RST_N

OSC_13M

OSC_13M

DBG

UART_UPRST_N

RST_N

UART_DN

NC

NC

NC

NC

NC
NC

NC
NC

MODE[1:0] = 00 ==> PLL_MULT = 30.75 ==> 13MHZ REFCLK

MODE[3:2] = 11 ==> BOOT FROM SPI

Figure 2: Reference design of an L1 for USB boot loading. [TODO: delete compo-
nents that are not USB related, ie, XLINK, UART, and JTAG]

www.xmos.com

http://www.xmos.com/published/xs1lcheck
http://www.xmos.com/published/xs1lcheck
http://www.xmos.com/published/xs1lcheck
http://www.xmos.com/published/xs1lcheck

USB Bootloader Description and Standards (1.0) 8/9

5 Standard USB-BOOT-4: USB serial number assignment

The USB serial number indicates the type of device and its capabilities. Serial num-
bers are interpreted as follows:

• Identifiers starting with ’X’, ’x’, ’Y’, ’y’, ’Z’ and ’z’ are reserved by XMOS and
shall not be used by any device not developed by XMOS.

• ’D’ and ’d’ are used to indicate that this hardware is compatible with the de-
bugger. Serial numbers of this class are defined in a companion document:
“USB debugger description and standards”.

• A serial number of all ’X’ is used to indicate that this device does not have
an identifier programmed. They can be programmed according to Section 6 -
Standard USB-BOOT-5.

• A serial number starting with ’R’ or ’r’ can be used freely.

• All other serial numbers are reserved for future device classes.

6 Standard USB-BOOT-5: USB serial number storage

The serial number is stored in differential mode in the top 32 bytes of the OTP.
Blank serial numbers appear as a sequence of 0 and -1 words; any device with a
blank serial number shall enumerate with “XXXXXXXXXXXXXXXX”.

Words 2040 to 2047 of the OTP should be programmed as follows:

• Word 2040 should contain the first 4 characters of the serial number—byte 0
should be stored in the least significant byte of the word, byte 3 should be
stored in the most significant byte of the word.

• Word 2041 must be a copy of word 2040.

• Word 2042 should contain characters 4-7 of the serial number

• Word 2043 must be a copy of word 2042.

• Word 2044 should contain characters 8-11 of the serial number

• Word 2045 must be a copy of word 2044.

• Word 2046 should contain characters 12-15 of the serial number

• Word 2047 must be a copy of word 2046.

Each word is programmed twice to provide redundancy when reading out the serial
number.

www.xmos.com

USB Bootloader Description and Standards (1.0) 9/9

Document History

Date Release Comment

2010-07-22 1.0 First release

Disclaimer

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the
“Information”) and is providing it to you “AS IS” with no warranty of any kind, express or
implied and shall have no liability in relation to its use. XMOS Ltd. makes no representation
that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

Copyright © 2010 XMOS Ltd. All Rights Reserved. XMOS and the XMOS logo are registered
trademarks of XMOS Ltd in the United Kingdom and other countries, and may not be used
without written permission. Company and product names mentioned in this document are
the trademarks or registered trademarks of their respective owners. Where those designa-
tions appear in this document, and XMOS was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

www.xmos.com

	Introduction
	Standard USB-BOOT-1: USB Enumeration
	Standard USB-BOOT-2: Firmware upload over USB protocol
	Standard USB-BOOT-3: Hardware design
	Standard USB-BOOT-4: USB serial number assignment
	Standard USB-BOOT-5: USB serial number storage

