
Extending USB Audio with Digital Signal Processing

Publication Date: 2023/10/3
Document Number: XM006859A

Extending USB Audio with Digital Signal Processing

IN THIS DOCUMENT

· Introduction to USB Audio

· API offered by USB Audio

· DSP functions available

· Timing requirements

· Executing the DSP on the other physical core

· Parallelising DSP

· Data Parallel DSP

· Data Pipelining DSP

· Controlling

In this app note we describe how to extend the XMOS USB Audio stack with DSP capabili-
ties.

USB Audio is a highly configurable piece of software; in its simplest form it may just
interface a single ADC to USB Audio; but it can deal with a multitude of I2S, TDM, DSD,
S/PDIF, ADAT and other interfaces. Often data is just transported in real-time, but DSP
that may be interesting may, for example, include:

· Equalisation

· Mixing

· Dynamic range compression

· Audio effects

This app note discusses the API that the USB Audio stack offers to enable you to include
DSP algorithms inside the stack.

For reference, we refer to the following repositories that you may want to use:

· <http://github.com/xmos/sw_usb_audio.git> for the USB Audio reference design

· <https://github.com/xmos/lib_xua.git> for the USB Audio library design

1 Introduction to USB Audio

The basic structure or USB Audio is shown below in Figure 1.

On the left is a USB interface to the host - this is dealt with by the XUD and XUA libraries.
XUD <https://www.github.com/xmos/lib_xud> is the low level USB library for XCORE,
XUA <https://www.github.com/xmos/lib_xua> is the USB-Audio protocol implemen-
tation on xcore. On the right is a series of interfaces (ADC, DAC, S/PDIF, ADAT). USB Audio
provides a path from the left to the right (USB host computer to the interfaces), this is
called the output path; and a path from the right to the left (the interfaces to the USB

2

http://github.com/xmos/sw_usb_audio.git
https://github.com/xmos/lib_xua.git
https://www.github.com/xmos/lib_xud
https://www.github.com/xmos/lib_xua

Extending USB Audio with Digital Signal Processing

USB
Host

(eg PC)

USB
Device
Driver
(XUD)

USB
Audio

handling
(XUA)

Digital
Interfaces
ADC, DAC

S/PDIF

One tile of XU316

Other tile of XU316

... empty ...

Codecs,
Optical

Coax etc

Figure 1:
Structure of
USB Audio

host computer) that is called the input path. The terms input-path and output-path are
host-centric names, and we use input and output this was as it is consistent with the USB
standard nomenclature.

The XU316 device has two tiles, and for many designs one of the tiles will be empty. This
is not always the case, as there may be a situation where the ADC/DAC I/O pins are
located on the other tile. This subtlety does not matter for addition of simple DSP. Also,
the physical core used for the USB stack may be tile 0 or tile 1 depending on the design.

2 API offered by USB Audio

The USB Audio stack provides one function that you need to override in order to add any
DSP capability to your system:

extern void UserBufferManagement(

unsigned output_samples[NUM_OUTPUTS],

unsigned input_samples[NUM_INPUTS]);

For brevity we use NUM_OUTPUTS and NUM_INPUTS throughout this code to refer to the
number of output audio-channels (NUM_USB_CHAN_OUT) and the number of input audio-
channels (NUM_USB_CHAN_IN).

The UserBufferManagement function is called at the sample rate of the USB Audio stack
(eg, 48 kHz) and between them the two arrays contain a full multi-channel audio-frame.
The first array carries all the data that shall be shipped to the interfaces, the second array
carries all the data from the interfaces that shall be shipped to the USB host. You can
chose to intercept and overwrite the samples stored in these arrays. The interfaces are
ordered first all I2S channels, then optional S/PDIF, finally optional ADAT.

A second function that you can overwrite is:

3

Extending USB Audio with Digital Signal Processing

extern void UserBufferManagementInit(void);

This function is called once before the first call to UserBufferManagement. The code in
this document does not require this function, but other code may require it.

Note that the values of the type are unsigned; a 32-bit number. The use of these 32 bits
depends on the data-types used for the audio, typical values are 16-bit PCM (the top 16
bits are a signed PCM value), 24-bit PCM (the top 24 bits are a signed PCM value), 32-bit
PCM (the top 32 bits are a signed PCM value), or DSD (the 32 bits are PDM values, with
the least significant bit representing the oldest 1-bit value).

In this example we just modify the output path - and we use NUM_OUTPUTS=2 and
NUM_INPUTS=4. We can run the output_samples through a cascaded_biquad in order
equalise the output signal. One can go further an apply independent biquads to the two
channels to independently equalise stereo speakers:

#define FILTERS 4

// b2/a0 b1/a0 b0/a0 -a1/a0 -a2/a0

int32_t filter_coeffs[FILTERS *5] = {

261565110 , -521424736 , 260038367 , 521424736 , -253168021 ,

255074543 , -506484921 , 252105451 , 506484921 , -238744538 ,

280274501 , -523039333 , 245645878 , 523039333 , -257484924 ,

291645146 , -504140302 , 223757950 , 504140302 , -246967640 ,

};

int32_t filter_states[NUM_INPUTS+NUM_OUTPUTS][FILTERS *4];

void UserBufferManagement(

unsigned output_samples[NUM_OUTPUTS],

unsigned input_samples[NUM_INPUTS])

{

for(int i = 0; i < NUM_OUTPUTS; i++) {

output_samples[i] = dsp_filters_biquads ((int32_t) output_samples[i

↪→],

filter_coeffs ,

filter_states[i],

FILTERS ,

28);

}

}

void UserBufferManagementInit () {}

If one wants, one can combine input_samples and output_samples in order to mix data
from interfaces or USB into USB or the interfaces.

The sample rate depends on the environment. The USB application typically has a list of
supported sample rates (this may just be one sample-rate), and the user can on the host
select which sample rate they want to use. For simplicity, we do not discuss sample-rate
changes; we assume that there is just one sample-rate.

4

Extending USB Audio with Digital Signal Processing

3 DSP functions available

There are a few repositories with DSP and general maths functions available, with different
trade-offs between speed, accuracy, and ease-of-use.

· <https://github.com/xmos/lib_xcore_math> is the xcore.ai library for high perfor-
mance maths functions. Many of them are optimised to make use of the vector unit
and use 40-bit accumulators.

· <https://github.com/xmos/lib_dsp> for high-resolution maths functions that exe-
cute on the CPU often using 64-bit accumulators. These functions are not as fast as
lib_xcore_math

· <https://github.com/xmos/lib_audio_effects> for audio effects functions. (this
is based on lib_dsp above)

In this application note we use as a running example a cascaded biquad filter that is set
to a fixed operation:

· First stage Peaking Filter 200 Hz, 1 octave -20 dB,

· Second stage Peaking Filter 400 Hz, 1 octave +10 dB,

· Third stage Peaking Filter 800 Hz, 1 octave -20 dB,

· Fourth stage Peaking Filter 1600 Hz, 1 octave +10 dB,

This is not a necessarily a realistic set of filters, but it is something that can easily be
heard.

4 Timing requirements

The XMOS USB Audio stack is designed to operate on single samples in order to minimise
latency introduced by the audio stacks. The UserBufferManagement() function is called
from the core of the USB stack; it is called at the native frame rate of the system (for
example 44.1 kHz), and it should therefore take no longer than one sample period to finish
it’s operation. In fact, it has a bit less time than that in order to guarantee that the samples
reach the next stage of the pipeline.

Given the speed of a single thread in a system (for example 600 / 8 = 75 MHz) and
the sample rate (say, 44.1 KHz sample rate) we can calculate the number of issue slots
available between two samples: 75,000,000 / 44,100 = 1,700 issue slots. This includes
the time taken by the USB stack to shuffle data around. Taking that into account there is
no more than 1,300 issue-slots available for DSP using this method, which allows for only
a limited number of FIR taps or biquads to be used. The timeline is shown in Figure 2.

What is more, with higher sample rates the overhead of the USB stack is the same, but
the time between samples is squeezed, further limiting the number of cycles available for
DSP.

As XCORE is a concurrent multi-threaded multi-core processor, there are other threads
and cores available for DSP. It depends on the precise configuration of the USB stack
(whether you use special interfaces such as S/PDIF, ADAT, MIDI) but in a simple case

5

https://github.com/xmos/lib_xcore_math
https://github.com/xmos/lib_dsp
https://github.com/xmos/lib_audio_effects

Extending USB Audio with Digital Signal Processing

T
im

e
Frame 5

arrives
Frame 4
departs

B
u
ffe

r M
a

n
a
g

e
r

Frame 6
arrives

Frame 5
departs

Frame 7
arrives

Frame 6
departs

Spare time

UserBufferManagement()
function

Key

USB work

DSP work

I2S handling

Note that the

size of a box

is not to scale

with the

execution time,

Idle

2
2

.6
7

5
 u

s (fo
r 4

4
.1

 kH
z)

D
S

P
 fra

m
e
 5

D
S

P
 fra

m
e
 6

USB Stack moving
data around

Figure 2:
Timeline of

executing DSP
inside a thread

with just I2S, USB Audio uses around 30% of the compute, with one tile being completely
empty.

We will first look at how to use a single thread on the other tile for DSP, then we will look in
how to generally parallelise DSP, and then we will look into using multiple threads for DSP.

5 Executing the DSP on the other physical core

The XCORE architecture offers a communication fabric to efficiently transport data be-
tween threads and between cores. Communication works on channels. A channel has
two ends, A and B, and data that is output into A has to be input on B, and data that

6

Extending USB Audio with Digital Signal Processing

is output into B has to be input from A. A and B can be inside the same physical core
on different threads, or on different cores on the same chip, or on different chips in the
same system; communication always works, but performance is lower when the physical
distance increases.

A channel is like a two way communication pipe. It has very little buffering capacity, so
both ends of the channel have to agree to communicate otherwise one side will wait for
the other.

The data types and functions for communicating data provided by lib_xcore are:

· chanend_t c ; a type holding the reference to one end of a channel

· chan ch ; a type holding a complete channel with both ends

· chan_out_word(c, x); a function that outputs a word x over channel-end c.

· x = chan_in_word(c); a function that inputs a word x over channel-end c.

· chan_out_buf_word(c, x, n); a function that outputs n words from array x over
channel-end c.

· chan_in_buf_word(c, x, n) ; a function that inputs n words over channel-end c
into array x

We could also use XC instead of C and lib-xcore; the resulting behaviour is identical.
There is equivalent functions chanend_* that create streaming channels rather than
synchronised channels. We do not use them in this app-note, but they can be useful
where extra performance and predictability are required.

Typical code to off-load the DSP to the other tile involves a UserBufferManagement
function that outputs and inputs samples to the DSP task, a user_main.h function that
declares the extra code needed to create the channels and start the DSP task, and a DSP
task that receives and transmits the data.

The UserBufferManagement code is:

7

Extending USB Audio with Digital Signal Processing

#include "xcore/chanend.h"

#include "xcore/channel.h"

static chanend_t g_c;

void UserBufferManagement(

unsigned output_samples[NUM_OUTPUTS],

unsigned input_samples[NUM_INPUTS]

) {

chan_out_buf_word(g_c , output_samples , NUM_OUTPUTS);

chan_out_buf_word(g_c , input_samples , NUM_INPUTS);

chan_in_buf_word(g_c , output_samples , NUM_OUTPUTS);

chan_in_buf_word(g_c , input_samples , NUM_INPUTS);

}

void UserBufferManagementSetChan(chanend_t c) {

g_c = c;

}

void UserBufferManagementInit () {}

The code to be included in the main program is as follows:

#define USER_MAIN_DECLARATIONS \

chan c_data_transport; \

interface i2c_master_if i2c [1];

#define USER_MAIN_CORES \

on tile [1]: { \

dsp_main(c_data_transport); \

} \

on tile [0]: { \

ctrlPort (); \

i2c_master(i2c , 1, p_scl , p_sda , 100); \

} \

on tile [1]: { \

UserBufferManagementSetChan(c_data_transport); \

unsafe \

{ \

i_i2c_client = i2c [0]; \

} \

}

And finally the code to perform the DSP is the opposite of the buffer-management function:

8

Extending USB Audio with Digital Signal Processing

#define FILTERS 4

// b2/a0 b1/a0 b0/a0 -a1/a0 -a2/a0

int32_t filter_coeffs[FILTERS *5] = {

261565110 , -521424736 , 260038367 , 521424736 , -253168021 ,

255074543 , -506484921 , 252105451 , 506484921 , -238744538 ,

280274501 , -523039333 , 245645878 , 523039333 , -257484924 ,

291645146 , -504140302 , 223757950 , 504140302 , -246967640 ,

};

int32_t filter_states[NUM_INPUTS+NUM_OUTPUTS][FILTERS *4];

void dsp_main(chanend_t c_data) {

int for_usb [NUM_INPUTS + NUM_OUTPUTS];

int from_usb[NUM_INPUTS + NUM_OUTPUTS];

while (1) {

chan_in_buf_word(c_data , &from_usb [0], NUM_OUTPUTS);

chan_in_buf_word(c_data , &from_usb[NUM_OUTPUTS],NUM_INPUTS);

chan_out_buf_word(c_data , &for_usb [0], NUM_OUTPUTS);

chan_out_buf_word(c_data , &for_usb[NUM_OUTPUTS], NUM_INPUTS);

for(int i = 0; i < 2; i++) {

for_usb[i] = dsp_filters_biquads ((int32_t) from_usb[i],

filter_coeffs ,

filter_states[i],

FILTERS ,

28);

}

}

}

The execution of two of the tasks (the USB Task calling UserBufferManagement) and the
DSP task (dsp_main) is shown below in Figure 3.

Time progresses from top to bottom, and we show a snapshot of what happens around
the time that Frame numbers 5..7 arrive over I2S. The small dark blue box is when Frame
5 arrives over I2S whilst a processes Frame 3 is sent out over I2S. The light blue boxes
below are the communication between the two tasks; UserBufferManagement() on the
left, and the first four lines of the while-loop in dsp_main() on the right. After that, the
USB task has a bit of idle time (to cope with higher sample rates and more channels), and
the DSP task starts the DSP. Whilst the DSP is operating on Frame 5; Frame 6 arrives in
the USB task, and the DSP task must finish before the next communication phase. Please
note that the boxes are not drawn to scale otherwise some of them would be too small to
see.

It is important to note that the grey area where the Buffer Manager is idle is time that
can be used by other threads. THis means that up to five DSP threads can be active at
this time, taking all the bandwidth of the processor. During the period where the Buffer
Manager is working, the DSP threads will run slightly slower; probably hardly noticeable
as they will also be having some down time over this period.

In this example, we assume a 44,100 Hz sample rate. If the DSP thread is too late, then all
the timings will fail; it has to be on time, but it is allowed to be just in time. Note that the
DSP processing is synchronous with the frame transmissions, but the phase is off. Every
sample is processed a bit later than arriving, leading to a whole sample delay

9

Extending USB Audio with Digital Signal Processing

T
im

e
Frame 5

arrives
Frame 3
departs

B
u
ffe

r M
a

n
a
g

e
r

D
S

P
 ta

sk
Frame 6

arrives
Frame 4
departs

Frame 7
arrives

Frame 5
departs

D
S

P
 fra

m
e
 5

D
S

P
 fra

m
e
 6

Frame 5

Frame 6

Frame 4

Frame 5

1670
issue-slots/
instructions

30
issue-slots/
instructions

Key

USB work

DSP work

Communication

I2S handling

Note that the

size of a box

is not to scale

with the

execution time,

Idle

2
2

.6
7

5
 u

s

Figure 3:
Timeline of

executing the
two

concurrent
threads

6 Parallelising DSP

Parallelisation involves splitting work into a multitude of tasks. Tasks can then be mapped
onto threads. The reason to separate these two words is that a task is a software concept:
a set of instructions that does something meaningful, for example a shelf-filter. If we have
10 of those tasks then we can execute five of them in Thread 1 and five of them in Thread
2 and we have achieved 2x parallelism.

Typically tasks are dependent on each other, and when the design is drawn out that is
reflected by arrows from one task into the other, representing data being transported from

10

Extending USB Audio with Digital Signal Processing

one task to the next. When the tasks are mapped onto threads these data dependencies
have to be adhered to.

DSP lends itself to parallelism as there are typically large clusters of compute on identified
sets of data. Each DSP problem will be parallelised individually, and in this document we
distinguish two models on which the rest can be built:

· Data parallelism, for example, output-conditioning on stereo speakers. In this case,
one could put the DSP for the left speaker in task 1, and the DSP for the right speaker
in task 2.

· Data Pipelining. A series of DSP tasks are executed one after the other on an audio
stream.

In general this gives rise to two sorts of designs. The first design is one where each
sample is being fed into a task, and the tasks independently of each other all produce the
output samples. The second design is one where the samples run through a sequence of
tasks before finally producing the output samples. The latter architecture has an inherent
higher latency than the former design and a slightly more complex design. The former is
a very simple design that we shall discuss first.

7 Data Parallel DSP

Data parallelism is a simple extension of the previous example. Instead of using a single
channel we use multiple channels to communicate the data onto the DSP task. This gives
rise to the timeline shown below in Figure 4.

Like before, we use channels to communicate between the DSP tasks, what is new is
that we have to create those DSP tasks, and create the channels between them. The only
difference is in the dsp_main function.

11

Extending USB Audio with Digital Signal Processing

T
im

e
Frame 5

arrives
Frame 3
departs

B
u
ffe

r M
a

n
a
g

e
r

D
S

P
 ta

sk1

D
S

P
 ta

sk2

Frame 6
arrives

Frame 4
departs

Frame 7
arrives

Frame 5
departs

D
S

P
 fra

m
e
 5

L

D
S

P
 fra

m
e
 5

R

D
S

P
 fra

m
e
 6

L

D
S

P
 fra

m
e
 6

R

Frame 5L

Frame 6

Frame 5R

Frame 6

Frame 4L

Frame 5

Frame 4R

Frame 5

1670
issue-slots/
instructions

30
issue-slots/
instructions

Key

USB work

DSP work

Communication

I2S handling

Note that the

size of a box

is not to scale

with the

execution time,

Idle

2
2

.6
7

5
 u

s

Figure 4:
Timeline of

executing the
two

concurrent
threads

The UserBufferManagement code is:

12

Extending USB Audio with Digital Signal Processing

static chanend_t g_c , g_c2;

void UserBufferManagement(

unsigned output_samples[NUM_OUTPUTS],

unsigned input_samples[NUM_INPUTS]

) {

chan_out_buf_word(g_c , output_samples , NUM_OUTPUTS);

chan_out_buf_word(g_c , input_samples , NUM_INPUTS);

chan_in_buf_word(g_c , output_samples , NUM_OUTPUTS /2);

chan_in_buf_word(g_c , input_samples , NUM_INPUTS /2);

chan_out_buf_word(g_c2 , output_samples , NUM_OUTPUTS);

chan_out_buf_word(g_c2 , input_samples , NUM_INPUTS);

chan_in_buf_word(g_c2 , output_samples+NUM_OUTPUTS /2, NUM_OUTPUTS /2);

chan_in_buf_word(g_c2 , input_samples +NUM_INPUTS /2, NUM_INPUTS /2);

}

void UserBufferManagementSetChan(chanend_t c, chanend_t c2) {

g_c = c;

g_c2 = c2;

}

void UserBufferManagementInit () {}

The code to be included in the main program is as follows:

#define USER_MAIN_DECLARATIONS \

chan c1 , c2; \

interface i2c_master_if i2c [1];

#define USER_MAIN_CORES \

on tile [1]: { \

dsp_main1(c1); \

} \

on tile [1]: { \

dsp_main2(c2); \

} \

on tile [0]: { \

ctrlPort (); \

i2c_master(i2c , 1, p_scl , p_sda , 100); \

} \

on tile [1]: { \

UserBufferManagementSetChan(c1, c2); \

unsafe \

{ \

i_i2c_client = i2c [0]; \

} \

}

And finally the code to perform the DSP is the opposite of the buffer-management function:

13

Extending USB Audio with Digital Signal Processing

#define FILTERS 4

// b2/a0 b1/a0 b0/a0 -a1/a0 -a2/a0

int32_t filter_coeffs[FILTERS *5] = {

261565110 , -521424736 , 260038367 , 521424736 , -253168021 ,

255074543 , -506484921 , 252105451 , 506484921 , -238744538 ,

280274501 , -523039333 , 245645878 , 523039333 , -257484924 ,

291645146 , -504140302 , 223757950 , 504140302 , -246967640 ,

};

int32_t filter_states [NUM_OUTPUTS /2][FILTERS *4];

int32_t filter_states2[NUM_OUTPUTS /2][FILTERS *4];

void dsp_main1(chanend_t c_data) {

int for_usb [NUM_INPUTS /2 + NUM_OUTPUTS /2];

int from_usb[NUM_INPUTS + NUM_OUTPUTS];

while (1) {

chan_in_buf_word(c_data , &from_usb [0], NUM_OUTPUTS);

chan_in_buf_word(c_data , &from_usb[NUM_OUTPUTS], NUM_INPUTS);

chan_out_buf_word(c_data , &for_usb [0], NUM_OUTPUTS /2);

chan_out_buf_word(c_data , &for_usb[NUM_OUTPUTS /2], NUM_INPUTS /2);

for(int i = 0; i < NUM_OUTPUTS /2; i++) {

for_usb[i] = dsp_filters_biquads ((int32_t) from_usb[i],

filter_coeffs ,

filter_states[i],

4,

28);

}

}

}

dsp_main2 is identical, and the code may be shared provided they have separate state to
operate on.

This method expands to five threads, after which the XCORE.AI pipeline is fully used. More
threads can be used, but no performance will be gained. This is because the full number
of issue cycles will be divided between more threads.

8 Data Pipelining DSP

We can make an arbitrary pipeline of DSP processes by creating an extra thread that
acts as the source of the data and as the sync of the data. This thread’s purpose is to
perform just those tasks. The reason that this task is special is that it loops the data path
around, because what came out of the pipe has to go back into the USB Audio stack at a
determined point in time. The pipeline that we’re building is shown in Figure 5.

The pipeline that we are building requires a bit of plumbing to make it all work but the
code is reasonably straightforward otherwise.

DSP task 1B is implemented by dsp_thread1b and picks up data from the distributor, and
outputs data to dsp tasks 1A and 1B:

14

Extending USB Audio with Digital Signal Processing

USB
Audio

handling
(XUA)

DSP
Stage

0

DSP
Stage
1A

DSP
Stage
1B

DSP
Stage

2

Figure 5:
Example
pipeline

#define FILTERS0 1

static __attribute__ ((aligned (8))) int32_t filter_coeffs0[FILTERS0 *5] = {

261565110 , -521424736 , 260038367 , 521424736 , -253168021 ,

};

static __attribute__ ((aligned (8))) int32_t filter_states0[NUM_OUTPUTS][

↪→ FILTERS0 *4];

void dsp_thread0(chanend_t c_fromusb ,

chanend_t c_to1a , chanend_t c_to1b) {

int from_usb[NUM_OUTPUTS];

int for_1[NUM_OUTPUTS];

while (1) {

// Pick up my chunk of data to work on

chan_in_buf_word(c_fromusb , &from_usb [0], NUM_OUTPUTS);

for(int i = 0; i < NUM_OUTPUTS; i++) {

for_1[i] = dsp_filters_biquads ((int32_t) from_usb[i],

filter_coeffs0 ,

filter_states0[i],

FILTERS0 ,

28);

}

// And forward answer to next stage

chan_out_buf_word(c_to1a , &for_1 [0], NUM_OUTPUTS);

chan_out_buf_word(c_to1b , &for_1 [0], NUM_OUTPUTS);

}

}

DSP task 1A is implemented by dsp_thread1a and picks up data from the DSP task 0,
and outputs data to dsp task 2:

15

Extending USB Audio with Digital Signal Processing

#define FILTERS1a 2

// b2/a0 b1/a0 b0/a0 -a1/a0 -a2/a0

static __attribute__ ((aligned (8))) int32_t filter_coeffs1a[FILTERS1a *5] = {

261565110 , -521424736 , 260038367 , 521424736 , -253168021 ,

255074543 , -506484921 , 252105451 , 506484921 , -238744538 ,

};

static __attribute__ ((aligned (8))) int32_t filter_states1a[NUM_OUTPUTS /2][

↪→ FILTERS1a *4];

void dsp_thread1a(chanend_t c_from0 ,

chanend_t c_to2) {

int from_0[NUM_OUTPUTS];

int for_2[NUM_OUTPUTS /2];

while (1) {

// Pick up my chunk of data to work on

chan_in_buf_word(c_from0 , &from_0 [0], NUM_OUTPUTS);

for(int i = 0; i < NUM_OUTPUTS /2; i++) {

for_2[i] = dsp_filters_biquads ((int32_t) from_0[i],

filter_coeffs1a ,

filter_states1a[i],

FILTERS1a ,

28);

}

// And forward answer to next stage

chan_out_buf_word(c_to2 , &for_2 [0], NUM_OUTPUTS /2);

}

}

DSP task 1B is implemented by dsp_thread1b and picks up data from the DSP task 0,
and outputs data to dsp task 2:

16

Extending USB Audio with Digital Signal Processing

#define FILTERS1b 2

// b2/a0 b1/a0 b0/a0 -a1/a0 -a2/a0

static __attribute__ ((aligned (8))) int32_t filter_coeffs1b[FILTERS1b *5] = {

280274501 , -523039333 , 245645878 , 523039333 , -257484924 ,

291645146 , -504140302 , 223757950 , 504140302 , -246967640 ,

};

static __attribute__ ((aligned (8))) int32_t filter_states1b[NUM_OUTPUTS /2][

↪→ FILTERS1b *4];

void dsp_thread1b(chanend_t c_from0 ,

chanend_t c_to2) {

int from_0[NUM_OUTPUTS];

int for_2[NUM_OUTPUTS /2];

while (1) {

// Pick up my chunk of data to work on

chan_in_buf_word(c_from0 , &from_0 [0], NUM_OUTPUTS);

for(int i = 0; i < NUM_OUTPUTS /2; i++) {

for_2[i] = dsp_filters_biquads ((int32_t) from_0[i],

filter_coeffs1b ,

filter_states1b[i],

FILTERS1b ,

28);

}

// And forward answer to next stage

chan_out_buf_word(c_to2 , &for_2 [0], NUM_OUTPUTS /2);

}

}

Similarly, DSP task 2 is implemented by dsp_thread2 and picks up data from the DSP
tasks 1A and 1B, and outputs data t the distribution task. The weird part of the code is
that we need to push some data into the output channel end prior to starting the loop -
otherwise the data_distribution task would hang:

17

Extending USB Audio with Digital Signal Processing

#define FILTERS2 1

static __attribute__ ((aligned (8))) int32_t filter_coeffs2[FILTERS2 *5] = {

291645146 , -504140302 , 223757950 , 504140302 , -246967641 ,

};

static __attribute__ ((aligned (8))) int32_t filter_states2[NUM_OUTPUTS][

↪→ FILTERS2 *4];

void dsp_thread2(chanend_t c_from1a , chanend_t c_from1b ,

chanend_t c_todist) {

int from_1a[NUM_OUTPUTS];

int from_1b[NUM_OUTPUTS];

int for_usb[NUM_OUTPUTS];

chan_out_buf_word(c_todist , &for_usb [0], NUM_OUTPUTS); // Sample -2

chan_out_buf_word(c_todist , &for_usb [0], NUM_OUTPUTS); // Sample -1

while (1) {

// Pick up my chunk of data to work on

chan_in_buf_word(c_from1a , &from_1a [0], NUM_OUTPUTS /2);

chan_in_buf_word(c_from1b , &from_1b [0], NUM_OUTPUTS /2);

for_usb [0] = dsp_filters_biquads ((int32_t) from_1a [0],

filter_coeffs2 ,

filter_states2 [0],

FILTERS2 ,

28);

for_usb [1] = dsp_filters_biquads ((int32_t) from_1b [0],

filter_coeffs2 ,

filter_states2 [1],

FILTERS2 ,

28);

// And forward answer to the distributor for completion

chan_out_buf_word(c_todist , &for_usb [0], NUM_OUTPUTS);

}

}

The distributor picks up data from the USB stack, posts it to DSP task 0, and picks up an
answer from DSP task 2:

void dsp_data_distributor(chanend_t c_usb , chanend_t c_to0 , chanend_t

↪→ c_from2) {

int for_usb [NUM_OUTPUTS + NUM_INPUTS];

int from_usb[NUM_OUTPUTS + NUM_INPUTS];

while (1) {

// First deal with the USB side

chan_in_buf_word(c_usb , &from_usb [0], NUM_OUTPUTS);

chan_in_buf_word(c_usb , &from_usb[NUM_OUTPUTS],NUM_INPUTS);

chan_out_buf_word(c_usb , &for_usb [0], NUM_OUTPUTS);

chan_out_buf_word(c_usb , &for_usb[NUM_OUTPUTS], NUM_INPUTS);

// Now supply output data to DSP task 0

chan_out_buf_word(c_to0 , &from_usb [0], NUM_OUTPUTS);

// Now pick up data from DSP task 2

chan_in_buf_word(c_from2 , &for_usb [0], NUM_OUTPUTS);

}

}

18

Extending USB Audio with Digital Signal Processing

Finally, we need the code to start all the parallel threads. This code starts five tasks, and
connects them up using six channels:

DECLARE_JOB(dsp_data_distributor , (chanend_t , chanend_t , chanend_t));

DECLARE_JOB(dsp_thread0 , (chanend_t , chanend_t , chanend_t));

DECLARE_JOB(dsp_thread1a , (chanend_t , chanend_t));

DECLARE_JOB(dsp_thread1b , (chanend_t , chanend_t));

DECLARE_JOB(dsp_thread2 , (chanend_t , chanend_t , chanend_t));

void dsp_main(chanend_t c_data) {

channel_t c_dist_to_0 = chan_alloc ();

channel_t c_0_to_1a = chan_alloc ();

channel_t c_0_to_1b = chan_alloc ();

channel_t c_1a_to_2 = chan_alloc ();

channel_t c_1b_to_2 = chan_alloc ();

channel_t c_2_to_dist = chan_alloc ();

PAR_JOBS(

PJOB(dsp_data_distributor , (c_data , c_dist_to_0.end_a , c_2_to_dist.

↪→ end_b)),

PJOB(dsp_thread0 , (c_dist_to_0.end_b , c_0_to_1a.end_a , c_0_to_1b.

↪→ end_a)),

PJOB(dsp_thread1a , (c_0_to_1a.end_b , c_1a_to_2.end_a)),

PJOB(dsp_thread1b , (c_0_to_1b.end_b , c_1b_to_2.end_a)),

PJOB(dsp_thread2 , (c_1a_to_2.end_b , c_1b_to_2.end_b , c_2_to_dist.

↪→ end_a))

);

}

In order to show how this code works, we show a diagram in Figure 6. Note that the
distribution task is mostly idle; it ony consumes very little processing in the beginning
and the end of the sample-cycle. This means that five other threads can be used to soak
up the available DSP.

9 Controlling

In order to control the DSP that you have inserted into the code (eg, volume control,
equaliser settings), the easiest method is to store the settings in memory, and run an
asynchronous thread that has access to those variables. This asynchronous thread
could be controlled from an A/P (over, say, I2C or SPI), or it can interface directly with, for
example, rotary encoders, push buttons, sliders, or a touch screen. The memory registers
effectively become control registers. As long as one side writes and the other side reads
this is thread safe.

This method of updating needs to be done with some care as the memory is updated
asynchronously to the DSP. Updating a volume control is completely safe; it either takes
effect this sample or the next. Updating the taps of an FIR filter is also safe, the worst
that can happen is that for a sample it will use some of the old and some of the new
parameters. When updating an IIR filter (a biquad), it can be damaging to update the
biquad coefficients in the middle of the execution. In particular, it may make the filter
unstable. This can be avoided by updating the biquad in small steps (which is generally a
good idea because the internal state needs to settle too), or one can use a synchronous
thread instead.

If using a synchronised thread, the idea is that the thread does not just update the variables,
but it requests the variables to be updated by the DSP thread itself; at a time that is safe for

19

Extending USB Audio with Digital Signal Processing

T
im

e
Frame 5

arrives
Frame 1
departs

B
u

ffe
r

M
a
n

a
g

e
r

D
S

P
 d

istrib

Frame 6
arrives

Frame 2
departs

Frame 7
arrives

Frame 3
departs

D
S

P
0

 fra
m

e
 5

1610
issue-slots/
instructions

90
issue-slots/
instructions

Key

USB work

DSP work

Communication

I2S handling

Note that the

size of a box

is not to scale

with the

execution time,

Idle

2
2
.6

7
5

 u
s

D
S

P
1

A
 fra

m
e

 4
L

D
S

P
1

B
 fra

m
e

 4
R

D
S

P
2

 fra
m

e
 3

D
S

P
0

 fra
m

e
 6

D
S

P
1

A
 fra

m
e

 5

D
S

P
1

B
 fra

m
e

 5

D
S

P
2

 fra
m

e
 4

Frame 2

Frame 5

Frame 5

Frame 4

Frame 4

Frame 3

Frame 3

Frame 2

Frame 3

Frame 6

Frame 6

Frame 5

Frame 5

Frame 4

Frame 4

Frame 2

Frame 6

Frame 5

Frame 5

Frame 4

D
S

P
 ta

sk
0

D
S

P
 ta

sk
1
A

D
S

P
 ta

sk
1
B

D
S

P
 ta

sk
2

Figure 6:
Timeline of the

pipelined
example

the DSP. This will require a channel between the two threads and a protocol that causes
the control-thread to request an update, and an answer from the DSP task when it is
ready, whereupon the control-task posts the new filter coefficients that can be used by
the DSP-thread.

20

Extending USB Audio with Digital Signal Processing

Copyright © 2023, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing it
to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos
Ltd.makes no representation that the Information, or any particular implementation thereof, is or will be free from any
claims of infringement and again, shall have no liability in relation to any such claims.

XMOS, xCore, xcore.ai, and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other
countries and may not be used without written permission. Company and product names mentioned in this document
are the trademarks or registered trademarks of their respective owners.

21

	Introduction to USB Audio
	API offered by USB Audio
	DSP functions available
	Timing requirements
	Executing the DSP on the other physical core
	Parallelising DSP
	Data Parallel DSP
	Data Pipelining DSP
	Controlling

