
AN00174 (1.0.1)

Application Note: AN00174

A startKIT glowing LED demo
This application demonstrates I/O on the startKIT by showing a glowing LED pattern on the LEDs. It uses
the startKIT support library to access the I/O on the device.

Required tools and libraries

• xTIMEcomposer Tools - Version 14.0
• startKIT support library (lib_startkit_support) - Version 1.0.0

Required hardware

This application note is designed to run on the XMOS startKIT.

Prerequisites

• This document assumes familiarity with the XMOS xCORE architecture, the XMOS GPIO library,
the XMOS tool chain and the xC language. Documentation related to these aspects which are
not specific to this application note are linked to in the references appendix.

• For descriptions of XMOS related terms found in this document please see the XMOS Glossary1.

1http://www.xmos.com/published/glossary

Copyright 2016 XMOS Ltd. 1 www.xmos.com
XM008202

http://www.xmos.com/published/glossary


AN00174 (1.0.1)

1 Overview

1.1 Introduction

startKIT is a low-cost development board for the configurable xCORE multicore microcontroller prod-
ucts from XMOS. It’s easy to use and provides lots of advanced features on a small, extremely low cost
platform.

xCORE lets you software-configure the interfaces that you need for your system; so with startKIT you
can configure the board to your match your exact requirements. Its 500MIPS xCORE multicore microcon-
troller has eight 32bit logical cores that perform deterministically, making startKIT an ideal platform for
functions ranging from robotics and motion control to networking and digital audio.

startKIT also connects easily to your Raspberry Pi, allowing you to add real-time I/O and communication
features to this popular computing platform, and to try out advanced applications for xCORE.

Copyright 2016 XMOS Ltd. 2 www.xmos.com
XM008202



AN00174 (1.0.1)

2 Glowing LEDs

The example in this application note shows off using the I/O on the startKIT and the use of an XMOS
library (in particular the startKIT support library).

The example consists of a single application task which connects to a GPIO driver task supplied by the
startKIT support library.

startKIT
GPIO
driver

startKIT
GPIO
driver

glow_appglow_app

startkit_led_if

startkit_button_if

Figure 1: Glowing LEDs task diagram

2.1 The Makefile

The Makefile needs to target the startKIT. So has the line:

TARGET = STARTKIT

The startKIT support library also needs to be added to the USED_MODULES part of the Makefile:

USED_MODULE = lib_startkit_support

This will ensure that the startKIT support code is built into the application.

2.2 Application resource declaration

The resource used in the example are the ports used by the startKIT support library to access the I/O on
the device. These are allocated in a structure and are always ports 32A, 4B, 4A and a single clock block:

startkit_gpio_ports gpio_ports =
{XS1_PORT_32A, XS1_PORT_4B, XS1_PORT_4A, XS1_CLKBLK_1};

The variable gpio_ports is then used when calling the startKIT gpio driver task.

Copyright 2016 XMOS Ltd. 3 www.xmos.com
XM008202



AN00174 (1.0.1)

2.3 The application main() function

The main() function sets up two tasks running in parallel:

• glow_app will be the main application.
• startkit_gpio_driver is the driver task provided by the startKIT support library.

These tasks are connected by two interfaces that allow the application to communicate with the startKIT
GPIO driver task. Details of these interfaces can be found in the startKIT support library user guide.

int main()
{
// These interface connections link the application to the
// gpio driver.
startkit_led_if i_led;
startkit_button_if i_button;
par {
on tile[0]: startkit_gpio_driver(i_led, i_button,

null, null,
gpio_ports);

on tile[0]: glow_app(i_led, i_button);
}
return 0;

}

2.4 The application task

The application logic is implemented in the glow_app task.

Copyright 2016 XMOS Ltd. 4 www.xmos.com
XM008202



AN00174 (1.0.1)

// This function is combinable - it can share a core with other tasks
[[combinable]]
static void glow_app(client startkit_led_if leds,

client startkit_button_if button)
{
timer tmr;
int period = 1 * XS1_TIMER_HZ; // period from off to on = 1s;
unsigned res = 30; // increment the brightness in this

// number of steps
int delay = period / res; // how long to wait between updates
int level = 0; // the level of led brightness
unsigned pattern = 0b010101010; // the pattern output to the leds,

// alternates between an X and its
// inverse

int timestamp;
int dir = 1;

// Take the initial timestamp of the 100Mhz timer
tmr :> timestamp;
while (1) {
select {
// After 'delay' ticks do this
case tmr when timerafter(timestamp + delay) :> void:
// increase the output level of the led
level += dir * (LED_ON / res);
if (level > LED_ON) {
level = LED_ON;
dir = -1;

}
if (level < 0) {
level = 0;
dir = 1;

}
// set the leds
leds.set_multiple(pattern, level);
// update the timestamp for the next timeout
timestamp += delay;
break;

case button.changed():
if (button.get_value() == BUTTON_DOWN) {
// If the button has been pressed down then
// invert the pattern
pattern = ~pattern;

}
break;

}
}

}

The task consists of an infinite loop that repeated reacts to two events via the xC select statement. The
first case reacts to a periodic timer and the second case reacts to a button press.

Copyright 2016 XMOS Ltd. 5 www.xmos.com
XM008202



AN00174 (1.0.1)

Other notes that can be seen with respect to the code are:

• The button.changed event is a notification from the GPIO driver tasks to indicate a button change.
It is defined as part of the starkit_button_if interface.

• The led.set_multiple call tells the GPIO driver task to set the output PWM level of several LEDS in
the startKIT 3x3 LED grid. It is a function defined in the startkit_led_if interface.

Copyright 2016 XMOS Ltd. 6 www.xmos.com
XM008202



AN00174 (1.0.1)

APPENDIX A - Launching the demo application

Once the demo example has been built either from the command line using xmake or via the build
mechanism of xTIMEcomposer studio we can execute the application on the startKIT.

Once built there will be a bin directory within the project which contains the binary for the xCORE device.
The xCORE binary has a XMOS standard .xe extension.

A.1 Launching from the command line

From the command line we use the xrun tool to download code to both the xCORE devices. If we change
into the bin directory of the project we can execute the code on the xCORE microcontroller as follows:

> xrun AN00174_startKIT_glowing_LEDs_demo.xe <-- Download and execute the xCORE code

Once this command has executed the application will be running on the startKIT and the LEDs should
flash.

A.2 Launching from xTIMEcomposer Studio

From xTIMEcomposer Studio we use the run mechanism to download code to xCORE device. Select the
xCORE binary from the bin directory, right click and go to Run Configurations. Double click on xCORE
application to create a new run configuration and then select Run.

Once this command has executed the application will be running on the startKIT and the LEDs should
flash.

Copyright 2016 XMOS Ltd. 7 www.xmos.com
XM008202



AN00174 (1.0.1)

APPENDIX B - References

XMOS Tools User Guide

http://www.xmos.com/published/xtimecomposer-user-guide

XMOS xCORE Programming Guide

http://www.xmos.com/published/xmos-programming-guide

Copyright 2016 XMOS Ltd. 8 www.xmos.com
XM008202

http://www.xmos.com/published/xtimecomposer-user-guide
http://www.xmos.com/published/xmos-programming-guide


AN00174 (1.0.1)

APPENDIX C - Full source code listing

C.1 Source code for main.xc

// Copyright (c) 2016, XMOS Ltd, All rights reserved
#include <xs1.h>
#include <platform.h>
#include <print.h>
#include "startkit_gpio.h"

// This function is combinable - it can share a core with other tasks
[[combinable]]
static void glow_app(client startkit_led_if leds,

client startkit_button_if button)
{
timer tmr;
int period = 1 * XS1_TIMER_HZ; // period from off to on = 1s;
unsigned res = 30; // increment the brightness in this

// number of steps
int delay = period / res; // how long to wait between updates
int level = 0; // the level of led brightness
unsigned pattern = 0b010101010; // the pattern output to the leds,

// alternates between an X and its
// inverse

int timestamp;
int dir = 1;

// Take the initial timestamp of the 100Mhz timer
tmr :> timestamp;
while (1) {
select {
// After 'delay' ticks do this
case tmr when timerafter(timestamp + delay) :> void:
// increase the output level of the led
level += dir * (LED_ON / res);
if (level > LED_ON) {
level = LED_ON;
dir = -1;

}
if (level < 0) {
level = 0;
dir = 1;

}
// set the leds
leds.set_multiple(pattern, level);
// update the timestamp for the next timeout
timestamp += delay;
break;

case button.changed():
if (button.get_value() == BUTTON_DOWN) {
// If the button has been pressed down then
// invert the pattern
pattern = ~pattern;

}
break;

}

Copyright 2016 XMOS Ltd. 9 www.xmos.com
XM008202



AN00174 (1.0.1)

}
}

startkit_gpio_ports gpio_ports =
{XS1_PORT_32A, XS1_PORT_4B, XS1_PORT_4A, XS1_CLKBLK_1};

// 'main' sets up the system, consisting of two tasks - one to drive
// the i/o and one to run the application that communicates with that
// driver.
int main()
{
// These interface connections link the application to the
// gpio driver.
startkit_led_if i_led;
startkit_button_if i_button;
par {
on tile[0]: startkit_gpio_driver(i_led, i_button,

null, null,
gpio_ports);

on tile[0]: glow_app(i_led, i_button);
}
return 0;

}

Copyright 2016 XMOS Ltd. 10 www.xmos.com
XM008202



AN00174 (1.0.1)

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is
providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to
its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will
be free from any claims of infringement and again, shall have no liability in relation to any such claims.

Copyright 2016 XMOS Ltd. 11 www.xmos.com
XM008202


	A startKIT glowing LED demo
	Overview
	Introduction

	Glowing LEDs
	The Makefile
	Application resource declaration
	The application main() function
	The application task

	Launching the demo application
	Launching from the command line
	Launching from xTIMEcomposer Studio

	References
	Full source code listing
	Source code for main.xc


