
XCORE-VOICE SOLUTION - Programming Guide
Release: 2.2.0
Publication Date: 2023/12/06

Table of Contents

1 Product Description 1

2 Key Features 2

3 Obtaining the Hardware 3

4 Obtaining the Software 4
4.1 Development Tools . 4
4.2 Application Demonstrations . 4
4.3 Source Code . 4

4.3.1 Cloning the Repository . 4

5 Prerequisites 5
5.1 Windows . 5

5.1.1 libusb . 5
5.2 macOS . 5

6 Example Designs 6
6.1 Far-field Voice Local Command . 6

6.1.1 Overview . 6
6.1.2 Supported Hardware . 6

6.1.2.1 Setting up the Hardware . 6
6.1.3 Configuring the Firmware . 8
6.1.4 Deploying the Firmware with Linux or macOS . 9

6.1.4.1 Building the Host Applications . 9
6.1.4.2 Building the Firmware . 10
6.1.4.3 Running the Firmware . 10
6.1.4.4 Debugging the Firmware . 10

6.1.5 Deploying the Firmware with Native Windows . 10
6.1.5.1 Building the Host Applications . 11
6.1.5.2 Building the Firmware . 11
6.1.5.3 Running the Firmware . 11
6.1.5.4 Debugging the Firmware . 12

6.1.6 Modifying the Software . 12
6.1.6.1 Host Integration . 12
6.1.6.2 Audio Pipeline . 13
6.1.6.3 Software Description . 14
6.1.6.4 Software Modifications . 22
6.1.6.5 Speech Recognition - Sensory . 27
6.1.6.6 Speech Recognition - Cyberon . 29

6.2 Low Power Far-field Voice Local Command . 31
6.2.1 Overview . 31
6.2.2 Supported Hardware . 33

6.2.2.1 Setting up the Hardware . 33
6.2.3 Configuring the Firmware . 35
6.2.4 Deploying the Firmware with Linux or macOS . 36

6.2.4.1 Building the Host Applications . 36
6.2.4.2 Building the Firmware . 36
6.2.4.3 Running the Firmware . 36
6.2.4.4 Debugging the Firmware . 36

6.2.5 Deploying the Firmware with Native Windows . 37
6.2.5.1 Building the Host Applications . 37

iiiiii

6.2.5.2 Building the Firmware . 38
6.2.5.3 Running the Firmware . 38
6.2.5.4 Debugging the Firmware . 38

6.2.6 Modifying the Software . 39
6.2.6.1 Host Integration . 39
6.2.6.2 Audio Pipeline . 40
6.2.6.3 Software Description . 41
6.2.6.4 Software Modifications . 53
6.2.6.5 Speech Recognition . 59

6.3 Far-field Voice Assistant . 62
6.3.1 Overview . 62
6.3.2 Supported Hardware . 62

6.3.2.1 Setting up the Hardware . 62
6.3.3 Deploying the Firmware with Linux or macOS . 64

6.3.3.1 Building the Host Applications . 64
6.3.3.2 Building the Firmware . 64
6.3.3.3 Running the Firmware . 64
6.3.3.4 Upgrading the Firmware . 65
6.3.3.5 Debugging the Firmware . 66

6.3.4 Deploying the Firmware with Native Windows . 66
6.3.4.1 Building the Host Applications . 66
6.3.4.2 Building the Firmware . 67
6.3.4.3 Running the Firmware . 67
6.3.4.4 Upgrading the Firmware . 67
6.3.4.5 Debugging the Firmware . 68

6.3.5 Modifying the Software . 68
6.3.5.1 Host Integration . 68
6.3.5.2 Design Architecture . 70
6.3.5.3 Audio Pipeline . 71
6.3.5.4 Software Description . 72
6.3.5.5 Software Modifications . 77

6.4 PDM Microphone Aggregator Example . 83
6.4.1 Obtaining the app files . 83
6.4.2 Building the app . 83

6.4.2.1 Linux or Mac . 83
6.4.2.2 Windows . 84

6.4.3 Running the app . 84
6.4.4 Required Hardware . 84
6.4.5 Operation . 85
6.4.6 Software Architecture . 85

6.4.6.1 PDM Capture . 86
6.4.6.2 Audio Hub . 86
6.4.6.3 TDM Host Connection . 87
6.4.6.4 USB Host Connection . 87

6.4.7 Resource Usage . 87
6.4.7.1 TDM Build . 87
6.4.7.2 USB Build . 88

6.4.8 Board Configuration . 88
6.4.9 I2C Controlled Volume . 89

6.5 ASRC Application . 90
6.5.1 Overview . 90

6.5.1.1 Supported Hardware . 90
6.5.1.2 Obtaining the app files . 91
6.5.1.3 Building the app . 91
6.5.1.4 Running the app . 92
6.5.1.5 Operation . 92

6.5.2 Software Architecture . 93
6.5.2.1 Task diagram . 93

iiiiiiiii

6.5.2.2 USB Driver components . 94
6.5.2.3 I2S Driver components . 94
6.5.2.4 Application components . 95
6.5.2.5 Handling I2S sampling rate change events . 99
6.5.2.6 Handling USB speaker interface close -> open events 100
6.5.2.7 Handling USB mic interface close -> open events 100

6.5.3 Resource Usage . 100
6.5.3.1 Memory . 100
6.5.3.2 Chanends . 100
6.5.3.3 CPU . 101

7 Speech Recognition Ports 102

8 Memory and CPU Requirements 103
8.1 Memory . 103
8.2 CPU . 103

9 How-Tos 104
9.1 Changing the input and output sample rate . 104
9.2 I2S AEC reference input audio & USB processed audio output . 104

10 Frequently Asked Questions 106
10.1 CMake hides XTC Tools commands . 106
10.2 fatfs_mkimage: not found . 106
10.3 FFD pdm_rx_isr() Crash . 106
10.4 Debugging low-power . 106
10.5 xcc2clang.exe: error: no such file or directory . 107

11 Licenses 108
11.1 XMOS . 108
11.2 Third-Party . 108

iviviv

1 Product Description

The XCORE-VOICE Solution consists of example designs and a C-based SDK for the development of audio
front-end applications to support far-field voice use cases on the xcore.ai family of chips (XU316). The XCORE-
VOICE examples are currently based on FreeRTOS or bare-metal, leveraging the flexibility of the xcore.ai plat-
form and providing designers with a familiar environment to customize and develop products.

XCORE-VOICE example designs include turn-key solutions to enable easier product development for smart
home applications such as light switches, thermostats, and home appliances. xcore.ai’s unique architec-
ture providing powerful signal processing and accelerated AI capabilities combined with the XCORE-VOICE
framework allows designers to incorporate keyword, event detection, or advanced local dictionary support to
create a complete voice interface solution. Bridging designs including PDMmicrophone to host aggregation
are also included showcasing the use of xcore.ai as an interfacing and bridging solution for deployment in
existing systems.

The C SDK is composed of the following components:

• Peripheral IO libraries including; UART, I2C, I2S, SPI, QSPI, PDM microphones, and USB. These libraries
support bare-metal and RTOS application development.

• Libraries core to DSP applications, including vectorized math and voice processing DSP. These libraries
support bare-metal and RTOS application development.

• Libraries for speech recognition applications. These libraries support bare-metal and RTOS application
development.

• Libraries that enable multi-core FreeRTOS development on xcore including a wide array of RTOS drivers
and middleware.

• Pre-build and validated audio processing pipelines.

• Code Examples - Examples showing a variety of xcore features based on bare-metal and FreeRTOS
programming.

• Documentation - Tutorials, references and API guides.

111

2 Key Features

The XCORE-VOICE Solution takes advantage of the flexible software-defined xcore-ai architecture to support
numerous far-field voice use cases through the available example designs and the ability to construct user-
defined audio pipeline from the SW components and libraries in the C-based SDK.

These include:

Voice Processing components

• Two PDMmicrophone interfaces

• Digital signal processing pipeline

• Full duplex, stereo, Acoustic Echo Cancellation (AEC)

• Reference audio via I2S with automatic bulk delay insertion

• Point noise suppression via interference canceller

• Switchable stationary noise suppressor

• Programmable Automatic Gain Control (AGC)

• Flexible audio output routing and filtering

• Support for Sensory, Cyberon or other 3rd party Automatic Speech Recognition (ASR) software

Device Interface components

• Full speed USB2.0 compliant device supporting USB Audio Class (UAC) 2.0

• Flexible Peripheral Interfaces

• Programmable digital general-purpose inputs and outputs

Example Designs utilizing above components

• Far-Field Voice Local Command

• Low Power Far-Field Voice Local Command

• Far-Field Voice Assistance

Firmware Management

• Boot from QSPI Flash

• Default firmware image for power-on operation

• Option to boot from a local host processor via SPI

• Device Firmware Update (DFU) via USB or other transport

Power Consumption

• FFD/FFVA: 300-350mW (Typical)

• Low Power FFD: 110mW (Full-Power), 54mW (Low-Power), <50mWpossible with Sensory’s LPSD under
certain conditions.

222

3 Obtaining the Hardware

The XK-VOICE-L71 DevKit and Hardware Manual can be obtained from the XK-VOICE-L71 product information
page.

The XK-VOICE-L71 is based on the: XU316-1024-QF60A

The XCORE-AI-EXPLORER DevKit and Hardware Manual used in theMicrophone Aggregation example can be
obtained from the XK-VOICE-L71 product information page.

Learn more about the The XMOS XS3 Architecture

333

https://www.xmos.ai/xk-voice-l71
https://www.xmos.ai/file/xu316-1024-qf60b-xcore_ai-datasheet?version=latest
https://www.xmos.ai/xk-voice-l71
https://www.xmos.ai/download/The-XMOS-XS3-Architecture.pdf

4 Obtaining the Software

4.1 Development Tools
It is recommended that you download and install the latest release of theXTCTools. XTCTools 15.2.1 or newer
are required. If you already have the XTC Toolchain installed, you can check the version with the following
command:

xcc --version

4.2 Application Demonstrations
If you only want to run the example designs, pre-built firmware and other software can be downloaded from
the XCORE-VOICE product information page.

4.3 Source Code
If you wish to modify the example designs, a zip archive of all source code can be downloaded from the
XCORE-VOICE product information page.

See the Programming Guide for information on:

• Prerequisites

• Instructions for building, running, and debugging the example designs

• Details on the software design and source code

4.3.1 Cloning the Repository

Alternatively, the source code can be obtained by cloning the public GitHub repository.

Note: Cloning requires a GitHub account configured with SSH key authentication.

Run the following git command to clone the repository and all submodules:

git clone --recurse-submodules git@github.com:xmos/sln_voice.git

If you have previously cloned the repository or downloaded a zip file of source code, the following commands
can be used to update and fetch the submodules:

git pull
git submodule update --init --recursive

444

https://www.xmos.com/software/tools/
https://www.xmos.ai/xcore-voice
https://www.xmos.ai/xcore-voice
https://github.com
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/about-ssh

5 Prerequisites

It is recommended that you download and install the latest release of the XTC Tools. XTC Tools 15.2.1 or
newer are required for building, running, flashing and debugging the example applications.

CMake 3.21 or newer and Git are also required for building the example applications.

5.1 Windows
A standard C/C++ compiler is required to build applications for the host PC. Windows users may use Build
Tools for Visual Studio command-line interface.

It is highly recommended to use Ninja as the build system for native Windows firmware builds. To install
Ninja follow install instructions at https://ninja-build.org/ or on Windows install with winget by running the
following commands in PowerShell:

Install
winget install Ninja-build.ninja
Reload user Path
$env:Path=[System.Environment]::GetEnvironmentVariable("Path","User")

XCORE-VOICE host builds should also work using other Windows GNU development environments like GNU
Make, MinGW or Cygwin.

5.1.1 libusb

The DFU feature of XCORE-VOICE requires dfu-util.

5.2 macOS
A standard C/C++ compiler is required to build applications for the host PC. Mac users may use the Xcode
command-line tools.

555

https://www.xmos.com/software/tools/
https://cmake.org/download/
https://git-scm.com/
https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=msvc-170#download-and-install-the-tools
https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=msvc-170#download-and-install-the-tools
https://ninja-build.org/
https://dfu-util.sourceforge.net/

6 Example Designs

6.1 Far-field Voice Local Command

6.1.1 Overview

This is the far-field voice local command (FFD) example design. Two examples are provided: both examples
include speech recognition and a local dictionary. One example uses the Sensory TrulyHandsfree™ (THF)
libraries, and the other one uses the Cyberon DSPotter™ libraries.

When a wakeword phrase is detected followed by a command phrase, the application will output an audio
response and a discrete message over I2C and UART.

Sensory’s THF and Cyberon’s DSpotter™ libraries ship with an expiring development license. The Sensory
one will suspend recognition after 11.4 hours or 107 recognition events, and the Cyberon one will suspend
recognition after 100 recognition events. After the maximum number of recognitions is reached, a device
reset is required to resume normal operation. To perform a reset, either power cycle the device or press the
SW2 button.

More information on the Sensory speech recognition library can be found here: Speech Recognition - Sensory.

More information on the Cyberon speech recognition library can be found here: Speech Recognition - Cyberon

6.1.2 Supported Hardware

This example application is supported on the XK-VOICE-L71 board.

6.1.2.1 Setting up the Hardware

This example design requires an XTAG4 and XK-VOICE-L71 board.

666

https://www.xmos.ai/xk-voice-l71

xTAG

The xTAG is used to program and debug the device

Connect the xTAG to the debug header, as shown below.

Connect the micro USB XTAG4 and micro USB XK-VOICE-L71 to the programming host.

777

Speakers (OPTIONAL)

This example application features audio playback responses. Speakers can be connected to the LINE OUT
on the XK-VOICE-L71.

6.1.3 Configuring the Firmware

The default application performs as described in theOverview. There are numerous compile time options that
can be added to change the example designwithout requiring code changes. To change the options explained
in the table below, add the desired configuration variables to the APP_COMPILE_DEFINITIONS cmake variable
located here.

If options are changed, the application firmware must be rebuilt.

888

https://github.com/xmos/sln_voice/blob/develop/examples/ffd/ffd.cmake

Table 6.1: FFD Compile Options

Compile Option Description Default
Value

appconfINTENT_ENABLED Enables/disables the intent engine, primarily
for debug.

1

appconfINTENT_RESET_DELAY_MS Sets the period after the wake up phrase has
been heard for a valid command phrase

5000

appconfINTENT_RAW_OUTPUT Set to 1 to output all keywords found, skip-
ping the internal wake up and command
state machine

0

appconfAUDIO_PLAYBACK_ENABLED Enables/disables the audio playback com-
mand response

1

appconfINTENT_UART_OUTPUT_ENABLED Enables/disables the UART intent message 1
appconfINTENT_I2C_OUTPUT_ENABLED Enables/disables the I2C intent message 1
appconfUART_BAUD_RATE Sets the baud rate for the UART tx intent in-

terface
9600

appconfINTENT_I2C_OUTPUT_DEVICE_ADDR Sets the I2C slave address to transmit the in-
tent to

0x01

appconfINTENT_TRANSPORT_DELAY_MS Sets the delay between host wake up re-
quested and I2C and UART keyword code
transmission

50

appconfINTENT_QUEUE_LEN Sets the maximum number of detected in-
tents to hold while waiting for the host to
wake up

10

appconfINTENT_WAKEUP_EDGE_TYPE Sets the host wake up pin GPIO edge type. 0
for rising edge, 1 for falling edge

0

appconfAUDIO_PIPELINE_SKIP_IC_AND_VNR Enables/disables the IC and VNR 0
appconfAUDIO_PIPELINE_SKIP_NS Enables/disables the NS 0
appconfAUDIO_PIPELINE_SKIP_AGC Enables/disables the AGC 0

6.1.4 Deploying the Firmware with Linux or macOS

This document explains how to deploy the software using CMake and Make.

Note: In the commands below <speech_engine> can be either sensory or cyberon, depending on the choice
of the speech recognition engine and model.

6.1.4.1 Building the Host Applications

This application requires a host application to create the flash data partition. Run the following commands
in the root folder to build the host application using your native Toolchain:

Note: Permissions may be required to install the host applications.

cmake -B build_host
cd build_host
make install

The host applications will be installed at /opt/xmos/bin, and may be moved if desired. You may wish to add
this directory to your PATH variable.

999

6.1.4.2 Building the Firmware

Run the following commands in the root folder to build the firmware:

cmake -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
make example_ffd_<speech_engine>

6.1.4.3 Running the Firmware

Before running the firmware, the filesystem and model must be flashed to the data partition.

Within the root of the build folder, run:

make flash_app_example_ffd_<speech_engine>

After this command completes, the application will be running.

After flashing the data partition, the application can be run without reflashing. If changes are made to the
data partition components, the application must be reflashed.

From the build folder run:

xrun --xscope example_ffd_<speech_engine>.xe

6.1.4.4 Debugging the Firmware

To debug with xgdb, from the build folder run:

xgdb -ex "connect --xscope" -ex "run" example_ffd_<speech_engine>.xe

6.1.5 Deploying the Firmware with Native Windows

This document explains how to deploy the software using CMake and Ninja. If you are not using native Win-
dowsMSVC build tools and instead using a Linux emulation tool such asWSL, refer toDeploying the Firmware
with Linux or macOS.

To install Ninja follow install instructions at https://ninja-build.org/ or on Windows install with winget by run-
ning the following commands in PowerShell:

Install
winget install Ninja-build.ninja
Reload user Path
$env:Path=[System.Environment]::GetEnvironmentVariable("Path","User")

101010

https://ninja-build.org/

6.1.5.1 Building the Host Applications

This application requires a host application to create the flash data partition. Run the following commands
in the root folder to build the host application using your native Toolchain:

Note: Permissions may be required to install the host applications.

Note: A C/C++ compiler, such as Visual Studio or MinGW, must be included in the path.

Before building the host application, you will need to add the path to the XTC Tools to your environment.

set "XMOS_TOOL_PATH=<path-to-xtc-tools>"

Then build the host application:

cmake -G Ninja -B build_host
cd build_host
ninja install

The host applications will be installed at %USERPROFILE%\.xmos\bin, and may be moved if desired. You may
wish to add this directory to your PATH variable.

6.1.5.2 Building the Firmware

Run the following commands in the root folder to build the firmware:

cmake -G Ninja -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
ninja example_ffd_<speech_engine>

6.1.5.3 Running the Firmware

Before running the firmware, the filesystem and model must be flashed to the data partition.

Within the root of the build folder, run:

ninja flash_app_example_ffd_<speech_engine>

After this command completes, the application will be running.

After flashing the data partition, the application can be run without reflashing. If changes are made to the
data partition components, the application must be reflashed.

From the build folder run:

xrun --xscope example_ffd_<speech_engine>.xe

111111

6.1.5.4 Debugging the Firmware

To debug with xgdb, from the build folder run:

xgdb -ex "connect --xscope" -ex "run" example_ffd_<speech_engine>.xe

6.1.6 Modifying the Software

The FFD example design is highly customizable. This section describes how to modify the application.

6.1.6.1 Host Integration

Overview

This section describes the connections that would need to be made to an external host for plug and play
integration with existing devices.

When an intent is found, the XCORE device will check if the host is awake, by checking the Host Status GPIO
pin. If the host is awake the intent code will be transmitted over I2C and/or UART.

If the host is not awake, the XCORE device will trigger a transition of the Wakeup GPIO pin. This can be
configured to be a rising or falling edge. The XCORE device will then wait for a fixed period of time, set at
compile time, before transmitting the intent over the I2C and/or UART interface. This behavior can be changed
as desired by modifying the intent handling code.

UART

Table 6.2: UART Connections

FFD Connection Host Connection

J4:24 UART RX
J4:20 GND

I2C

Table 6.3: I2C Connections

FFD Connection Host Connection

J4:3 SDA
J4:5 SCL
J4:9 GND

121212

GPIO

Table 6.4: GPIO Connections

FFD Connection Host Connection

J4:19 Wake up input
J4:21 Host Status output

6.1.6.2 Audio Pipeline

The audio pipeline in FFD processes two channel PDM microphone input into a single output channel, in-
tended for use by an ASR engine.

The audio pipeline consists of 3 stages.

Table 6.5: FFD Audio Pipeline

Stage Description Input Channel
Count

Output Chan-
nel Count

1 Interference Canceller and Voice Noise Ratio 2 1
2 Noise Suppression 1 1
3 Automatic Gain Control 1 1

See the Voice Framework User Guide for more information.

131313

6.1.6.3 Software Description

Overview

The estimated power usage of the example application varies from 100-141 mW. This will vary based on
component tolerances and any user added code and/or user added compile options.

Table 6.6: FFD Resources

Resource Tile 0 Tile 1

Total Memory Free 145k 208k
Runtime Heap Memory Free 38k 42k

Table 6.7: FFD CPU Usage

Core ID Typical Mean CPU
Usage (%)

Standard Devia-
tion CPU Usage
(%)

Typical Min CPU
usage (%, 10ms
rolling)

Typical Max CPU
usage (%, 10ms
rolling)

tile[0], core[0] 0.006 0.345 0.000 21.030
tile[0], core[1] 0.072 2.031 0.000 80.690
tile[0], core[2] 0.082 2.287 0.000 100.000
tile[0], core[3] 1.666 2.906 0.000 54.560
tile[0], core[4] 65.925 27.828 0.000 91.220
tile[1], core[0] 0.014 0.540 0.000 27.440
tile[1], core[1] 99.990 0.505 74.000 100.000
tile[1], core[2] 99.990 0.507 73.870 100.000
tile[1], core[3] 18.272 13.259 0.000 98.220
tile[1], core[4] 17.231 11.048 0.000 37.260

Note that these are typical usage statistics for a representative run of the application on hardware. Core allo-
cationsmay shift run-to-run in a scheduled RTOS. These statistics are generated by slicing the representative
run into 10 ms chunks and calculating % time per chunk not spent in the FreeRTOS IDLE tasks. Therefore,
the underlying distribution of these 10 ms bins should not be assumed to be Normal; this has implications on
e.g. the interpretation of the Standard Deviation given here.

Table 6.8: FFD Power Usage

Power State Power (mW)

Always 114

The description of the software is split up by folder:

Table 6.9: FFD Software Description

Folder Description

bsp_config Board support configuration setting up software based IO peripherals
ext Application extensions
filesystem_support Filesystem contents for application
src Main application
src/intent_engine Intent engine integration
src/intent_handler Intent engine output integration

141414

bsp_config

This folder contains bsp_configs for the FFD application. More information on bsp_configs can be found in
the RTOS Framework documentation.

Table 6.10: FFD bsp_config

Filename/Directory Description

dac directory DAC ports for supported bsp_configs
XCORE-AI-EXPLORER directory experimental bsp_config, not recommended for general use
XCORE-AI-EXPLORER_EXT directory experimental bsp_config, not recommended for general use
XK_VOICE_L71 directory default FFD application bsp_config
XK_VOICE_L71_EXT directory USB debug extension FFD application bsp_config
bsp_config.cmake cmake for adding FFD bsp_configs

ext

This folder contains FFD application debug and experimental extensions.

Table 6.11: FFD ext

Filename/Directory Description

src directory custom code for USB output and debug
ffd_dev.cmake cmake for declaring FFD experimental configs
ffd_ext.cmake cmake for declaring FFD extensions
ffd_usb_audio_testing.cmake cmake for declaring FFD usb debug extension

filesystem_support

This folder contains filesystem contents for the FFD application.

Table 6.12: FFD filesystem_support

Filename/Directory Description

50.wav Playback for intent ID 50
1.wav Playback for intent ID 1
3.wav Playback for intent ID 3
4.wav Playback for intent ID 4
5.wav Playback for intent ID 5
6.wav Playback for intent ID 6
7.wav Playback for intent ID 7
8.wav Playback for intent ID 8
9.wav Playback for intent ID 9
10.wav Playback for intent ID 10
11.wav Playback for intent ID 11
12.wav Playback for intent ID 12
13.wav Playback for intent ID 13
14.wav Playback for intent ID 14
15.wav Playback for intent ID 15
16.wav Playback for intent ID 16
17.wav Playback for intent ID 17
18.wav Playback for intent ID 18

151515

src

This folder contains the core application source.

Table 6.13: FFD src

Filename/Directory Description

gpio_ctrl directory contains general purpose input handling and LED handling tasks
intent_engine directory contains intent engine code
intent_handler directory contains intent handling code
rtos_conf directory contains default FreeRTOS configuration headers
app_conf_check.h header to validate app_conf.h
app_conf.h header to describe app configuration
config.xscope xscope configuration file
ff_appconf.h default fatfs configuration header
main.c main application source file
xcore_device_memory.c model loading from filesystem source file
xcore_device_memory.h model loading from filesystem header file

Audio Pipeline

The audio pipeline module provides the application with three API functions:

Listing 6.1: Audio Pipeline API (audio_pipeline.h)

void audio_pipeline_init(
void *input_app_data,
void *output_app_data);

void audio_pipeline_input(
void *input_app_data,
int32_t **input_audio_frames,
size_t ch_count,
size_t frame_count);

int audio_pipeline_output(
void *output_app_data,
int32_t **output_audio_frames,
size_t ch_count,
size_t frame_count);

audio_pipeline_init

This function has the role of creating the audio pipeline, with two optional application pointers which are
provided to the application in the audio_pipeline_input() and audio_pipeline_output() callbacks.

In FFD, the audio pipeline is initialized with no additional arguments, and instantiates a 3 stage pipeline on tile
1, as described in: Audio Pipeline

161616

audio_pipeline_input

This function has the role of providing the audio pipeline with the input frames.

In FFD, the input is received from the rtos_mic_array driver.

audio_pipeline_output

This function has the role of receiving the processed audio pipeline output.

In FFD, the output is sent to the intent engine.

Main

The major components of main are:

Listing 6.2: Main components (main.c)

void startup_task(void *arg)
void vApplicationMinimalIdleHook(void)
void tile_common_init(chanend_t c)
void main_tile0(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)
void main_tile1(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)

startup_task

This function has the role of launching tasks on each tile. For those familiar with XCORE, it is comparable to
the main par loop in an XC main.

vApplicationMinimalIdleHook

This is a FreeRTOS callback. By calling “waiteu” without events configured, this has the effect of both MIPs
and power savings on XCORE.

171717

Listing 6.3: vApplicationMinimalIdleHook (main.c)

asm volatile("waiteu");

tile_common_init

This function is the common tile initialization, which initializes the bsp_config, creates the startup task, and
starts the FreeRTOS kernel.

main_tile0

This function is the application C entry point on tile 0, provided by the SDK.

main_tile1

This function is the application C entry point on tile 1, provided by the SDK.

src/intent_engine

This folder contains the intent engine module for the FFD application.

Table 6.14: FFD Intent Engine

Filename/Directory Description

intent_engine_io.c contains additional io intent engine code
intent_engine_support.c contains general intent engine support code
intent_engine.c contains the implementation of default intent engine code
intent_engine.h header for intent engine code

Major Components

The intent engine module provides the application with two API functions:

181818

Listing 6.4: Intent Engine API (intent_engine.h)

int32_t intent_engine_create(uint32_t priority, void *args);
void intent_engine_ready_sync(void);
int32_t intent_engine_sample_push(asr_sample_t *buf, size_t frames);

If replacing the existing model, these are the only two functions that are required to be populated.

intent_engine_create

This function has the role of creating themodel running task and providing a pointer, which can be used by the
application to handle the output intent result. In the case of the default configuration, the application provides
a FreeRTOS Queue object.

In FFD, the audio pipeline output is on tile 1 and the ASR engine on tile 0.

Listing 6.5: intent_engine_create snippet (intent_engine_io.c)

#if ASR_TILE_NO == AUDIO_PIPELINE_TILE_NO
intent_engine_task_create(priority);

#else
intent_engine_intertile_task_create(priority);

#endif

The call to intent_engine_intertile_task_create() will create two threads on tile 0. One thread is the ASR engine
thread. The other thread is an intertile rx thread, which will interface with the audio pipeline output.

intent_engine_ready_sync

This function is called by both tiles and serves to ensure that tile 0 is ready to receive audio samples before
starting the audio pipeline. This is a preventative measure to avoid dropping samples at startup.

Listing 6.6: intent_engine_create snippet (intent_engine_io.c)

int sync = 0;
#if ON_TILE(AUDIO_PIPELINE_TILE_NO)

size_t len = rtos_intertile_rx_len(intertile_ctx, appconfINTENT_ENGINE_READY_SYNC_PORT, RTOS_
↪→OSAL_WAIT_FOREVER);

xassert(len == sizeof(sync));
rtos_intertile_rx_data(intertile_ctx, &sync, sizeof(sync));

#else
rtos_intertile_tx(intertile_ctx, appconfINTENT_ENGINE_READY_SYNC_PORT, &sync, sizeof(sync));

#endif

intent_engine_sample_push

This function has the role of sending the ASR output channel from the audio pipeline to the intent engine.

In FFD, the audio pipeline output is on tile 1 and the ASR engine on tile 0.

Listing 6.7: intent_engine_create snippet (intent_engine_io.c)

#if appconfINTENT_ENABLED && ON_TILE(AUDIO_PIPELINE_TILE_NO)
#if ASR_TILE_NO == AUDIO_PIPELINE_TILE_NO

intent_engine_samples_send_local(
frames,
buf);

#else
(continues on next page)

191919

(continued from previous page)

intent_engine_samples_send_remote(
intertile_ap_ctx,
frames,
buf);

#endif
#endif

The call to intent_engine_samples_send_remote() will send the audio samples to the previously configured
intertile rx thread.

intent_engine_process_asr_result

This function can be replaced by the application to handle the intent in a completely different manner.

Miscellaneous Functions

The following helper functions are provided for supporting the command processing features that are unique
to the default FFD application:

• intent_engine_keyword_queue_count

• intent_engine_keyword_queue_complete

• intent_engine_stream_buf_reset

• intent_engine_play_response

src/intent_handler

This folder contains ASR output handling modules for the FFD application.

Table 6.15: FFD Intent handler

Filename/Directory Description

audio_response directory include folder for handling audio responses to keywords
intent_handler.c contains the implementation of default intent handling code
intent_handler.h header for intent handler code

Major Components

The intent handling module provides the application with one API function:

202020

Listing 6.8: Intent Handler API (intent_handler.h)

int32_t intent_handler_create(uint32_t priority, void *args);

If replacing the existing handler code, this is the only function that is required to be populated.

intent_handler_create

This function has the role of creating the keyword handling task for the ASR engine. In the case of the Sensory
and Cyberon models, the application provides a FreeRTOS Queue object. This handler is on the same tile as
the speech recognition engine, tile 0.

The call to intent_handler_create() will create one thread on tile 0. This thread will receive ID packets from the
ASR engine over a FreeRTOS Queue object and output over various IO interfaces based on configuration.

212121

6.1.6.4 Software Modifications

The FFD example design consists of three major software blocks, the audio pipeline, keyword spotter, and
keyword handler. This section will go into detail on how to replace each/all of these subsystems.

It is highly recommended to be familiar with the application as a whole before attempting replacing these
functional units. This information can be found here: Software Description

See Software Description for more details on the memory footprint and CPU usage of the major software
components.

222222

Replacing XCORE-VOICE DSP Block

The audio pipeline can be replaced by making changes to the audio_pipeline.c file.

It is up to the user to ensure that the input and output frames of the audio pipeline remain the same, or the
remainder of the application will not function properly.

This section will walk through an example of replacing the XMOS NS stage, with a custom stage foo.

Declaration and Definition of DSP Context

Replace:

Listing 6.9: XMOS NS (audio_pipeline.c)

typedef struct ns_stage_ctx {
ns_state_t state;

} ns_stage_ctx_t;

static ns_stage_ctx_t ns_stage_state = {};

With:

Listing 6.10: Foo (audio_pipeline.c)

typedef struct foo_stage_ctx {
/* Your required state context here */

} foo_stage_ctx_t;

static foo_stage_ctx_t foo_stage_state = {};

DSP Function

Replace:

Listing 6.11: XMOS NS (audio_pipeline.c)

static void stage_ns(frame_data_t *frame_data)
{
#if appconfAUDIO_PIPELINE_SKIP_NS

(void) frame_data;
#else

int32_t ns_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];
configASSERT(NS_FRAME_ADVANCE == appconfAUDIO_PIPELINE_FRAME_ADVANCE);
ns_process_frame(

&ns_stage_state.state,
ns_output,
frame_data->samples[0]);

memcpy(frame_data->samples, ns_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE * sizeof(int32_t));
#endif
}

With:

Listing 6.12: Foo (audio_pipeline.c)

static void stage_foo(frame_data_t *frame_data)
{

int32_t foo_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];
foo_process_frame(

(continues on next page)

232323

(continued from previous page)

&foo_stage_state.state,
foo_output,
frame_data->samples[0]);

memcpy(frame_data->samples, foo_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE * sizeof(int32_t));
}

Runtime Initialization

Replace:

Listing 6.13: XMOS NS (audio_pipeline.c)

ns_init(&ns_stage_state.state);

With:

Listing 6.14: Foo (audio_pipeline.c)

foo_init(&foo_stage_state.state);

Audio Pipeline Setup

Replace:

Listing 6.15: XMOS NS (audio_pipeline.c)

const pipeline_stage_t stages[] = {
(pipeline_stage_t)stage_vnr_and_ic,
(pipeline_stage_t)stage_ns,
(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_

↪→SIZE(audio_pipeline_input_i),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_ns),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_SIZE(audio_

↪→pipeline_output_i),
};

With:

Listing 6.16: Foo (audio_pipeline.c)

const pipeline_stage_t stages[] = {
(pipeline_stage_t)stage_vnr_and_ic,
(pipeline_stage_t)stage_foo,
(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_

↪→SIZE(audio_pipeline_input_i),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_foo),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_SIZE(audio_

↪→pipeline_output_i),
};

It is also possible to add or remove stages. Refer to the RTOS Framework documentation on the generic

242424

pipeline sw_service.

Replacing Example Design Interfaces

It may be desired to have a different output interface to talk to a host, or not have a host at all and handle the
intent local to the XCORE device.

Different Peripheral IO

To add or remove a peripheral IO, modify the bsp_config accordingly. Refer to documentation inside the RTOS
Framework on how to instantiate different RTOS peripheral drivers.

252525

Direct Control

In a single controller system, the XCORE can be used to control peripherals directly.

The proc_keyword_res task can be modified as follows:

Listing 6.17: Intent Handler (intent_handler.c)

static void proc_keyword_res(void *args) {
QueueHandle_t q_intent = (QueueHandle_t) args;
int32_t id = 0;

while(1) {
xQueueReceive(q_intent, &id, portMAX_DELAY);

/* User logic here */
}

}

This code example will receive the ID of each intent, and can be populated by any user application logic. User
logic can use other RTOS drivers to control various peripherals, such as screens, motors, lights, etc, based on
the intent engine outputs.

262626

6.1.6.5 Speech Recognition - Sensory

License

The Sensory TrulyHandsFree™ (THF) speech recognition library is Copyright (C) 1995-2022 Sensory Inc., All
Rights Reserved.

Sensory THF software requires a commercial license granted by Sensory Inc. This software ships with an
expiring development license. It will suspend recognition after 11.4 hours or 107 recognition events.

Overview

The Sensory THF speech recognition engine runs proprietarymodels to identify keywords in an audio stream.
Models can be generated using VoiceHub.

Twomodels are provided - one in US English and one in MainlandMandarin. The US English model is used by
default. To modify the software to use the Mandarin model, see the comment at the top of the ffd_sensory.
cmake file. Make sure run the following commands to rebuild and re-flash the data partition:

make clean
make flash_app_example_ffd_sensory -j

Dictionary command table

Table 6.16: English Language Demo

Utterances Type Return code (decimal)

Hello XMOS keyword 1
Switch on the TV command 3
Switch off the TV command 4
Channel up command 5
Channel down command 6
Volume up command 7
Volume down command 8
Switch on the lights command 9
Switch off the lights command 10
Brightness up command 11
Brightness down command 12
Switch on the fan command 13
Switch off the fan command 14
Speed up the fan command 15
Slow down the fan command 16
Set higher temperature command 17
Set lower temperature command 18

272727

https://www.sensory.com/
https://voicehub.sensory.com/

Application Integration

In depth information on out of the box integration can be found here: Host Integration

282828

6.1.6.6 Speech Recognition - Cyberon

License

Cyberon DSpotter™ software requires a commercial license granted by Cyberon Corporation. This software
ships with an expiring development license. It will suspend recognition after 100 recognition events.

Production versions of the DSpotter™ library are unrestricted when running on a specially licensed XMOS
device. Please contact Cyberon or XMOS sales for further information.

Overview

The Cyberon DSpotter™ speech recognition engine runs proprietary models to identify keywords in an audio
stream.

One model for US English is provided. For any technical questions or additional models please contact Cy-
beron.

Dictionary command table

Table 6.17: English Language Demo

Utterances Type Return code (decimal)

Hello XMOS keyword 1
Hello Cyberon keyword 1
Switch on the TV command 2
Switch off the TV command 3
Channel up command 4
Channel down command 5
Volume up command 6
Volume down command 7
Switch on the lights command 8
Switch off the lights command 9
Brightness up command 10
Brightness down command 11
Switch on the fan command 12
Switch off the fan command 13
Speed up the fan command 14
Slow down the fan command 15
Set higher temperature command 16
Set lower temperature command 17

292929

https://www.cyberon.com.tw/

Application Integration

In depth information on out of the box integration can be found here: Host Integration

303030

6.2 Low Power Far-field Voice Local Command

6.2.1 Overview

The low power far-field voice local command (Low Power FFD) example design targets low power speech
recognition using Sensory’s TrulyHandsfree™ (THF) speech recognition and local dictionary.

When the small wake word model running on tile 1 recognizes a wake word utterance, the device transitions
to full power mode where tile 0’s command model begins receiving audio samples, continuing the command
recognition process. On command recognition, the application outputs a discrete message over I2C and
UART.

Tile 0’s command model, in combination with a timer, determines when to request a transition to low power.
Tile 1 may accept or reject this request based on its own timer that is reset on wake word recognitions and
potentially other application-specific events. The figure below illustrates the general behavior.

When in low power mode, tile 0 is effectively disabled along with any peripheral/IO associated with that tile.

Sensory’s THF software ships with an expiring development license. It will suspend recognition after 11.4
hours or 107 recognition events; afterwhich, a device reset is required to resumenormal operation. To perform
a reset, either power cycle the device or press the SW2 button. Note that SW2 is only functional while in full
power mode (this application is configured to hold the device in full-power mode on such license expiration
events).

More information on the Sensory speech recognition library can be found here: Speech Recognition

313131

323232

6.2.2 Supported Hardware

This example application is supported on the XK-VOICE-L71 board.

6.2.2.1 Setting up the Hardware

This example design requires an XTAG4 and XK-VOICE-L71 board.

xTAG

The xTAG is used to program and debug the device

Connect the xTAG to the debug header, as shown below.

Connect the micro USB XTAG4 and micro USB XK-VOICE-L71 to the programming host.

333333

https://www.xmos.ai/xk-voice-l71

343434

6.2.3 Configuring the Firmware

The default application performs as described in theOverview. There are numerous compile time options that
can be added to change the example designwithout requiring code changes. To change the options explained
in the table below, add the desired configuration variables to the APP_COMPILE_DEFINITIONSCMake variable
located in the example’s CMake file here.

If options are changed, the application firmware must be rebuilt.

Table 6.18: Low Power FFD Compile Options

Compile Option Description Default
Value

appconfINTENT_RESET_DELAY_MS Sets the period after the wake word phrase
or subsequent command/wake word phrase
has been heard for a valid command phrase

4000

appconfINTENT_UART_OUTPUT_ENABLED Enables/disables the UART intent message 1
appconfINTENT_I2C_OUTPUT_ENABLED Enables/disables the I2C intent message 1
appconfUART_BAUD_RATE Sets the baud rate for the UART tx intent in-

terface
9600

appconfINTENT_I2C_OUTPUT_DEVICE_ADDR Sets the I2C slave address to transmit the in-
tent to

0x01

appconfINTENT_TRANSPORT_DELAY_MS Sets the delay between host wake up re-
quested and I2C and UART keyword code
transmission

50

appconfINTENT_QUEUE_LEN Sets the maximum number of detected in-
tents to hold while waiting for the host to
wake up

10

appconfINTENT_WAKEUP_EDGE_TYPE Sets the host wake up pin GPIO edge type. 0
for rising edge, 1 for falling edge

0

appconfAUDIO_PIPELINE_SKIP_IC_AND_VNR Enables/disables the IC and VNR 0
appconfAUDIO_PIPELINE_SKIP_NS Enables/disables the NS 0
appconfAUDIO_PIPELINE_SKIP_AGC Enables/disables the AGC 0

353535

https://github.com/xmos/sln_voice/blob/develop/examples/low_power_ffd/low_power_ffd.cmake

6.2.4 Deploying the Firmware with Linux or macOS

This document explains how to deploy the software using CMake and Make.

6.2.4.1 Building the Host Applications

This application requires a host application to create the flash data partition. Run the following commands
in the root folder to build the host application using your native toolchain:

Note: Permissions may be required to install the host applications.

cmake -B build_host
cd build_host
make install

The host applications will be installed at /opt/xmos/bin, and may be moved if desired. You may wish to add
this directory to your PATH variable.

6.2.4.2 Building the Firmware

Run the following commands in the root folder to build the firmware:

cmake -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
make example_low_power_ffd_sensory

6.2.4.3 Running the Firmware

Before running the firmware, the filesystem and command model must be flashed to the data partition.

Within the root of the build folder, run:

make flash_app_example_low_power_ffd_sensory

After this command completes, the application will be running.

After flashing the data partition, the application can be run without reflashing. If changes are made to the
data partition components, the application must be reflashed.

From the build folder run:

xrun --xscope example_low_power_ffd_sensory.xe

6.2.4.4 Debugging the Firmware

To debug with xgdb, from the build folder run:

xgdb -ex "connect --xscope" -ex "run" example_low_power_ffd_sensory.xe

363636

6.2.5 Deploying the Firmware with Native Windows

This document explains how to deploy the software using CMake and Ninja. If you are not using native Win-
dowsMSVC build tools and instead using a Linux emulation tool such asWSL, refer toDeploying the Firmware
with Linux or macOS.

To install Ninja follow install instructions at https://ninja-build.org/ or on Windows install with winget by run-
ning the following commands in PowerShell:

Install
winget install Ninja-build.ninja
Reload user Path
$env:Path=[System.Environment]::GetEnvironmentVariable("Path","User")

6.2.5.1 Building the Host Applications

This application requires a host application to create the flash data partition. Run the following commands
in the root folder to build the host application using your native toolchain:

Note: Permissions may be required to install the host applications.

Note: A C/C++ compiler, such as Visual Studio or MinGW, must be included in the path.

Before building the host application, you will need to add the path to the XTC Tools to your environment.

set "XMOS_TOOL_PATH=<path-to-xtc-tools>"

Then build the host application:

cmake -G Ninja -B build_host
cd build_host
ninja install

The host applications will be installed at %USERPROFILE%\.xmos\bin, and may be moved if desired. You may
wish to add this directory to your PATH variable.

373737

https://ninja-build.org/

6.2.5.2 Building the Firmware

Run the following commands in the root folder to build the firmware:

cmake -G Ninja -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
ninja example_low_power_ffd_sensory

6.2.5.3 Running the Firmware

Before running the firmware, the filesystem and command model must be flashed to the data partition.

Within the root of the build folder, run:

ninja flash_app_example_low_power_ffd_sensory

After this command completes, the application will be running.

After flashing the data partition, the application can be run without reflashing. If changes are made to the
data partition components, the application must be reflashed.

From the build folder run:

xrun --xscope example_low_power_ffd_sensory.xe

6.2.5.4 Debugging the Firmware

To debug with xgdb, from the build folder run:

xgdb -ex "connect --xscope" -ex "run" example_low_power_ffd_sensory.xe

383838

6.2.6 Modifying the Software

The low-power FFD example design is highly customizable. This section describes how to modify the appli-
cation.

6.2.6.1 Host Integration

Overview

This section describes the connections that would need to be made to an external host for plug and play
integration with existing devices.

When an intent is found, the XCORE device will check if the host is awake, by checking the Host Status GPIO
pin. If the host is awake the intent code will be transmitted over I2C and/or UART.

If the host is not awake, the XCORE device will trigger a transition of the Wakeup GPIO pin. This can be
configured to be a rising or falling edge. The XCORE device will then wait for a fixed period of time, set at
compile time, before transmitting the intent over the I2C and/or UART interface. This behavior can be changed
as desired by modifying the intent handling code.

393939

UART

Table 6.19: UART Connections

Low Power FFD Connection Host Connection

J4:24 UART RX
J4:20 GND

I2C

Table 6.20: I2C Connections

Low Power FFD Connection Host Connection

J4:3 SDA
J4:5 SCL
J4:9 GND

GPIO

Table 6.21: GPIO Connections

Low Power FFD Connection Host Connection

J4:19 Wake up input
J4:21 Host Status output

6.2.6.2 Audio Pipeline

The audio pipeline in Low Power FFD processes two channel PDM microphone input into a single output
channel, intended for use by an ASR engine.

The audio pipeline consists of 3 stages.

Table 6.22: FFD Audio Pipeline

Stage Description Input Channel
Count

Output Chan-
nel Count

1 Interference Canceller and Voice Noise Ratio 2 1
2 Noise Suppression 1 1
3 Automatic Gain Control 1 1

See the Voice Framework User Guide for more information.

404040

6.2.6.3 Software Description

Overview

The approximate resource utilizations for Low Power FFD are shown in the table below.

Table 6.23: Low Power FFD Resources

Resource Tile 0 Tile 1

Unused CPU Time (600MHz | 200MHz) 50% 10%
Total Memory Free 19.1k 5.3k
Runtime Heap Memory Free 219k 12.4k

The estimated (core) power usage for Low Power FFD are shown in the table below. Additional power sav-
ings may be possible using Sensory’s Low Power Sound Detect (LPSD) option which approaches sub-50mW
operation in Low Power mode. These measurements will vary based on component tolerances and any user
added code and/or user added compile options.

Table 6.24: Low Power FFD Power Usage

Power State Core Power (mW)

Low Power 54
Full Power 110

The description of the software is split up by folder:

Table 6.25: Low Power FFD Software Description

Folder Description

bsp_config Board support configuration setting up software based IO peripherals
filesystem_support Filesystem contents for application
model Wake word and command model files
src Main application
src/gpio_ctrl GPIO and LED related functions
src/intent_engine Intent engine integration
src/intent_handler Intent engine output integration
src/power Low power control logic
src/wakeword Wake word engine integration

bsp_config

This folder contains bsp_configs for the Low Power FFD application. More information on bsp_configs can
be found in the RTOS Framework documentation.

Table 6.26: Low Power FFD bsp_config

Filename/Directory Description

dac directory DAC ports for supported bsp_configs (not used in example, dis-
abled)

XK_VOICE_L71 directory default Low Power FFD application bsp_config
bsp_config.cmake cmake for adding Low Power FFD bsp_configs

414141

filesystem_support

This folder contains filesystem contents for the Low Power FFD application.

Table 6.27: Low Power FFD filesystem_support

Filename/Directory Description

demo.txt A file for demonstrative purposes containing the text “Hello
World!”. This file is not used or interacted with in this application.

model

This folder contains the Sensory wake word and command model files the Low Power FFD application.

Note: Only a subset of the files below are used. See low_power_ffd.cmake for the files used by the ap-
plication. Also note the nibble-swapped net-file is manually generated, via the nibble_swap tool found in
lib_qspi_fast_read.

Table 6.28: Low Power FFD model

Filename/Directory Description

command-pc62w-6.1.0-op10-prod-net.bin The command model’s net-file, in binary-form
command-pc62w-6.1.0-op10-prod-
net.bin.nibble_swapped

The command model’s net-file, in binary-form (nibble
swapped, for supporting fast flash reads)

command-pc62w-6.1.0-op10-prod-net.c The command model’s net-file, in source form
command-pc62w-6.1.0-op10-prod-search.bin The command model’s search-file, in binary form
command-pc62w-6.1.0-op10-prod-search.c The command model’s search-file, in source form
command-pc62w-6.1.0-op10-prod-search.h The command model’s search header-file
command.snsr The command model’s Sensory THF/TNL SDK “snsr” file
wakeword-pc60w-6.1.0-op10-prod-net.bin The wake word model’s net-file, in binary-form
wakeword-pc60w-6.1.0-op10-prod-net.c The wake word model’s net-file, in source form
wakeword-pc60w-6.1.0-op10-prod-search.bin The wake word model’s search-file, in binary form
wakeword-pc60w-6.1.0-op10-prod-search.c The wake word model’s search-file, in source form
wakeword-pc60w-6.1.0-op10-prod-search.h The wake word model’s search header-file
wakeword.snsr The wake word model’s Sensory THF/TNL SDK “snsr” file

src

This folder contains the core application source.

424242

Table 6.29: FFD src

Filename/Directory Description

gpio_ctrl directory contains general purpose input handling and LED handling tasks
intent_engine directory contains intent engine code
intent_handler directory contains intent handling code
power directory contains low power control logic and related audio buffer
rtos_conf directory contains default FreeRTOS configuration headers
wakeword directory contains wake word detection code
app_conf_check.h header to validate app_conf.h
app_conf.h header to describe app configuration
config.xscope xscope configuration file
ff_appconf.h default fatfs configuration header
main.c main application source file
device_memory_impl.c contains XCORE device memory functions for supporting ASR

functionality
device_memory_impl.h header for the device memory implementation

Audio Pipeline

The audio pipeline module provides the application with three API functions:

Listing 6.18: Audio Pipeline API (audio_pipeline.h)

void audio_pipeline_init(
void *input_app_data,
void *output_app_data);

void audio_pipeline_input(
void *input_app_data,
int32_t **input_audio_frames,
size_t ch_count,
size_t frame_count);

int audio_pipeline_output(
void *output_app_data,
int32_t **output_audio_frames,
size_t ch_count,
size_t frame_count);

audio_pipeline_init

This function has the role of creating the audio pipeline, with two optional application pointers which are
provided to the application in the audio_pipeline_input() and audio_pipeline_output() callbacks.

In Low Power FFD, the audio pipeline is initialized with no additional arguments, and instantiates a 3 stage
pipeline on tile 1, as described in: Audio Pipeline

434343

audio_pipeline_input

This function has the role of providing the audio pipeline with the input frames.

In Low Power FFD, the input is received from the rtos_mic_array driver.

audio_pipeline_output

This function has the role of receiving the processed audio pipeline output.

In Low Power FFD, the output is sent to both the wake word handler and the intent engine. Because the intent
engine will be suspended in low power mode and that there is a finite time that it takes to resume full power
operation, there is a ring buffer placed between the audio output received from this routine and the intent
engine’s stream buffer.

Main

The major components of main are:

Listing 6.19: Main components (main.c)

void startup_task(void *arg)
void vApplicationMinimalIdleHook(void)
void tile_common_init(chanend_t c)
void main_tile0(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)
void main_tile1(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)

startup_task

This function has the role of launching tasks on each tile. For those familiar with XCORE, it is comparable to
the main par loop in an XC main.

vApplicationMinimalIdleHook

This is a FreeRTOS callback. By calling “waiteu” without events configured, this has the effect of both MIPs
and power savings on XCORE.

444444

Listing 6.20: vApplicationMinimalIdleHook (main.c)

asm volatile("waiteu");

tile_common_init

This function is the common tile initialization, which initializes the bsp_config, creates the startup task, and
starts the FreeRTOS kernel.

main_tile0

This function is the application C entry point on tile 0, provided by the SDK.

main_tile1

This function is the application C entry point on tile 1, provided by the SDK.

src/gpio_ctrl

This folder contains the GPIO and LED related functionality for the Low Power FFD application.

Table 6.30: Low Power FFD gpio_ctrl

Filename/Directory Description

gpi_ctrl.c The general purpose input control source file. Imple-
ments SW2 reset logic.

gpi_ctrl.h The general purpose input control header file.
leds.c The LED task source file. Handles the applications LED

indications.
leds.h The LED task header file.

src/intent_engine

This folder contains the intent engine module for the low power FFD application.

Table 6.31: Low Power FFD Intent Engine

Filename/Directory Description

intent_engine_io.c contains additional io intent engine code
intent_engine_support.c contains general intent engine support code
intent_engine.c contains the implementation of default intent engine code
intent_engine.h header for intent engine code

454545

Major Components

The intent engine module provides the application with the following primary API functions:

Listing 6.21: Intent Engine API (intent_engine.h)

int32_t intent_engine_create(uint32_t priority, void *args);
void intent_engine_ready_sync(void);
int32_t intent_engine_sample_push(asr_sample_t *buf, size_t frames);

These APIs provide the functionality needed to feed audio pipeline samples into the ASR engine.

intent_engine_create

This function has the role of creating themodel running task and providing a pointer, which can be used by the
application to handle the output intent result. In the case of the default configuration, the application provides
a FreeRTOS Queue object.

In Low Power FFD, the audio pipeline output is on tile 1 and the ASR engine on tile 0.

Listing 6.22: intent_engine_create snippet (intent_engine_io.c)

intent_engine_intertile_task_create(priority);

The call to intent_engine_intertile_task_create() will create two threads on tile 0. One thread is the ASR engine
thread. The other thread is an intertile RX thread, which will interface with the audio pipeline output.

intent_engine_ready_sync

This function is called by both tiles and serves to ensure that tile 0 is ready to receive audio samples before
starting the audio pipeline. This is a preventative measure to avoid dropping samples at startup.

Listing 6.23: intent_engine_create snippet (intent_engine_io.c)

int sync = 0;
#if ON_TILE(AUDIO_PIPELINE_TILE_NO)

size_t len = rtos_intertile_rx_len(intertile_ctx, appconfINTENT_ENGINE_READY_SYNC_PORT, RTOS_
↪→OSAL_WAIT_FOREVER);

xassert(len == sizeof(sync));
rtos_intertile_rx_data(intertile_ctx, &sync, sizeof(sync));

#else
rtos_intertile_tx(intertile_ctx, appconfINTENT_ENGINE_READY_SYNC_PORT, &sync, sizeof(sync));

#endif

intent_engine_sample_push

This function has the role of sending the ASR output channel from the audio pipeline to the intent engine.

In Low Power FFD, the audio pipeline output is on tile 1 and the ASR engine on tile 0.

Listing 6.24: intent_engine_create snippet (intent_engine_io.c)

intent_engine_samples_send_remote(
intertile_ap_ctx,
frames,
buf);

The call to intent_engine_samples_send_remote() will send the audio samples to the previously configured
intertile RX thread.

464646

intent_engine_process_asr_result

This function can be replaced by the application to handle the intent in a completely different manner.

Low Power Components

The following APIs are the intent engine mechanisms needed by the power control task.

Listing 6.25: Low Power APIs (intent_engine.h)

void intent_engine_full_power_request(void);
void intent_engine_low_power_accept(void);

In this implementation, it is the responsibility of tile 0 (intent engine tile) to determine when to request a
transition into low power mode; however, tile 1 may reject the request. When tile 1 accepts the request (via
LOW_POWER_ACK), the power control task calls intent_engine_low_power_accept. When tile 1 rejects the
request (via LOW_POWER_NAK), the power control task calls intent_engine_full_power_request.

Note: There is an additional LOW_POWER_HALT response where the power control task calls in-
tent_engine_halt. This is primarily for end-of-evaluation handling logic for the underlying ASR engine and
is not needed for a normal application.

After tile 1 accepts the low power request, tile 0 begins preparations for entering low power by locking various
resources and waiting for any enqueued commands to finish up. The helper functions below are provided for
this purpose.

Listing 6.26: Low Power Helper Functions (intent_engine.h)

int32_t intent_engine_keyword_queue_count(void);
void intent_engine_keyword_queue_complete(void);
uint8_t intent_engine_low_power_ready(void);

Before tile 1 sends LOW_POWER_ACK it also stops pushing audio samples via intent_engine_sample_push.
After receiving the low power response, the application may clear the stream buffer and keyword queue to
avoid processing stale samples/commands when returning to full power mode. The functions below provide
this functionality.

474747

Listing 6.27: Low Power Helper Functions (intent_engine.h)

void intent_engine_keyword_queue_reset(void);
void intent_engine_stream_buf_reset(void);

Note: Since it is possible that a command is spoken/recognized between the time when tile 0 requests low
power and when tile 1 responds to the request, the application should not reset these buffer entities until it
has received LOW_POWER_ACK; otherwise, recognized commands may be lost.

Evaluation Specific Components

The following functions are provided for the primary purpose of facilitating the evaluation of the ASR model.
The provided ASRmodels have evaluation periods which will end due to various factors. When the evaluation
period ends, the application logic halts the intent engine via intent_engine_halt. This is primarily to ensure the
device remains in full-power mode to allow functionality that may be exclusive to tile 0 to function.

Listing 6.28: Evaluation-specific Helper Functions (intent_engine.h)

void intent_engine_halt(void);

src/intent_handler

This folder contains ASR output handling modules for the Low Power FFD application.

Table 6.32: FFD Intent handler

Filename/Directory Description

intent_handler.c contains the implementation of default intent handling code
intent_handler.h header for intent handler code

Major Components

The intent handling module provides the application with one API function:

484848

Listing 6.29: Intent Handler API (intent_handler.h)

int32_t intent_handler_create(uint32_t priority, void *args);

If replacing the existing handler code, this is the only function that is required to be populated.

intent_handler_create

This function has the role of creating the keyword handling task for the ASR engine. In the case of the Sensory
model, the application provides a FreeRTOS Queue object. This handler is on the same tile as the Sensory
engine, tile 0.

The call to intent_handler_create() will create one thread on tile 0. This thread will receive ID packets from the
ASR engine over a FreeRTOS Queue object and output over various IO interfaces based on configuration.

src/power

This folder contains the low power control logic and supporting logic.

Table 6.33: Low Power FFD power

Filename/Directory Description

low_power_audio_buffer.c Implementation of an audio sample ring buffer. Aids in
responsiveness to commands during a transition to full
power mode.

low_power_audio_buffer.c Header for the low power audio buffer.
power_control.c Implementation of the power control logic.
power_control.h Header for power control logic.
power_state.c Implementation of Tile 1 power state logic.
power_state.h Header for power state logic.

Major Components

The power control module provides the application with the following primary API functions:

494949

Listing 6.30: Power Control API (power_control.h)

void power_control_task_create(unsigned priority, void *args);
void power_control_exit_low_power(void);
power_state_t power_control_state_get(void);
void power_control_halt(void);
void power_control_req_low_power(void);
void power_control_ind_complete(void);

power_control_task_create

Creates and starts the power control task. To be called by each tile.

power_control_exit_low_power

Applicable only for Tile 1. Begins a transition to full power mode and is intended to be called by the
power_state_set() routine.

power_control_state_get

Applicable only for Tile 1. Gets the current power state.

power_control_halt

Applicable only for Tile 1. Halts the power control task. This is provided primarily for end-of-evaluation logic,
but severs to terminate the low power logic. When halted, the system remains in full power mode.

power_control_req_low_power

Applicable only for Tile 0. Requests a transition to low power mode.

power_control_ind_complete

Applicable only for Tile 0. Indication that the last step for preparing for a low power transition has completed
and allows the power control task to continue with final steps. This is primarily to ensure the LED indications
are up-to-date before driver locks are taken (which include GPIO/LED control).

Power State Components

The power state module provides the application with the following primary API functions:

Listing 6.31: Power State API (power_state.h)

void power_state_init();
void power_state_set(power_state_t state);
uint8_t power_state_timer_expired_get(void);

This module is also responsible for providing the base power state datatype (power_state_t) used by other
low power logic.

505050

power_state_init

Initializes the power state module. Responsible to initializing the underlying timer that effectively determines
whether a low power request by Tile 0 is accepted or rejected.

power_state_set

Used by Tile 1’s application to signal full power events (such as wake word detection or other application-
specific events). Used by Tile 1’s power control logic to signal low power only after Tile 0 has requested low
power mode and the local timer has expired.

power_state_timer_expired_get

Used by the Tile 1’s power control logic to determine whether to accept or reject a low power request by Tile
0.

src/wakeword

This folder contains the wake word recognition functionality for the Low Power FFD application.

Table 6.34: Low Power FFD wakeword

Filename/Directory Description

wakeword.c The wake word engine source file. Responsible for the
transfer of audio samples into the ASR and handling of
wake word detection events.

wakeword.h The wake word engine header file.

Major Components

The wakeword module provides the application with two API functions:

515151

Listing 6.32: Wake Word API (wakeword.h)

void wakeword_init(void);
wakeword_result_t wakeword_handler(asr_sample_t *buf, size_t num_frames);

wakeword_init

This function performs the required initialization for the wakeword_handler() function to operate. This in-
volves initializing an instance of devmem_manager_t for use by the ASR abstraction layer and initialization of
the ASR unit itself. It is to be called once during startup before any call to wakeword_handler() occurs.

wakeword_handler

This function performs wake word detection logic and reports back to the caller a result, indicating whether
a wake word was recognized. Note: this routine is called by audio_pipeline_output(), meaning this routine’s
logic should be kept to a minimum to ensure timing requirements are met.

In this implementation a single wake word ID of 1 is defined. Minimal adaptation is needed to support other
models supporting other IDs or more than one valid wake word.

525252

6.2.6.4 Software Modifications

The Low Power FFD example design consists of four major software blocks: the audio pipeline, ASR engine
(wake word and intent engines), intent handler, and power control. This section will go into detail on how to
replace each subsystem.

It is highly recommended to be familiar with the application as a whole before attempting replacing these
functional units. This information can be found here: Software Description

See Software Description for more details on the memory footprint and CPU usage of the major software
components.

535353

Replacing XCORE-VOICE DSP Block

The audio pipeline can be replaced by making changes to the audio_pipeline.c file.

It is up to the user to ensure that the input and output frames of the audio pipeline remain the same, or the
remainder of the application will not function properly.

This section will walk through an example of replacing the XMOS NS stage, with a custom stage foo.

Declaration and Definition of DSP Context

Replace:

Listing 6.33: XMOS NS (audio_pipeline.c)

typedef struct ns_stage_ctx {
ns_state_t state;

} ns_stage_ctx_t;

static ns_stage_ctx_t ns_stage_state = {};

With:

Listing 6.34: Foo (audio_pipeline.c)

typedef struct foo_stage_ctx {
/* Your required state context here */

} foo_stage_ctx_t;

static foo_stage_ctx_t foo_stage_state = {};

DSP Function

Replace:

Listing 6.35: XMOS NS (audio_pipeline.c)

static void stage_ns(frame_data_t *frame_data)
{
#if appconfAUDIO_PIPELINE_SKIP_NS

(void) frame_data;
#else

int32_t ns_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];
configASSERT(NS_FRAME_ADVANCE == appconfAUDIO_PIPELINE_FRAME_ADVANCE);
ns_process_frame(

&ns_stage_state.state,
ns_output,
frame_data->samples[0]);

memcpy(frame_data->samples, ns_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE * sizeof(int32_t));
#endif
}

With:

Listing 6.36: Foo (audio_pipeline.c)

static void stage_foo(frame_data_t *frame_data)
{

int32_t foo_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];
foo_process_frame(

(continues on next page)

545454

(continued from previous page)

&foo_stage_state.state,
foo_output,
frame_data->samples[0]);

memcpy(frame_data->samples, foo_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE * sizeof(int32_t));
}

Runtime Initialization

Replace:

Listing 6.37: XMOS NS (audio_pipeline.c)

ns_init(&ns_stage_state.state);

With:

Listing 6.38: Foo (audio_pipeline.c)

foo_init(&foo_stage_state.state);

Audio Pipeline Setup

Replace:

Listing 6.39: XMOS NS (audio_pipeline.c)

const pipeline_stage_t stages[] = {
(pipeline_stage_t)stage_vnr_and_ic,
(pipeline_stage_t)stage_ns,
(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_

↪→SIZE(audio_pipeline_input_i),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_ns),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_SIZE(audio_

↪→pipeline_output_i),
};

With:

Listing 6.40: Foo (audio_pipeline.c)

const pipeline_stage_t stages[] = {
(pipeline_stage_t)stage_vnr_and_ic,
(pipeline_stage_t)stage_foo,
(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_

↪→SIZE(audio_pipeline_input_i),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_foo),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_SIZE(audio_

↪→pipeline_output_i),
};

It is also possible to add or remove stages. Refer to the RTOS Framework documentation on the generic

555555

pipeline sw_service.

Replacing ASR Engine Block

Replacing the keyword spotter engine has the potential to require significant changes due to various feature
extraction input requirements and varied output logic.

The generic intent engine API only requires two functions be declared:

Listing 6.41: Intent API (intent_engine.h)

/* Generic interface for intent engines */
int32_t intent_engine_create(uint32_t priority, void *args);
int32_t intent_engine_sample_push(asr_sample_t *buf, size_t frames);

Refer to the existing Sensory model implementation for details on how the output handler is set up, how the
audio is conditioned to the expected model format, and how it receives frames from the audio pipeline.

Replacing Example Design Interfaces

It may be desired to have a different output interface to talk to a host, or not have a host at all and handle the
intent local to the XCORE device.

Different Peripheral IO

To add or remove a peripheral IO, modify the bsp_config accordingly. Refer to documentation inside the RTOS
Framework on how to instantiate different RTOS peripheral drivers.

565656

Direct Control

In a single controller system, the XCORE can be used to control peripherals directly.

The proc_keyword_res task can be modified as follows:

Listing 6.42: Intent Handler (intent_handler.c)

static void proc_keyword_res(void *args) {
QueueHandle_t q_intent = (QueueHandle_t) args;
int32_t id = 0;

while(1) {
xQueueReceive(q_intent, &id, portMAX_DELAY);

/* User logic here */
}

}

This code example will receive the ID of each intent, and can be populated by any user application logic. User
logic can use other RTOS drivers to control various peripherals, such as screens, motors, lights, etc, based on
the intent engine outputs.

575757

Replacing Example Power Control Logic

Depending on the peripherals used in the end application, the requirements and handling of the power con-
trol/state logic may need adaptation. The power control logic operates in a task where a state machine that
is common to both tiles is used. During steady state, each tile is expected to remain is the same state. During
transitions each tile executes its own state transition logic. Below outlines the various functions that may
need adaptation for a given application.

Listing 6.43: Locking drivers (power_control.c)

static void driver_control_lock(void)
{
#if ON_TILE(POWER_CONTROL_TILE_NO)

rtos_osal_mutex_get(&gpio_ctx_t0->lock, RTOS_OSAL_WAIT_FOREVER);
#else

rtos_osal_mutex_get(&qspi_flash_ctx->mutex, RTOS_OSAL_WAIT_FOREVER);
/* User logic here */

#endif
}

Listing 6.44: Unlocking drivers (power_control.c)

static void driver_control_unlock(void)
{
#if ON_TILE(POWER_CONTROL_TILE_NO)

rtos_osal_mutex_put(&gpio_ctx_t0->lock);
#else

/* User logic here */
rtos_osal_mutex_put(&qspi_flash_ctx->mutex);

#endif
}

This implementation also includes function calls that are for evaluation/diagnosis purposes and may be re-
moved for end applications. This includes calls to:

• led_indicate_awake

• led_indicate_asleep

When removing these calls, the associated call to power_control_ind_complete must either be moved to
another location in the application (this is currently handled in led.c’s led_task) or logic associated with
TASK_NOTIF_MASK_LP_IND_COMPLETE should be removed/disabled. The power_control_ind_complete rou-
tine provides a basic means for the power control task to wait for another asynchronous process to complete
before proceeding with the state transition logic.

585858

6.2.6.5 Speech Recognition

License

The Sensory TrulyHandsFree™ (THF) speech recognition library is Copyright (C) 1995-2022 Sensory Inc., All
Rights Reserved.

Sensory THF software requires a commercial license granted by Sensory Inc. This software ships with an
expiring development license. It will suspend recognition after 11.4 hours or 107 recognition events.

Overview

The Sensory THF speech recognition engine runs proprietarymodels to identify keywords in an audio stream.
Models can be generated using VoiceHub.

Two models are provided for the purpose of Low Power FFD. The small wake word model running on tile 1
is approximately 67KB. The command model running on tile 0 is approximately 289KB. On tile 1, the Sensory
runtime and application supporting code consumes approximately 239KB of SRAM. On tile 0, the Sensory
runtime and application supporting code consumes approximately 210KB of SRAM.

With the command model in flash, the Sensory engine requires a core frequency of at least 450 MHz to keep
up with real time. Additionally, the intent engine that is responsible for processing the commands must be
on the same tile as the flash.

To run with a different model, see the Set Sensory model variables section of the low_power_ffd.cmake
file. There several variables are set pointing to files that are part of the VoiceHub generated model download.
Change these variables to point to the files you downloaded. This can be done for both the wakeword and
commandmodels. The commandmodel “net.bin” file, because it is placed in flashmemory, must first be nib-
ble swapped. A utility is provided that is part of the host applications built during install. Run that application
with the following command:

nibble_swap <your-model-prod-net.bin> <your-model-prod-net.bin.nibble_swapped>

Make sure run the following commands to rebuild and re-flash the data partition:

make clean
make flash_app_example_low_power_ffd -j

You may also wish to modify the command ID-to-string lookup table which is located in the src/
intent_engine/intent_engine_io.c source file.

595959

https://www.sensory.com/
https://voicehub.sensory.com/

Wake Word Dictionary

Table 6.35: English Language Wake Words

Return code (decimal) Utterance

1 Hello XMOS

Command Dictionary

Table 6.36: English Language Commands

Return code (decimal) Utterance

1 Switch on the TV
2 Channel up
3 Channel down
4 Volume up
5 Volume down
6 Switch off the TV
7 Switch on the lights
8 Brightness up
9 Brightness down
10 Switch off the lights
11 Switch on the fan
12 Speed up the fan
13 Slow down the fan
14 Set higher temperature
15 Set lower temperature
16 Switch off the fan

606060

Application Integration

In depth information on out of the box integration can be found here: Host Integration

616161

6.3 Far-field Voice Assistant

6.3.1 Overview

This is the XCORE-VOICE far-field voice assistant example design.

This application can be used out of the box as a voice processor solution, or expanded to run local wakeword
engines.

This application features a full duplex acoustic echo cancellation stage, which can be provided reference
audio via I2S or USB audio. An audio output ASR stream is also available via I2S or USB audio.

By default, there are two audio integration options. The INT (Integrated) configuration uses I2S for reference
and output audio streams. The UA (USB Accessory) configuration uses USB UAC 2.0 for reference and output
audio streams.

6.3.2 Supported Hardware

This example application is supported on the XK-VOICE-L71 board.

6.3.2.1 Setting up the Hardware

This example design requires an XTAG4 and XK-VOICE-L71 board.

xTAG

The xTAG is used to program and debug the device

Connect the xTAG to the debug header, as shown below.

Connect the micro USB XTAG4 and micro USB XK-VOICE-L71 to the programming host.

626262

https://www.digikey.co.uk/en/products/detail/xmos/XK-VOICE-L71/15761172

636363

6.3.3 Deploying the Firmware with Linux or macOS

This document explains how to deploy the software using CMake and Make.

6.3.3.1 Building the Host Applications

This application requires a host application to create the flash data partition. Run the following commands
in the root folder to build the host application using your native Toolchain:

Note: Permissions may be required to install the host applications.

cmake -B build_host
cd build_host
make install

The host applications will be installed at /opt/xmos/bin, and may be moved if desired. You may wish to add
this directory to your PATH variable.

6.3.3.2 Building the Firmware

Run the following commands in the root folder to build the I2S firmware:

cmake -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
make example_ffva_int_fixed_delay

Run the following commands in the root folder to build the USB firmware:

cmake -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
make example_ffva_ua_adec_altarch

6.3.3.3 Running the Firmware

Before the firmware is run, the filesystem must be loaded.

Inside of the build folder root, after building the firmware, run one of:

make flash_app_example_ffva_int_fixed_delay
make flash_app_example_ffva_ua_adec_altarch

Once flashed, the application will run.

After the filesystem has been flashed once, the application can be run without flashing. If changes are made
to the filesystem image, the application must be reflashed.

From the build folder run:

xrun --xscope example_ffva_int_fixed_delay.xe
xrun --xscope example_ffva_ua_adec_altarch.xe

646464

6.3.3.4 Upgrading the Firmware

The UA variants of this application contain DFU over the USB DFU Class V1.1 transport method.

To create an upgrade image from the build folder run:

make create_upgrade_img_example_ffva_ua_adec_altarch

Once the application is running, a USB DFU v1.1 tool can be used to perform various actions. This example
will demonstrate with dfu-util commands. Installation instructions for respective operating system can be
found here

To verify the device is running run:

dfu-util -l

This should result in an output containing:

Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=2, name="DFU�
↪→DATAPARTITION", serial="123456"
Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=1, name="DFU UPGRADE",�
↪→serial="123456"
Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=0, name="DFU FACTORY",�
↪→serial="123456"

The DFU interprets the flash as 3 separate partitions, the read only factory image, the read/write upgrade
image, and the read/write data partition containing the filesystem.

The factory image can be read back by running:

dfu-util -e -d ,20b1:4001 -a 0 -U readback_factory_img.bin

The factory image can not be written to.

From the build folder, the upgrade image can be written by running:

dfu-util -e -d ,20b1:4001 -a 1 -D example_ffva_ua_adec_altarch_upgrade.bin

The upgrade image can be read back by running:

dfu-util -e -d ,20b1:4001 -a 1 -U readback_upgrade_img.bin

On system reboot, the upgrade image will always be loaded if valid. If the upgrade image is invalid, the fac-
tory image will be loaded. To revert back to the factory image, you can upload an file containing the word
0xFFFFFFFF.

The data partition image can be read back by running:

dfu-util -e -d ,20b1:4001 -a 2 -U readback_data_partition_img.bin

The data partition image can be written by running:

dfu-util -e -d ,20b1:4001 -a 2 -D readback_data_partition_img.bin

Note that the data partition will always be at the address specified in the initial flashing call.

656565

https://dfu-util.sourceforge.net/

6.3.3.5 Debugging the Firmware

To debug with xgdb, from the build folder run:

xgdb -ex "connect --xscope" -ex "run" example_ffva_int_fixed_delay.xe
xgdb -ex "connect --xscope" -ex "run" example_ffva_ua_adec_altarch.xe

6.3.4 Deploying the Firmware with Native Windows

This document explains how to deploy the software using CMake and Ninja. If you are not using native Win-
dows MSVC build tools and instead using a Linux emulation tool, refer to Deploying the Firmware with Linux
or macOS.

To install Ninja follow install instructions at https://ninja-build.org/ or on Windows install with winget by run-
ning the following commands in PowerShell:

Install
winget install Ninja-build.ninja
Reload user Path
$env:Path=[System.Environment]::GetEnvironmentVariable("Path","User")

6.3.4.1 Building the Host Applications

This application requires a host application to create the flash data partition. Run the following commands
in the root folder to build the host application using your native Toolchain:

Note: Permissions may be required to install the host applications.

Note: A C/C++ compiler, such as Visual Studio or MinGW, must be included in the path.

Before building the host application, you will need to add the path to the XTC Tools to your environment.

set "XMOS_TOOL_PATH=<path-to-xtc-tools>"

Then build the host application:

cmake -G Ninja -B build_host
cd build_host
ninja install

The host applications will be installed at %USERPROFILE%\.xmos\bin, and may be moved if desired. You may
wish to add this directory to your PATH variable.

666666

https://ninja-build.org/

6.3.4.2 Building the Firmware

Run the following commands in the root folder to build the I2S firmware:

cmake -G Ninja -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
ninja example_ffva_int_fixed_delay

Run the following commands in the root folder to build the USB firmware:

cmake -G Ninja -B build --toolchain=xmos_cmake_toolchain/xs3a.cmake
cd build
ninja example_ffva_ua_adec_altarch

6.3.4.3 Running the Firmware

Before the firmware is run, the filesystem must be loaded.

Inside of the build folder root, after building the firmware, run one of:

ninja flash_app_example_ffva_int_fixed_delay
ninja flash_app_example_ffva_ua_adec_altarch

Once flashed, the application will run.

After the filesystem has been flashed once, the application can be run without flashing. If changes are made
to the filesystem image, the application must be reflashed.

From the build folder run:

xrun --xscope example_ffva_int_fixed_delay.xe
xrun --xscope example_ffva_ua_adec_altarch.xe

6.3.4.4 Upgrading the Firmware

The UA variants of this application contain DFU over the USB DFU Class V1.1 transport method.

To create an upgrade image from the build folder run:

ninja create_upgrade_img_example_ffva_ua_adec_altarch

Once the application is running, a USB DFU v1.1 tool can be used to perform various actions. This example
will demonstrate with dfu-util commands. Installation instructions for respective operating system can be
found here

To verify the device is running run:

dfu-util -l

This should result in an output containing:

Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=2, name="DFU�
↪→DATAPARTITION", serial="123456"
Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=1, name="DFU UPGRADE",�
↪→serial="123456"
Found DFU: [20b1:4001] ver=0001, devnum=100, cfg=1, intf=3, path="3-4.3", alt=0, name="DFU FACTORY",�
↪→serial="123456"

The DFU interprets the flash as 3 separate partitions, the read only factory image, the read/write upgrade
image, and the read/write data partition containing the filesystem.

The factory image can be read back by running:

676767

https://dfu-util.sourceforge.net/

dfu-util -e -d ,20b1:4001 -a 0 -U readback_factory_img.bin

The factory image can not be written to.

From the build folder, the upgrade image can be written by running:

dfu-util -e -d ,20b1:4001 -a 1 -D example_ffva_ua_adec_altarch_upgrade.bin

The upgrade image can be read back by running:

dfu-util -e -d ,20b1:4001 -a 1 -U readback_upgrade_img.bin

On system reboot, the upgrade image will always be loaded if valid. If the upgrade image is invalid, the fac-
tory image will be loaded. To revert back to the factory image, you can upload an file containing the word
0xFFFFFFFF.

The data partition image can be read back by running:

dfu-util -e -d ,20b1:4001 -a 2 -U readback_data_partition_img.bin

The data partition image can be written by running:

dfu-util -e -d ,20b1:4001 -a 2 -D readback_data_partition_img.bin

Note that the data partition will always be at the address specified in the initial flashing call.

6.3.4.5 Debugging the Firmware

To debug with xgdb, from the build folder run:

xgdb -ex "connect --xscope" -ex "run" example_ffva_int_fixed_delay.xe
xgdb -ex "connect --xscope" -ex "run" example_ffva_ua_adec_altarch.xe

6.3.5 Modifying the Software

The FFVA example design is highly customizable. This section describes how to modify the application.

6.3.5.1 Host Integration

This example design can be integrated with existing solutions or modified to be a single controller solution.

Out of the Box Integration

Out of the box integration varies based on configuration.

INT requires I2S connections to the host. Refer to the schematic, connecting the host reference audio play-
back to the ADC I2S and the host input audio to the DAC I2S. Out of the box, the INT configuration requires
an externally generated MCLK of 12.288 MHz. 24.576 MHz is also supported and can be changed via the
compile option MIC_ARRAY_CONFIG_MCLK_FREQ, found in ffva_int.cmake.

UA requires a USB connection to the host.

686868

Single Controller Solution

In a single controller solution, a user can populate themodel runnermanager taskwith the application specific
code.

This dummy thread receives only the ASR channel output, which has been downshifted to 16 bits.

The user must ensure the streambuffer is emptied at the rate of the audio pipeline at minimum, otherwise
samples will be lost.

Populate:

Listing 6.45: Model Runner Dummy (model_runner.c)

void model_runner_manager(void *args)
{

StreamBufferHandle_t input_queue = (StreamBufferHandle_t)args;

int16_t buf[appconfWW_FRAMES_PER_INFERENCE];

/* Perform any initialization here */

while (1)
{

/* Receive audio frames */
uint8_t *buf_ptr = (uint8_t*)buf;
size_t buf_len = appconfWW_FRAMES_PER_INFERENCE * sizeof(int16_t);
do {

size_t bytes_rxed = xStreamBufferReceive(input_queue,
buf_ptr,
buf_len,
portMAX_DELAY);

buf_len -= bytes_rxed;
buf_ptr += bytes_rxed;

} while(buf_len > 0);

/* Perform inference here */
// rtos_printf("inference\n");

}
}

696969

6.3.5.2 Design Architecture

The application consists of a PDMmicrophone input which is fed through the XMOS-VOICE DSP blocks. The
output ASR channel is then output over I2S or USB.

707070

6.3.5.3 Audio Pipeline

The audio pipeline in FFVA processes two channel PDM microphone input into a single output channel, in-
tended for use by an ASR engine.

The audio pipeline consists of 4 stages.

Table 6.37: FFVA Audio Pipeline

Stage Description Input Channel
Count

Output Chan-
nel Count

1 Acoustic Echo Cancellation 2 2
2 Interference Canceller and Voice Noise Ratio 2 1
3 Noise Suppression 1 1
4 Automatic Gain Control 1 1

See the Voice Framework User Guide for more information.

717171

6.3.5.4 Software Description

Overview

There are two main build configurations for this application.

Table 6.38: FFVA INT Fixed Delay Resources

Resource Tile 0 Tile 1

Unused CPU Time (600 MHz) 98% 75%
Total Memory Free 166k 82k
Runtime Heap Memory Free 75k 82k

Table 6.39: FFVA UA ADEC Resources

Resource Tile 0 Tile 1

Unused CPU Time (600 MHz) 83% 45%
Total Memory Free 123k 58k
Runtime Heap Memory Free 54k 83k

The description of the software is split up by folder:

Table 6.40: FFVA Software Description

Folder Description

Audio Pipelines Preconfigured audio pipelines
bsp_config Board support configuration setting up software based IO peripherals
filesystem_support Filesystem contents for application
src Main application

bsp_config

This folder contains bsp_configs for the FFVA application. More information on bsp_configs can be found in
the RTOS Framework documentation.

Table 6.41: FFVA bsp_config

Filename/Directory Description

dac directory DAC ports for supported bsp_configs
XCORE-AI-EXPLORER directory experimental bsp_config, not recommended for general use
XK_VOICE_L71 directory default FFVA application bsp_config
bsp_config.cmake cmake for adding FFVA bsp_configs

727272

filesystem_support

This folder contains filesystem contents for the FFVA application.

Table 6.42: FFVA filesystem_support

Filename/Directory Description

demo.txt Example file

Audio Pipelines

This folder contains preconfigured audio pipelines for the FFVA application.

Table 6.43: FFVA Audio Pipelines

Filename/Directory Description

api directory include folder for audio pipeline modules
src directory contains preconfigured XMOS DSP audio pipelines
audio_pipeline.cmake cmake for adding audio pipeline targets

Major Components

The audio pipeline module provides the application with three API functions:

Listing 6.46: Audio Pipeline API (audio_pipeline.h)

void audio_pipeline_init(
void *input_app_data,
void *output_app_data);

void audio_pipeline_input(
void *input_app_data,
int32_t **input_audio_frames,
size_t ch_count,
size_t frame_count);

int audio_pipeline_output(
void *output_app_data,
int32_t **output_audio_frames,
size_t ch_count,
size_t frame_count);

737373

audio_pipeline_init

This function has the role of creating the audio pipeline task(s) and initializing DSP stages.

audio_pipeline_input

This function is application defined and populates input audio frames used by the audio pipeline. In FFVA,
this function is defined in main.c.

audio_pipeline_output

This function is application defined and populates input audio frames used by the audio pipeline. In FFVA,
this function is defined in main.c.

src

This folder contains the core application source.

Table 6.44: FFVA src

Filename/Directory Description

gpio_test directory contains general purpose input handling task
usb directory contains intent handling code
ww_model_runner directory contains placeholder wakeword model runner task
app_conf_check.h header to validate app_conf.h
app_conf.h header to describe app configuration
config.xscope xscope configuration file
ff_appconf.h default fatfs configuration header
FreeRTOSConfig.h header to describe FreeRTOS configuration
main.c main application source file

Main

The major components of main are:

747474

Listing 6.47: Main components (main.c)

void startup_task(void *arg)
void tile_common_init(chanend_t c)
void main_tile0(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)
void main_tile1(chanend_t c0, chanend_t c1, chanend_t c2, chanend_t c3)
void i2s_rate_conversion_enable(void)
size_t i2s_send_upsample_cb(rtos_i2s_t *ctx, void *app_data, int32_t *i2s_frame, size_t i2s_frame_
↪→size, int32_t *send_buf, size_t samples_available)

size_t i2s_send_downsample_cb(rtos_i2s_t *ctx, void *app_data, int32_t *i2s_frame, size_t i2s_frame_
↪→size, int32_t *receive_buf, size_t sample_spaces_free)

startup_task

This function has the role of launching tasks on each tile. For those familiar with XCORE, it is comparable to
the main par loop in an XC main.

tile_common_init

This function is the common tile initialization, which initializes the bsp_config, creates the startup task, and
starts the FreeRTOS kernel.

main_tile0

This function is the application C entry point on tile 0, provided by the SDK.

main_tile1

This function is the application C entry point on tile 1, provided by the SDK.

i2s_rate_conversion_enable

This application features 16kHz and 48kHz audio input and output. The XMOS DPS blocks operate on 16kHz
audio. Input streams are downsampled when needed. Output streams are upsampled when needed. When
in I2S modes This function is called by the bsp_config to enable the I2S sample rate conversion.

757575

i2s_send_upsample_cb

This function is the I2S upsampling callback.

i2s_send_downsample_cb

This function is the I2S downsampling callback.

767676

6.3.5.5 Software Modifications

The FFVA example design consists of three major software blocks, the audio interface, audio pipeline, and
placeholder for a keyword handler. This section will go into detail on how to modify each/all of these subsys-
tems.

It is highly recommended to be familiar with the application as a whole before attempting replacing these
functional units.

See Memory and CPU Requirements for more details on the memory footprint and CPU usage of the major
software components.

Replacing XCORE-VOICE DSP Block

The audio pipeline can be replaced by making changes to the audio_pipeline.c file.

It is up to the user to ensure that the input and output frames of the audio pipeline remain the same, or the
remainder of the application will not function properly.

This section will walk through an example of replacing the XMOS NS stage, with a custom stage foo.

777777

Declaration and Definition of DSP Context

Replace:

Listing 6.48: XMOS NS (audio_pipeline_t0.c)

static ns_stage_ctx_t DWORD_ALIGNED ns_stage_state = {};

With:

Listing 6.49: Foo (audio_pipeline_t0.c)

typedef struct foo_stage_ctx {
/* Your required state context here */

} foo_stage_ctx_t;

static foo_stage_ctx_t foo_stage_state = {};

DSP Function

Replace:

Listing 6.50: XMOS NS (audio_pipeline_t0.c)

static void stage_ns(frame_data_t *frame_data)
{
#if appconfAUDIO_PIPELINE_SKIP_NS
#else

int32_t DWORD_ALIGNED ns_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];
configASSERT(NS_FRAME_ADVANCE == appconfAUDIO_PIPELINE_FRAME_ADVANCE);
ns_process_frame(

&ns_stage_state.state,
ns_output,
frame_data->samples[0]);

memcpy(frame_data->samples, ns_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE * sizeof(int32_t));
#endif
}

With:

787878

Listing 6.51: Foo (audio_pipeline_t0.c)

static void stage_foo(frame_data_t *frame_data)
{

int32_t foo_output[appconfAUDIO_PIPELINE_FRAME_ADVANCE];
foo_process_frame(

&foo_stage_state.state,
foo_output,
frame_data->samples[0]);

memcpy(frame_data->samples, foo_output, appconfAUDIO_PIPELINE_FRAME_ADVANCE * sizeof(int32_t));
}

Runtime Initialization

Replace:

Listing 6.52: XMOS NS (audio_pipeline_t0.c)

ns_init(&ns_stage_state.state);

With:

Listing 6.53: Foo (audio_pipeline_t0.c)

foo_init(&foo_stage_state.state);

Audio Pipeline Setup

Replace:

Listing 6.54: XMOS NS (audio_pipeline_t0.c)

const pipeline_stage_t stages[] = {
(pipeline_stage_t)stage_vnr_and_ic,
(pipeline_stage_t)stage_ns,
(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_

↪→SIZE(audio_pipeline_input_i),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_ns),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_SIZE(audio_

↪→pipeline_output_i),
};

With:

Listing 6.55: Foo (audio_pipeline_t0.c)

const pipeline_stage_t stages[] = {
(pipeline_stage_t)stage_vnr_and_ic,
(pipeline_stage_t)stage_foo,
(pipeline_stage_t)stage_agc,

};

const configSTACK_DEPTH_TYPE stage_stack_sizes[] = {
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_vnr_and_ic) + RTOS_THREAD_STACK_

(continues on next page)

797979

(continued from previous page)

↪→SIZE(audio_pipeline_input_i),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_foo),
configMINIMAL_STACK_SIZE + RTOS_THREAD_STACK_SIZE(stage_agc) + RTOS_THREAD_STACK_SIZE(audio_

↪→pipeline_output_i),
};

It is also possible to add or remove stages. Refer to the RTOS Framework documentation on the generic
pipeline sw_service.

Populating a Keyword Engine Block

To add a keyword engine block, a usermay populate the existing model_runner_manager() function with their
model:

Listing 6.56: Model Runner (model_runner.c)

configSTACK_DEPTH_TYPE model_runner_manager_stack_size = 287;

void model_runner_manager(void *args)
{

StreamBufferHandle_t input_queue = (StreamBufferHandle_t)args;

int16_t buf[appconfWW_FRAMES_PER_INFERENCE];

/* Perform any initialization here */

while (1)
{

/* Receive audio frames */
uint8_t *buf_ptr = (uint8_t*)buf;
size_t buf_len = appconfWW_FRAMES_PER_INFERENCE * sizeof(int16_t);
do {

size_t bytes_rxed = xStreamBufferReceive(input_queue,
buf_ptr,
buf_len,
portMAX_DELAY);

buf_len -= bytes_rxed;
buf_ptr += bytes_rxed;

} while(buf_len > 0);

/* Perform inference here */
// rtos_printf("inference\n");

}
}

Populate initialization and inference engine calls where commented. After adding user code, the stack size of
the task will need to be adjusted accordingly based on the engine being used. The input streambuffer must
be emptied at least at the rate of the audio pipeline otherwise frames will be lost.

808080

Replacing Example Design Interfaces

It may be desired to have a different input or output interfaces to talk to a host.

Hybrid Audio Peripheral IO

One example use case may be to create a hybrid audio solution where reference frames or output audio
streams are used over an interface other than I2S or USB.

Listing 6.57: Audio Pipeline Input (main.c)

void audio_pipeline_input(void *input_app_data,
int32_t **input_audio_frames,
size_t ch_count,
size_t frame_count)

{
(void) input_app_data;
int32_t **mic_ptr = (int32_t **)(input_audio_frames + (2 * frame_count));

static int flushed;
while (!flushed) {

size_t received;
received = rtos_mic_array_rx(mic_array_ctx,

mic_ptr,
frame_count,
0);

if (received == 0) {
rtos_mic_array_rx(mic_array_ctx,

mic_ptr,
frame_count,
portMAX_DELAY);

flushed = 1;
}

}

rtos_mic_array_rx(mic_array_ctx,
mic_ptr,
frame_count,
portMAX_DELAY);

/* Your ref input source here */
}

Refer to documentation inside the RTOS Framework on how to instantiate different RTOS peripheral drivers.
Populate the above code snippet with your input frame source. Refer to the default application for an example
of populating reference via I2S or USB.

Listing 6.58: Audio Pipeline Output (main.c)

int audio_pipeline_output(void *output_app_data,
int32_t **output_audio_frames,
size_t ch_count,
size_t frame_count)

{
(void) output_app_data;

/* Your output sink here */

#if appconfWW_ENABLED
ww_audio_send(intertile_ctx,

frame_count,
(continues on next page)

818181

(continued from previous page)

(int32_t(*)[2])output_audio_frames);
#endif

return AUDIO_PIPELINE_FREE_FRAME;
}

Refer to documentation inside the RTOS Framework on how to instantiate different RTOS peripheral drivers.
Populate the above code snippet with your output frame sink. Refer to the default application for an example
of outputting the ASR channel via I2S or USB.

Different Peripheral IO

To add or remove a peripheral IO, modify the bsp_config accordingly. Refer to documentation inside the RTOS
Framework on how to instantiate different RTOS peripheral drivers.

Application Filesystem Usage

This application is equippedwith a FATfilesystem in flash for general use. To add files to the filesystem, simply
place them in the filesystem_support directory before running the filesystem setup commands in Deploying
the Firmware with Linux or macOS or Deploying the Firmware with Native Windows.

The application can access the filesystem via the FatFS API.

828282

6.4 PDM Microphone Aggregator Example
This example provides a bridge between 16PDMmicrophones to either TDM16 slave or USBAudio and targets
the xcore-ai explorer board.

This application is to support cases where many microphone inputs need to be sent to a host where sig-
nal processing will be performed. Please see the other examples in sln_voice where signal processing is
performed within the xcore in firmware.

This example uses a modified mic_array with multiple decimator threads to support 16 DDRmicrophones on
a single 8 bit input port. The example is written as ‘bare-metal’ and runs directly on the XCORE device without
an RTOS.

6.4.1 Obtaining the app files

Download the main repo and submodules using:

$ git clone --recurse git@github.com:xmos/sln_voice.git
$ cd sln_voice/

6.4.2 Building the app

First install and source the XTC version: 15.2.1 tools. The easiest way to source the tools is to open the
provided shortcut to XTC Tools 15.2.1 Command Prompt. Running the compiler binary xcc will produce an
output like this:

xcc --version
xcc: Build 19-198606c, Oct-25-2022
XTC version: 15.2.1
Copyright (C) XMOS Limited 2008-2021. All Rights Reserved.

6.4.2.1 Linux or Mac

To build for the first time you will need to run cmake to create the make files:

$ mkdir build
$ cd build
$ cmake --toolchain ../xmos_cmake_toolchain/xs3a.cmake ..
$ make example_mic_aggregator_tdm -j
$ make example_mic_aggregator_usb -j

Following initial cmake build, as long as you don’t add new source files, you may just type:

$ make example_mic_aggregator_tdm -j
$ make example_mic_aggregator_usb -j

If you add new source files you will need to run the cmake step again.

838383

6.4.2.2 Windows

It is highly recommended to use Ninja as the make system under cmake. Not only is it a lot faster than MSVC
nmake, it also works around an issue where certain path names may cause an issue with the XMOS compiler
under windows.

To install Ninja, follow these steps:

• Download ninja.exe from https://github.com/ninja-build/ninja/releases. This firmware has been
tested with Ninja version v1.11.1.

• EnsureNinja is on the command line path. You can add to the path permanently by following these steps
https://www.computerhope.com/issues/ch000549.htm. Alternatively you may set the path in the cur-
rent command line session using something like set PATH=%PATH%;C:\Users\xmos\utils\ninja

To build for the first time you will need to run cmake to create the make files:

$ md build
$ cd build
$ cmake -G "Ninja" --toolchain ..\xmos_cmake_toolchain\xs3a.cmake ..
$ ninja example_mic_aggregator_tdm.xe -j
$ ninja example_mic_aggregator_usb.xe -j

Following initial cmake build, as long as you don’t add new source files, you may just type:

$ ninja example_mic_aggregator_tdm.xe -j
$ ninja example_mic_aggregator_usb.xe -j

If you add new source files you will need to run the cmake step again.

6.4.3 Running the app

Connect the explorer board to the host and type:

$ xrun example_mic_aggregator_tdm.xe
$ xrun example_mic_aggregator_usb.xe

Optionally, you may use xrun --xscope to provide debug output.

6.4.4 Required Hardware

The application runs on the XCORE-AI Explorer board version 2 (with integrated XTAG debug adapter). You
will require in addition:

• The dual DDR microphone board that attaches via the flat flex connector.

• Header pins soldered into:

– J14, J10, SCL/SDA IOT, the I2S expansion header, MIC data and MIC clock.

• Six jumper wires. Please see the microphone aggregator main documentation for details on how these
are connected.

An oscilloscope will also be handy in case of hardware debug being needed.

Note: You will only be able to inject PDM data to two channels at a time due to a single pair of microphones
on the HW.

If you wish to see all 16 microphones running then an external microphone board with 16 microphones (DDR
connected to 8 data lines) is required.

848484

https://github.com/ninja-build/ninja/releases
https://www.computerhope.com/issues/ch000549.htm

6.4.5 Operation

The design consists of a number of tasks connected via the xcore-ai silicon communication channels. The
decimators in the microphone array are configured to produce a 48 kHz PCM output. The 16 output channels
are loaded into a 16 slot TDM slave peripheral running at 24.576 MHz bit clock or a USB Audio Class 2 asyn-
chronous interface and are optionally amplified. The TDM build also provides a simple I2C slave interface
to allow gains to be controlled at run-time. The USB build supports USB Audio Class 2 compliant volume
controls.

For the TDM build, a simple TDM16 master peripheral is included as well as a local 24.576 MHz clock source
so that mic_array and TDM16 slave operation may be tested standalone through the use of jumper cables.
These may be removed when integrating into a system with TDM16 master supplied.

6.4.6 Software Architecture

The applications are written on bare metal and use logical cores (hardware threads) to implement the func-
tional blocks. Each of the tasks are connected using channels provided in the xcore-ai architecture. The
thread diagrams are shown in Fig. 6.1 and Fig. 6.2.

Fig. 6.1: Microphone Aggregator TDM Thread Diagram

858585

Fig. 6.2: Microphone Aggregator USB Thread Diagram

6.4.6.1 PDM Capture

Both the TDM and USB aggregator examples share a common PDM front end. This consists of an 8 bit port
with each data line connected to two PDMmicrophones each configured to provide data on a different clock
edge. The 3.072 MHz clock for the PDM microphones is provided by the xcore-ai device on a 1 bit port and
clocks all PDM microphones. The PDM clock is divided down from the 24.576 MHz local MCLK.

The data collected by the 8 bit port is sent to the lib_mic_array block which de-interleaves the PDM data
streams and performs decimation of the PDM data down to 48 kHz 32 bit PCM samples. Due to the large
number of microphones the PDM capture stage uses four hardware threads on tile[0]; one for the micro-
phone capture and three for decimation. This is needed to divide the processing workload and meet timing
comfortably.

Samples are forwarded to the next stage at a rate of 48 kHz resulting in a packet of 16 PCM samples per
exchange.

6.4.6.2 Audio Hub

The 16 channels of 48 kHz PCM streams are collected by Hub and are amplified using a saturated gain stage.
The initial gain is set to 100, since a gain of 1 sounds very quiet due to the mic_array output being scaled
to allow acoustic overload of the microphones without clipping within the decimators. This value can be
overridden using the MIC_GAIN_INIT define in app_conf.h.

Additionally for the TDM configuration, the Hub task also checks for control packets from I2C which may be
used to dynamically update the individual gains at runtime.

A single hardware thread contains the task and a triple buffer scheme is used to ensure there is always a
free buffer available to write into regardless of the relative phase between the production and consumption
of microphone samples.

868686

The Hub task has plenty of timing slack and is a suitable place for adding signal processing if needed.

6.4.6.3 TDM Host Connection

The TDM build supports a 16-slot TDM slave Tx peripheral from the fwk_io sub-module. In this application it
runs at 24.576 MHz bit clock which supports 16 channels of 32 bit, 48 kHz samples per frame.

The TDM component uses a single hardware thread.

For the purpose of debugging a simple TDM 16Master Rx component is provided. This allows the transmitted
TDM frames from the application to be received and checked without having to connect an external TDM
Master. It may be deleted / disconnected without affecting the core application.

Note: The simple TDM 16 Master Rx component is not regression tested and is for evaluation of TDM 16
Slave Tx in this application only.

6.4.6.4 USB Host Connection

As an alternative to TDM, a USB host connection is also supported. The USB connection uses the following
specifications:

• USB High Speed (480 Mbps)

• USB Audio Class 2.0

• Asynchronous mode (audio clock is provided by the firmware)

• 24 bit Audio slots

• 48 kHz Sample Rate

The USB host connection functionality is provided by lib_xua which is the core library of XMOS’s USB Audio
solution.

The USB Audio subsection uses a total of four hardware threads in this application.

6.4.7 Resource Usage

The xcore-ai device has a total resource count of 2 x 524288 Bytes of memory and 2 x 8 hardware threads
across two tiles. This application uses around half of the processing resources and a tiny fraction of the
available memory meaning there is plenty of space inside the chip for additional functionality if needed.

6.4.7.1 TDM Build

Tile Memory Threads

0 25996 5
1 22812 2*
Total 48808 7

• An additional debug TDM Master thread is used on Tile[1] by default which is not needed in a practical
deployment.

878787

6.4.7.2 USB Build

Tile Memory Threads

0 24252 4
1 52116 5
Total 76368 9

6.4.8 Board Configuration

Make the following connections between headers using flying leads:

Host Con-
nection

Board Con-
nection

Note

MIC CLK J14 ‘00’ This is the microphone clock which is to be sent to the PDM microphones
from J14.

MIC DATA J14 ‘14’ This is the data line for microphones 0 and 8. See below.
I2S LRCLK J10 ‘36’ This is the FSYCNH input for TDM slave. J10 ‘36’ is the TDM master

FSYNCH output for the application.
I2S MCLK I2S BCLK MCLK is the 24.576MHz clock which directly drives the BCLK input for the

TDM slave.
I2S DAC J10 ‘38’ I2S DAC is the TDM Slave Tx out which is read by the TDMMaster Rx input

on J10.

To access other microphone inputs use the following:

Mic pair J14 pin

0, 8 14
1, 9 15
2, 10 16
3, 11 17
4, 12 18
5, 13 19
6, 14 20
7, 15 21

For I2C control, make the following connections:

Host Connection Board Connection

SCL IOL Your I2C host SCL.
SDA IOL Your I2C host SDA.
GND Your I2C host ground.

The I2C slave is tested at 100 kHz SCL.

888888

6.4.9 I2C Controlled Volume

For the TDM build, there are 32 registers which control the gain of each of the 16 output channels. The 8 bit
registers contain the upper 8 bit and lower 8 bit of the microphone gain respectively. The initial gain is set to
100, since 1 is quiet due to the mic_array output being scaled to allow acoustic overload of the microphones
without clipping. Typically a gain of a few hundred works for normal conditions. The gain is only applied after
the lower byte is written.

The gain applied is saturating so no overflow will occur, only clipping.

Register Value

0 Channel 0 upper gain byte
1 Channel 0 lower gain byte
2 Channel 1 upper gain byte
3 Channel 1 lower gain byte
4 Channel 2 upper gain byte
5 Channel 2 lower gain byte
6 Channel 3 upper gain byte
7 Channel 3 lower gain byte
8 Channel 4 upper gain byte
9 Channel 4 lower gain byte
10 Channel 5 upper gain byte
11 Channel 5 lower gain byte
12 Channel 6 upper gain byte
13 Channel 6 lower gain byte
14 Channel 7 upper gain byte
15 Channel 7 lower gain byte
16 Channel 8 upper gain byte
17 Channel 8 lower gain byte
18 Channel 9 upper gain byte
19 Channel 9 lower gain byte
20 Channel 10 upper gain byte
21 Channel 10 lower gain byte
22 Channel 11 upper gain byte
23 Channel 11 lower gain byte
24 Channel 12 upper gain byte
25 Channel 12 lower gain byte
26 Channel 13 upper gain byte
27 Channel 13 lower gain byte
28 Channel 14 upper gain byte
29 Channel 14 lower gain byte
30 Channel 15 upper gain byte
31 Channel 15 lower gain byte

If using a raspberry Pi as the I2C host you may use the following commands:

$ i2cset -y 1 0x3c 0 0 #Set the gain on mic channel 0 to 50
$ i2cset -y 1 0x3c 1 50 #Set the gain on mic channel 0 to 50

$ i2cget -y 1 0x3c 0 #Get the upper byte of gain on mic channel 0
$ i2cget -y 1 0x3c 1 #Get the lower byte of gain on mic channel 0

$ i2cset -y 1 0x3c 16 1 #Set the gain on mic channel 8 to 256
$ i2cset -y 1 0x3c 15 0 #Set the gain on mic channel 8 to 256

898989

6.5 ASRC Application

6.5.1 Overview

This is the XCORE-VOICE Asynchronous Sampling Rate Converter (ASRC) example design.

The example system implements a stereo I2S Slave and a stereo Adaptive UAC2.0 interface and exchanges
data between the two interfaces. Since the two interfaces are operating in different clock domains, there is
an ASRC block between them that converts from the input to the output sampling rate. There are two ASRC
blocks, one each in the I2S � ASRC � USB and USB � ASRC � I2S path, as illustrated in the ASRC example top
level system diagram. The diagram also shows the rate calculation path, which monitors and computes the
instantaneous ratio between the ASRC input and output sampling rate. The rate ratio is used by the ASRC
task to dynamically adapt filter coefficients using spline interpolation in its filtering stage.

Fig. 6.3: ASRC example top level system diagram

The I2S Slave interface is a stereo 32 bit interface supporting sampling rates between 44.1 kHz - 192 kHz.

The USB interface is a stereo, 32 bit, 48 kHz, High-Speed, USB Audio Class 2, Adaptive interface.

The ASRC algorithm implemented in the lib_src library is used for the ASRC processing. The ASRC processing
is block based and works on a block size of 244 samples per channel in the I2S � ASRC � USB path and 96
samples per channel in the USB � ASRC � I2S path.

6.5.1.1 Supported Hardware

This example application is supported on the XK-VOICE-L71 board. In addition to the XK-VOICE-L71 board, it
requires an XTAG4 to program and debug the device.

To demonstrate the audio exchange between the I2S and USB interface, the XK-VOICE-L71 device needs to be
connected to an I2S Master device. To do this, connect the BCLK, MCLK, DOUT, DIN pins of the RASPBERRY
PI HOST INTERFACE header (J4) on the XK-VOICE-L71 to the I2S Master. The table XK-VOICE-L71 RPI host
interface header (J4) connections lists the pins on the XK-VOICE-L71 RPI header and the signals on the I2S
Master that they need to be connected to.

909090

https://www.xmos.ai/xcore-voice
https://github.com/xmos/lib_src/
https://www.xmos.ai/xk-voice-l71

Table 6.46: XK-VOICE-L71 RPI host interface header (J4) connec-
tions

XK-VOICE-L71 PI header pin Signal to connect to on the I2S Master board

12 BLCK output
35 LRCK output
38 I2S Data input to the Master
40 I2S Data output from the Master
One of the GND pins (6, 14, 20, 30, 34,
9, 25 or 39)

GND on the I2S Master board

6.5.1.2 Obtaining the app files

Download the main repo and submodules using:

$ git clone --recurse git@github.com:xmos/sln_voice.git
$ cd sln_voice/

6.5.1.3 Building the app

First install and source the XTC version: 15.2.1 tools. The output should be something like this:

$ xcc --version
xcc: Build 19-198606c, Oct-25-2022
XTC version: 15.2.1
Copyright (C) XMOS Limited 2008-2021. All Rights Reserved.

Linux or Mac

To build for the first time, run cmake to create the make files:

$ mkdir build
$ cd build
$ cmake --toolchain ../xmos_cmake_toolchain/xs3a.cmake ..
$ make example_asrc_demo -j

Following initial cmake build, for subsequent builds, as long as new source files are not added, just type:

$ make example_asrc_demo -j

cmake needs to be rerun to discover any new source files added.

919191

Windows

It is highly recommended to use Ninja as the make system under cmake. Not only is it a lot faster than MSVC
nmake, it also works around an issue where certain path names may cause an issue with the XMOS compiler
under Windows.

To install Ninja, follow these steps:

• Download ninja.exe from here. This firmware has been tested with Ninja version v1.11.1.

• Ensure Ninja is on the command line path. It can be added to the path permanently by following the
steps listed here. Alternatively, set the path in the current command line session using something like
set PATH=%PATH%;C:\Users\xmos\utils\ninja

To build for the first time, run cmake to create the make files:

$ md build
$ cd build
$ cmake -G "Ninja" --toolchain ..\xmos_cmake_toolchain\xs3a.cmake ..
$ ninja example_asrc_demo.xe

Following initial cmake build, for subsequent builds, as long as new source files are not added, just type:

$ ninja example_asrc_demo.xe

cmake needs to be rerun to discover any new source files added.

6.5.1.4 Running the app

To run the app, either xrun or xflash can be used. Connect the XK-VOICE-L71 board to the host and type the
following to run with real-time debug output enabled:

$ xrun --xscope example_asrc_demo.xe

or to flash the application so that it always boots after a power cycle:

$ xflash example_asrc_demo.xe

6.5.1.5 Operation

When the example runs, the audio received by the device on the I2S Slave interface at the I2S interface sam-
pling rate is sample rate converted using the ASRC to the USB sampling rate and streamed out from the
device over the USB interface. Similarly, the audio streamed out by the USB host into the USB interface of the
device is sample rate converted to the I2S interface sampling rate and streamed out from the device over the
I2S Slave interface.

This example supports dynamic changes of the I2S interface sampling frequency at runtime. It detects the
I2S sampling rate change and reconfigures the system for the new rate.

929292

https://github.com/ninja-build/ninja/releases
https://www.computerhope.com/issues/ch000549.htm

6.5.2 Software Architecture

The ASRC demo application is a two tile application developed to run on the XK-VOICE-L71 board running at
a core frequency of 600 MHz.

It is a FreeRTOS based application where all the application blocks are implemented as FreeRTOS tasks.

Each tile has 5 bare metal cores dedicated to running RTOS tasks and since all processing is done within
RTOS tasks, each core has 120 MHz of bandwidth available.

6.5.2.1 Task diagram

The ASRC example task diagram shows the RTOS tasks and other components that make up the system.

Fig. 6.4: ASRC example task diagram

The tasks can roughly be categorised as belonging to the USB driver, I2S driver or the application code cate-
gories. The actual ASRC processing happens in four tasks across the two tiles; the usb_audio_out_asrc task,
i2s_audio_recv_asrc task, and two instances of asrc_one_channel_task, one on each tile. This is described
in more detail in the Application components section below.

Most of the tasks are involved in the ASRC processing data path, while a few are involved in monitoring the
input and output data rates and computing the rate ratio, which is the ratio between the frequencies at the
input and output of the ASRC tasks. The rate ratio is provided to the ASRC tasks every asrc_process_frame()
call. Details about the rate ratio calculation are described in the rate_server section below.

939393

6.5.2.2 USB Driver components

This application presents a stereo, 48 kHz, 32 bit, high-speed, Adaptive UAC2.0 USB interface. It has two
endpoints, Endpoint 0 for control and Endpoint 1 for bidirectional isochronousUSB audio. TheUSB application
level driver is TinyUSB based.

The usb_xud_thread, usb_isr, usb_task and usb_adaptive_clk_manager implement the USB driver. Together,
these tasks handle the USB communication with the host and also monitor the average USB rate seen by the
device. The average USB rate is used for calculating the rate ratios that are sent to the asrc_process_frame()
function. This is described more in the rate_server section.

The usb_xud_thread runs XUD_Main which implements the USB HIL driver. It runs on a dedicated bare metal
core so cannot be preempted by other RTOS tasks. It interfaces with the USB app level thread (usb_task) via
shared memory and dedicated channels between the XUD_Main and each endpoint.

XUD_Main notifies the connected endpoint of a USB transfer completion through an interrupt on the respective
channel. This interrupt is serviced by the usb_isr routine.

usb_task implements the app level USB driver functionality. The app level USB driver is based on TinyUSB
which hooks into the application bymeans of callback functions. The usb_isr task is triggered by the interrupt
and parses the data transferred from XUD and places it on a queue that the usb_task blocks on for further
processing. For example, on completion of an EP1 OUT transfer, the transfer completion gets notified on the
usb_xud_thread � usb_isr � usb_task path, and the usb_task calls the tud_audio_rx_done_post_read_cb()
function to have the application process the data received from the host. On completion of an EP1 IN transfer,
the transfer completion again follows the usb_xud_thread � usb_isr � usb_task path, and usb_task calls the
tud_audio_tx_done_pre_load_cb() callback function to have the application load the EP1 IN data for the
next transfer.

samples_to_host_stream_buf and samples_from_host_stream_buf are circular buffers shared between
the application and the USB driver and allow for decoupling one from the other. The data frame re-
ceived over USB from the host is written to the samples_from_host_stream_buf by the TinyUSB callback
function tud_audio_rx_done_post_read_cb(), while the application reads USB_TO_I2S_ASRC_BLOCK_LENGTH
samples of data out of it. Similarly, the application writes the ASRC output block of data to the
samples_to_host_stream_buf while the TinyUSB callback function tud_audio_tx_done_pre_load_cb()
reads from it to send one frame of data to the USB host.

usb_adaptive_clk_manager task is responsible for calculating the average USB rate as seen by the device.
The average rate is calculated over a 16-second moving window. The averaging smooths out any jitter seen
in the USB SOF timestamps that are used for calculating the rate.

6.5.2.3 I2S Driver components

This application presents a stereo 32 bit, I2S Slave interface that supports I2S sampling rates of 44.1, 48, 88.2,
96, 176.4 and 192 kHz. The I2S driver supports tracking dynamic sampling rate (SR) changes and recalculates
the nominal sampling rate after detecting a SR change event. It also continuouslymonitors the timespan over
which a fixed number of samples are received. This information is then used by the application for calculating
the average I2S rate seen by the device.

i2s_slave_thread, I2S send_buffer and receive_buffer and rtos_i2s_isr make up the I2S driver components.

i2s_slave_thread implements the I2S HIL driver. The HIL level driver calls into the application callback func-
tions for i2s_init(), i2s_restart_check(), i2s_receive() and i2s_send(). These functions, in addition to
handling I2S send and receive data, also detect sampling rate changes and gather information for tracking
the average sampling rate.

I2S send_buffer and receive_buffer are circular buffers shared between the driver and the application
and contain data received over I2S (receive_buffer) and data the application wants to send over I2S
(send_buffer). These buffers allow for decoupling the I2S HIL driver from the ASRC application. The driver
reads from and writes to these buffers at the I2S sample rate while the application can read and write blocks
of data to these buffers equal to the ASRC input or output block size.

949494

https://docs.tinyusb.org/en/latest/
https://docs.tinyusb.org/en/latest/

The application calls rtos_i2s_rx() to read I2S_TO_USB_ASRC_BLOCK_LENGTH samples of data from the
receive_buffer. The i2s_slave_thread independently calls i2s_receive() callback function to write a sam-
ple of data as it gets received over I2S.

Similarly, the application calls rtos_i2s_tx() to write ASRC output size block of data into the send_buffer.
Meanwhile, the driver independently calls the callback function i2s_send() to read a sample of data to send
over the I2S.

rtos_i2s_isr interrupt is used to ensure that the application calls to rtos_i2s_rx() and rtos_i2s_tx() block
only on RTOS primitives whenwaiting for read data to be available or buffer space to be available whenwriting
data.

6.5.2.4 Application components

usb_audio_out_asrc, i2s_audio_recv_asrc, asrc_one_channel_task, usb_to_i2s_intertile,
i2s_to_usb_intertile and the rate_server tasks make up the non-driver components of the application.

usb_audio_out_asrc performs ASRC on data received from the USB host to the device. It waits to get notified
by the TinyUSB callback function tud_audio_rx_done_post_read_cb() when there are one or more ASRC
input blocks (96 USB samples) of data in the samples_from_host_stream_buf. It does ASRC processing of
the first channel while coordinating with the asrc_one_channel_task for processing the second channel in
parallel and sends the processed output to the other tile on the inter-tile context.

i2s_audio_recv_asrc performs ASRC on data received over the I2S interface by the device. It blocks on the
rtos_i2s_rx() function to receive one ASRC input block (244 I2S samples) of data from I2S and performs
ASRC on one channel while coordinating with the asrc_one_channel_task for processing the second channel
in parallel. It then sends the processed output to the other tile on the inter-tile context.

asrc_one_channel_task performs ASRC on a single channel of data. There is one of these on each tile. It
waits on an RTOS message queue for an ASRC input block to be available, does ASRC processing on the
block and posts the completion notification on another message queue.

usb_to_i2s_intertile task receives the ASRC output data generated by usb_audio_out_asrc over the inter-tile
context onto the I2S tile and writes it to the I2S send_buffer. It has other rate-monitoring related responsibil-
ities that are described in the rate_server section.

i2s_to_usb_intertile task receives the ASRC output data generated by i2s_audio_recv_asrc over the inter-tile
context onto the USB tile and writes it to the USB samples_to_host_stream_buf. It has other rate-monitoring
related responsibilities that are described in the rate_server section.

The I2S � ASRC � USB data path diagram shows the application tasks involved in the I2S � ASRC � USB path
processing and their interaction with each other.

959595

Fig. 6.5: I2S � ASRC � USB data path

The USB � ASRC � I2S data path diagram shows the application tasks involved in the USB � ASRC � I2S path
processing and their interaction with each other.

969696

Fig. 6.6: USB � ASRC � I2S data path

rate_server

The ASRC process_frame API requires the caller to calculate and send the instantaneous ratio between the
ASRC input and output rate. The rate_server is responsible for calculating these rate ratios for both USB �
ASRC � I2S and I2S � ASRC � USB directions.

Additionally, the application also monitors the average buffer fill levels of the buffers holding ASRC output to
prevent any overflows or underflows of the respective buffer. A gradual drift in the buffer fill level indicates
that the rate ratio is being under or over calculated by the rate_server. This could happen either due to jitter
in the actual rates or precision limitations when calculating the rates.

The average fill level of the buffer is monitored and a closed-loop error correction factor is calculated to
keep the buffer level at an expected stable level. The error estimated based on the buffer fill level is used
to compute the estimated rate ratio from the initial rate ratio. This estimated rate ratio is then sent to the
ASRC process_frame() API.

estimated_rate_ratio = initial_rate_ratio + buffer_based_correction_factor

The rate_server runs on the I2S tile (tile 1) and is periodically triggered from the USB tile (tile 0) by the
usb_to_i2s_intertile task. The rate_server is triggered once after every 16 frames are written to the
samples_to_host_stream_buf.

The following information is needed for calculating the rate ratios:

1. The average I2S rate

979797

2. The average USB rate

3. An error factor computed based on the USB samples_to_host_stream_buf fill level

4. An error factor computed based on the I2S send buffer fill level

5. A USB mic_interface_open flag indicating if the USB host is streaming out from the device, since the
rate ratio in the I2S -> ASRC -> USB direction is calculated only when the host is reading data from the
device

6. A USB spkr_interface_open flag indicating if the USB host is streaming into the device, since the rate
ratio in the USB -> ASRC -> I2S direction is calculated only when the host is sending data to the device

Of the above, the USB related information (2, 3, 5 and 6 above) is available on the USB tile. When triggering
the rate_server, the i2s_to_usb_intertile task gets this information, either calculating it or getting it through
shared memory from other USB tasks on the same tile, and sends it to the rate_server over the inter-tile
context using the structure below.

typedef struct
{

int64_t buffer_based_correction;
float_s32_t usb_data_rate;
bool mic_itf_open;
bool spkr_itf_open;

}usb_rate_info_t;

The I2S related information (1 and 4 above) is calculated in the rate_server itself with information available
for calculating these available through shared memory from other tasks on this tile.

After calculating the rates, the rate_server sends the rate ratio for the USB � ASRC � I2S side to the
usb_to_i2s_intertile task over the inter-tile context and it is made available to the usb_audio_out_asrc
task through shared memory. The I2S � ASRC � USB side rate ratio is also made available to the
i2s_audio_recv_asrc task through shared memory since it runs on the same tile as the rate server.

The Rate calculation code flow diagram shows the code flow during the rate ratio calculation process, fo-
cussing on the usb_to_intertile task that triggers the rate_server and the rate_server task where the rate
ratios are calculated.

989898

Fig. 6.7: Rate calculation code flow

6.5.2.5 Handling I2S sampling rate change events

The I2S driver monitors the I2S nominal rate and provides this information to the application. When an I2S
sampling rate change happens:

• The ASRC instances on both tiles are re-initialised with the new sampling rate.

• The buffers that are used for buffer-fill-level based correction are reset. Streaming out of them is paused
while zeroes are sent out over both USB and I2S. Once the buffers fill to a stable level, streaming out
from them resumes.

• The average buffer level calculation state is reset and the average buffer level calculation starts afresh.
New stable buffer levels are also calculated and the buffer levels are now corrected against these new
stable averages.

Note that the device starts with the nominal I2S sampling rate set to zero. Device startup therefore follows the
same path as an I2S sampling rate change where the sampling rate goes from zero to first detected nominal
sampling rate. Everything described above therefore also applies to the device startup behaviour.

999999

6.5.2.6 Handling USB speaker interface close -> open events

When the USB host stops streaming to the device and then starts again, this event is detected through calls
to the tud_audio_set_itf_close_EP_cb and tud_audio_set_itf_cb functions. The ASRC output buffer in
the USB � ASRC � I2S path (I2S send_buffer) is reset. Zeroes are then sent over I2S until the buffer fills to
a stable level, when we resume streaming out of this buffer to send samples over I2S. The average buffer
calculation state for the I2S send_buffer is also reset and a new stable average is calculated against which
the average buffer levels are corrected.

6.5.2.7 Handling USB mic interface close -> open events

If the USB host stops streaming from the device and then starts again, this event is detected through calls
to the tud_audio_set_itf_close_EP_cb and tud_audio_set_itf_cb functions. The ASRC output buffer in
the I2S � ASRC � USB is reset (USB samples_to_host_stream_buf). Zeroes are streamed to the host until
the buffer fills to a stable level, when we resume streaming out of this buffer to send samples over USB. The
average buffer calculation state for the USB samples_to_host_stream_buf is also reset and a new stable
average is calculated against which the average buffer levels are corrected.

6.5.3 Resource Usage

6.5.3.1 Memory

Out of the 524288 bytes of memory available per tile, this application uses approximately 262000 bytes of
memory on Tile 0 and 208000 bytes of memory on Tile 1.

6.5.3.2 Chanends

This application uses 19 chanends on the USB tile (tile 0) and 11 chanends on the I2S tile (tile 1)

The chanend use for both tiles is described in the Tile 0 chanend usage and Tile 1 chanend usage tables.

Tile 0

Table 6.47: Tile 0 chanend usage

Resource Chanends used

RTOS scheduler 5 (one per bare-metal core dedicated to RTOS)
RTOS USB driver 10 (2 per endpoint, per direction. 2 for SOF input)
Intertile contexts 3
xscope 1

100100100

Tile 1

Table 6.48: Tile 1 chanend usage

Resource Chanends used

RTOS scheduler 5 (one per bare-metal core dedicated to RTOS)
RTOS I2S driver 2
Intertile contexts 3
xscope 1

Intertile contexts

The application uses 3 intertile contexts for cross tile communication.

• A dedicated intertile context for sending ASRC output data from the I2S tile to the USB tile.

• A dedicated intertile context for sending ASRC output data from the USB tile to the I2S tile.

• The intertile context for all other cross tile communication.

6.5.3.3 CPU

Profiling the CPU usage for this application using an RTOS friendly profiling tool is still TBD. However, profiling
some application tasks has taken place. These numbers along with some already existing profiling numbers
for the drivers are listed in the Tile 0 tasks MIPS and Tile 1 tasks MIPS tables. Each tile has 5 bare-metal cores
being used for running RTOS tasks so each core has a fixed bandwidth of 120 MHz available.

Tile 0

Table 6.49: Tile 0 tasks MIPS

RTOS Task MIPS

XUD 120 (from CPU Requirements (@ 600 MHz))
ASRC in the USB -> ASRC -> I2S path for the worst
case of 48 kHz to 192 kHz upsampling

85

usb_task 24
i2s_to_usb_intertile 14

Tile 1

Table 6.50: Tile 1 tasks MIPS

RTOS Task MIPS

I2S Slave 96 (from CPU Requirements (@ 600 MHz))
ASRC in the I2S -> ASRC -> USB path for the worst
case of 192 kHz to 48 kHz downsampling

75

usb_to_i2s_intertile 0.7
rate_server 19

101101101

7 Speech Recognition Ports

Ports of the Sensory and Cyberon speech recognition libraries are provided.

Table 7.1: Speech Recognition Ports

Filename/Directory Description

modules/asr directory include folder for ASR modules and ports
module/asr/sensory directory contains the Sensory library and associated port code
module/asr/Cyberon directory contains the Cyberon library and associated port code
modules/asr/CmakeLists.txt CMakeLists file for adding ASR port targets

102102102

8 Memory and CPU Requirements

8.1 Memory
The table below lists the approximate memory requirements for the larger software components. All mem-
ory use estimates in the table below are based on the default configuration for the feature. Alternate con-
figurations will require more or less memory. The estimates are provided as guideline to assist application
developers judge the memory cost of extending the application or benefit of removing an existing feature. It
can be assumed that the memory requirement of components not listed in the table below are under 5 kB.

Table 8.1: Memory Requirements

Component Memory Use (kB)

Stereo Adaptive Echo Canceler (AEC) 275
Sensory Speech Recognition Engine 180
Cyberon Speech Recognition Engine 125
Interference Canceler (IC) + Voice To Noise Ratio
Estimator (VNR)

130

USB 20
Noise Suppressor (NS) 15
Adaptive Gain Control (AGC) 11

8.2 CPU
The table below lists the approximate CPU requirements inMIPS for the larger software components. All CPU
use estimates in the table below are based on the default configuration for the feature. Alternate configura-
tions will require more or less MIPS. The estimates are provided as guideline to assist application developers
judge theMIP cost of extending the application or benefits of removing an existing feature. It can be assumed
that the memory requirement of components not listed in the table below are under 1%.

The following formula was used to convert CPU% to MIPS:

MIPS = (CPU% / 100%) * (600 MHz / 5 cores)

Table 8.2: CPU Requirements (@ 600 MHz)

Component CPU Use (%) MIPS Use

USB XUD 100 120
I2S (slave mode) 80 96
Stereo Adaptive Echo Canceler
(AEC)

80 96

Sensory Speech Recognition En-
gine

80 96

Cyberon Speech Recognition En-
gine

72 87

Interference Canceler (IC) + Voice
To Noise Ratio Estimator (VNR)

25 30

Noise Suppressor (NS) 10 12
Adaptive Gain Control (AGC) 5 6

103103103

9 How-Tos

This section includes instructions on anticipated or common software modifications.

9.1 Changing the input and output sample rate
In the example design app_conf.h file, change appconfAUDIO_PIPELINE_SAMPLE_RATE to either 16000 or
48000.

9.2 I2S AEC reference input audio & USB processed audio
output

The FFVA example design includes 2 basic configurations; INT and UA. The INT configuration is setupwith I2S
for input and output audio. The UA configuration is setup with USB for input and output audio. This HOWTO
explains how to modify the FFVA example design for I2S input audio and USB output audio.

In the ffva_ua.cmake file, changing the appconfAEC_REF_DEFAULT to appconfAEC_REF_I2S will result in the
expected input frames.

set(FFVA_UA_COMPILE_DEFINITIONS
${APP_COMPILE_DEFINITIONS}
appconfI2S_ENABLED=1
appconfUSB_ENABLED=1
appconfAEC_REF_DEFAULT=appconfAEC_REF_I2S

appconfI2S_MODE=appconfI2S_MODE_MASTER
MIC_ARRAY_CONFIG_MCLK_FREQ=24576000

)

For integrating with I2S there are a few other differences from the default UA configuration. FFVA was de-
signed to be integrated with an Raspberry Pi for an AVS demo. And, due to that the INT config uses an
externally generated MCLK. When integrating with an external Raspberry Pi MCLK, you will want the following
FFVA_UA_COMPILE_DEFINITIONS:

set(FFVA_UA_COMPILE_DEFINITIONS
${APP_COMPILE_DEFINITIONS}
appconfI2S_ENABLED=1
appconfUSB_ENABLED=1
appconfAEC_REF_DEFAULT=appconfAEC_REF_I2S

appconfI2S_MODE=appconfI2S_MODE_SLAVE
appconfEXTERNAL_MCLK=1
appconfI2S_AUDIO_SAMPLE_RATE=48000
MIC_ARRAY_CONFIG_MCLK_FREQ=12288000

)

appconfI2S_AUDIO_SAMPLE_RATE can also be 16000. Only 48k and 16k conversions is supported in FFVA.

If you enable appconfEXTERNAL_MCLK, the FFVA example application will sit at initialization until we can lock
on to that clock source, so it MUST be active during boot.

Since the FFVA example application is not receiving reference audio through USB in this configuration, USB
adaptive mode will not adapt to the input. By default, ffva will output the configured nominal rate.

104104104

If you enable appconfAEC_REF_DEFAULT=appconfAEC_REF_I2S and appconfI2S_MODE=appconfI2S_MODE_MASTER.
You need to invert I2S_DATA_IN and I2S_MIC_DATA in the bsp_config/XK_VOICE_L71/XK_VOICE_L71.xn file
to have the reference audio play properly.

Lastly, with I2S enabled the DAC is always initialized by the FFVA example application. If FFVA cannot be the
I2C host then it is up to the host to initialize the DAC, like in the AVS demo.

105105105

10 Frequently Asked Questions

10.1 CMake hides XTC Tools commands
If you want to customize the XTC Tools commands like xflash and xrun, you can see what commands CMake
is running by adding VERBOSE=1 to your build command line. For example:

make run_my_target VERBOSE=1

10.2 fatfs_mkimage: not found
This issue occurs when the fatfs_mkimage host utility cannot be found. The most common cause for these
issues are an incomplete installation of XCORE-VOICE.

Ensure that the host applications build and install has been completed. Verify that the fatfs_mkimage binary
is installed to a location on PATH, or that the default application installation folder is added to PATH.

10.3 FFD pdm_rx_isr() Crash
One potential issue with the low power FFD application is a crash after adding new code:

xrun: Program received signal ET_ECALL, Application exception.
[Switching to tile[1] core[1]]
0x0008a182 in pdm_rx_isr ()

This generally occurs when there is not enough processing time available on tile 1, or when interrupts were
disabled for too long, causing the mic array driver to fail to meet timing. To resolve reduce the processing
time, minimize context switching and other actions that require kernel locks, and/or increase the tile 1 core
clock frequency.

10.4 Debugging low-power
The clock dividers are set high to minimize core power consumption. This can make debugging a challenge
or impossible. Even adding a simple printf can cause critical timing to be missed. In order to debug with
the low-power features enabled, temporarily modify the clock dividers in app_conf.h.

#define appconfLOW_POWER_SWITCH_CLK_DIV 1 // Resulting clock freq 600MHz.
#define appconfLOW_POWER_OTHER_TILE_CLK_DIV 1 // Resulting clock freq 600MHz.
#define appconfLOW_POWER_CONTROL_TILE_CLK_DIV 1 // Resulting clock freq 600MHz.

106106106

10.5 xcc2clang.exe: error: no such file or directory
Those strange characters at the beginning of the path are known as a byte-order mark (BOM). CMake adds
them to the beginning of the response files it generates during the configure step. Why does it add them?
Because the MSVC compiler toolchain requires them. However, some compiler toolchains, like gcc and xcc,
do not ignore the BOM. Why did CMake think the compiler toolchain was MSVC and not the XTC toolchain?
Because of a bug in which certain versions of CMake and certain versions of Visual Studio do not play nice
together. The good news is that this appears to have been addressed in CMake version 3.22.3. Update to
CMake version 3.22.2 or newer.

107107107

11 Licenses

11.1 XMOS
All original source code is licensed under the XMOS License.

11.2 Third-Party
Additional third party code is included under the following copyrights and licenses:

Table 11.1: Third Party Module Copyrights & Licenses

Module Copyright & License

dr_wav Copyright (C) 2022 David Reid, licensed under a public domain license
FatFS Copyright (C) 2017 ChaN, licensed under a BSD-style license
FreeRTOS Copyright (c) 2017 Amazon.com, Inc., licensed under the MIT License
Sensory TrulyHandsfree™ The Sensory TrulyHandsfree™ speech recognition library is Copyright

(C) 1995-2022Sensory Inc. and is provided as an expiring development
license. Commercial licensing is granted by Sensory Inc.

Cyberon DSpotter™ For any licensing questions about Cyberon DSpotter™ speech recog-
nition library please contact Cyberon Corporation.

TinyUSB Copyright (c) 2018 hathach (tinyusb.org), licensed under the MIT li-
cense

108108108

https://github.com/xmos/sln_voice/blob/develop/LICENSE.rst
https://github.com/mackron/dr_libs
https://github.com/mackron/dr_libs/blob/master/LICENSE
http://elm-chan.org/fsw/ff/00index_e.html
https://github.com/xmos/fwk_rtos/blob/develop/modules/sw_services/fatfs/thirdparty/LICENSE.txt
https://freertos.org/
https://github.com/xmos/FreeRTOS/blob/release/xcore-smp/LICENSE.md
https://www.sensory.com/
https://www.cyberon.com.tw/
https://docs.tinyusb.org/en/latest/index.html
https://github.com/hathach/tinyusb/blob/1bba2c0fc3bce05e9fbe4ff23dda30283d08574d/LICENSE
https://github.com/hathach/tinyusb/blob/1bba2c0fc3bce05e9fbe4ff23dda30283d08574d/LICENSE

Copyright © 2023, XMOS Ltd

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the ”Information”) and
is providing it to you ”AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. XMOS Ltd makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United King-
dom and other countries and may not be used without written permission. Company and product names
mentioned in this document are the trademarks or registered trademarks of their respective owners.

109109109

	1 Product Description
	2 Key Features
	3 Obtaining the Hardware
	4 Obtaining the Software
	4.1 Development Tools
	4.2 Application Demonstrations
	4.3 Source Code
	4.3.1 Cloning the Repository

	5 Prerequisites
	5.1 Windows
	5.1.1 libusb

	5.2 macOS

	6 Example Designs
	6.1 Far-field Voice Local Command
	6.1.1 Overview
	6.1.2 Supported Hardware
	6.1.2.1 Setting up the Hardware
	xTAG
	Speakers (OPTIONAL)

	6.1.3 Configuring the Firmware
	6.1.4 Deploying the Firmware with Linux or macOS
	6.1.4.1 Building the Host Applications
	6.1.4.2 Building the Firmware
	6.1.4.3 Running the Firmware
	6.1.4.4 Debugging the Firmware

	6.1.5 Deploying the Firmware with Native Windows
	6.1.5.1 Building the Host Applications
	6.1.5.2 Building the Firmware
	6.1.5.3 Running the Firmware
	6.1.5.4 Debugging the Firmware

	6.1.6 Modifying the Software
	6.1.6.1 Host Integration
	Overview
	UART
	I2C
	GPIO

	6.1.6.2 Audio Pipeline
	6.1.6.3 Software Description
	Overview
	bsp_config
	ext
	filesystem_support
	src
	Audio Pipeline
	audio_pipeline_init
	audio_pipeline_input
	audio_pipeline_output
	Main
	startup_task
	vApplicationMinimalIdleHook
	tile_common_init
	main_tile0
	main_tile1

	src/intent_engine
	Major Components
	intent_engine_create
	intent_engine_ready_sync
	intent_engine_sample_push
	intent_engine_process_asr_result
	Miscellaneous Functions

	src/intent_handler
	Major Components
	intent_handler_create

	6.1.6.4 Software Modifications
	Replacing XCORE-VOICE DSP Block
	Declaration and Definition of DSP Context
	DSP Function
	Runtime Initialization
	Audio Pipeline Setup

	Replacing Example Design Interfaces
	Different Peripheral IO
	Direct Control

	6.1.6.5 Speech Recognition - Sensory
	License
	Overview
	Dictionary command table
	Application Integration

	6.1.6.6 Speech Recognition - Cyberon
	License
	Overview
	Dictionary command table
	Application Integration

	6.2 Low Power Far-field Voice Local Command
	6.2.1 Overview
	6.2.2 Supported Hardware
	6.2.2.1 Setting up the Hardware
	xTAG

	6.2.3 Configuring the Firmware
	6.2.4 Deploying the Firmware with Linux or macOS
	6.2.4.1 Building the Host Applications
	6.2.4.2 Building the Firmware
	6.2.4.3 Running the Firmware
	6.2.4.4 Debugging the Firmware

	6.2.5 Deploying the Firmware with Native Windows
	6.2.5.1 Building the Host Applications
	6.2.5.2 Building the Firmware
	6.2.5.3 Running the Firmware
	6.2.5.4 Debugging the Firmware

	6.2.6 Modifying the Software
	6.2.6.1 Host Integration
	Overview
	UART
	I2C
	GPIO

	6.2.6.2 Audio Pipeline
	6.2.6.3 Software Description
	Overview
	bsp_config
	filesystem_support
	model
	src
	Audio Pipeline
	audio_pipeline_init
	audio_pipeline_input
	audio_pipeline_output
	Main
	startup_task
	vApplicationMinimalIdleHook
	tile_common_init
	main_tile0
	main_tile1

	src/gpio_ctrl
	src/intent_engine
	Major Components
	intent_engine_create
	intent_engine_ready_sync
	intent_engine_sample_push
	intent_engine_process_asr_result
	Low Power Components
	Evaluation Specific Components

	src/intent_handler
	Major Components
	intent_handler_create

	src/power
	Major Components
	power_control_task_create
	power_control_exit_low_power
	power_control_state_get
	power_control_halt
	power_control_req_low_power
	power_control_ind_complete
	Power State Components
	power_state_init
	power_state_set
	power_state_timer_expired_get

	src/wakeword
	Major Components
	wakeword_init
	wakeword_handler

	6.2.6.4 Software Modifications
	Replacing XCORE-VOICE DSP Block
	Declaration and Definition of DSP Context
	DSP Function
	Runtime Initialization
	Audio Pipeline Setup

	Replacing ASR Engine Block
	Replacing Example Design Interfaces
	Different Peripheral IO
	Direct Control

	Replacing Example Power Control Logic

	6.2.6.5 Speech Recognition
	License
	Overview
	Wake Word Dictionary
	Command Dictionary
	Application Integration

	6.3 Far-field Voice Assistant
	6.3.1 Overview
	6.3.2 Supported Hardware
	6.3.2.1 Setting up the Hardware
	xTAG

	6.3.3 Deploying the Firmware with Linux or macOS
	6.3.3.1 Building the Host Applications
	6.3.3.2 Building the Firmware
	6.3.3.3 Running the Firmware
	6.3.3.4 Upgrading the Firmware
	6.3.3.5 Debugging the Firmware

	6.3.4 Deploying the Firmware with Native Windows
	6.3.4.1 Building the Host Applications
	6.3.4.2 Building the Firmware
	6.3.4.3 Running the Firmware
	6.3.4.4 Upgrading the Firmware
	6.3.4.5 Debugging the Firmware

	6.3.5 Modifying the Software
	6.3.5.1 Host Integration
	Out of the Box Integration
	Single Controller Solution

	6.3.5.2 Design Architecture
	6.3.5.3 Audio Pipeline
	6.3.5.4 Software Description
	Overview
	bsp_config
	filesystem_support
	Audio Pipelines
	Major Components
	audio_pipeline_init
	audio_pipeline_input
	audio_pipeline_output

	src
	Main
	startup_task
	tile_common_init
	main_tile0
	main_tile1
	i2s_rate_conversion_enable
	i2s_send_upsample_cb
	i2s_send_downsample_cb

	6.3.5.5 Software Modifications
	Replacing XCORE-VOICE DSP Block
	Declaration and Definition of DSP Context
	DSP Function
	Runtime Initialization
	Audio Pipeline Setup

	Populating a Keyword Engine Block
	Replacing Example Design Interfaces
	Hybrid Audio Peripheral IO
	Different Peripheral IO
	Application Filesystem Usage

	6.4 PDM Microphone Aggregator Example
	6.4.1 Obtaining the app files
	6.4.2 Building the app
	6.4.2.1 Linux or Mac
	6.4.2.2 Windows

	6.4.3 Running the app
	6.4.4 Required Hardware
	6.4.5 Operation
	6.4.6 Software Architecture
	6.4.6.1 PDM Capture
	6.4.6.2 Audio Hub
	6.4.6.3 TDM Host Connection
	6.4.6.4 USB Host Connection

	6.4.7 Resource Usage
	6.4.7.1 TDM Build
	6.4.7.2 USB Build

	6.4.8 Board Configuration
	6.4.9 I2C Controlled Volume

	6.5 ASRC Application
	6.5.1 Overview
	6.5.1.1 Supported Hardware
	6.5.1.2 Obtaining the app files
	6.5.1.3 Building the app
	Linux or Mac
	Windows

	6.5.1.4 Running the app
	6.5.1.5 Operation

	6.5.2 Software Architecture
	6.5.2.1 Task diagram
	6.5.2.2 USB Driver components
	6.5.2.3 I2S Driver components
	6.5.2.4 Application components
	rate_server

	6.5.2.5 Handling I2S sampling rate change events
	6.5.2.6 Handling USB speaker interface close -> open events
	6.5.2.7 Handling USB mic interface close -> open events

	6.5.3 Resource Usage
	6.5.3.1 Memory
	6.5.3.2 Chanends
	Tile 0
	Tile 1
	Intertile contexts

	6.5.3.3 CPU
	Tile 0
	Tile 1

	7 Speech Recognition Ports
	8 Memory and CPU Requirements
	8.1 Memory
	8.2 CPU

	9 How-Tos
	9.1 Changing the input and output sample rate
	9.2 I2S AEC reference input audio & USB processed audio output

	10 Frequently Asked Questions
	10.1 CMake hides XTC Tools commands
	10.2 fatfs_mkimage: not found
	10.3 FFD pdm_rx_isr() Crash
	10.4 Debugging low-power
	10.5 xcc2clang.exe: error: no such file or directory

	11 Licenses
	11.1 XMOS
	11.2 Third-Party

