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T Introduction

lib_xcore_math is a library of optimized math functions for taking advantage of the vector processing unit
(VPU) on the XMOS XS3 architecture. Included in the library are functions for block floating-point arithmetic,
fast Fourier transforms, linear algebra, discrete cosine transforms, linear filtering and more.

See Getting Started to get going.

1.1 On GitHub

Find the latest version of 1ib_xcore_math at https://github.com/xmos/lib_xcore_math.


https://github.com/xmos/lib_xcore_math

2 Getting Started

2.1 Overview

lib_xcore_math is a library containing efficient implementations of various mathematical operations that
may be required in an embedded application. In particular, this library is geared towards operations which
work on vectors or arrays of data, including vectorized arithmetic, linear filtering, and fast Fourier transforms.

This library comprises several sub-APIs. Grouping of operations into sub-APIs is a matter of conceptual
convenience. In general, functions from a given API share a common prefix indicating which API the function
comes from, or the type of object on which it acts. Additionally, there is some interdependence between these
APIs.

These APIs are:

« Block floating-point (BFP) API — High-level API providing operations on BFP vectors. See Block Floating-
Point Background for an introduction to block floating-point. These functions manage the exponents
and headroom of input and output BFP vectors to avoid overflow and underflow conditions.

« Vector/Array APl — Lower-level APl which is used heavily by the BFP API. As such, the operations avail-
able in this API are similar to those in the BFP API, but the user will have to manage exponents and
headroom on their own. Many of these routines are implemented directly in optimized assembly to use
the hardware as efficiently as possible.

+ Scalar APl — Provides various operations on scalar objects. In particular, these operations focus on sim-
ple arithmetic operations applied to non-IEEE 754 floating-point objects, as well as optimized operations
which are applied to |IEEE 754 floats.

« Filtering APl — Provides access to linear filtering operations, including 16- and 32-bit FIR filters and 32-bit
biguad filters.

« Fast Fourier Transform (FFT) APl — Provides both low-level and block floating-point FFT implementa-
tions. Optimized FFT implementations are provided for real signals, pairs of real signals, and for com-
plex signals.

« Discrete Cosine Transform (DCT) APl — Provides functions which implement the type-Il (‘forward’) and
type-lll ('inverse’) DCT for a variety of block lengths. Also provides a fast 8x8 two dimensional forward
and inverse DCT.

All APIs are accessed by including the single header file:

#include "xmath/xmath.h"

2.2 Building

This library makes use of the CMake build system. See the GitHub page for instructions on obtaining this
library’s source code and including it in your application’s build.


https://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II
https://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-III
https://github.com/xmos/lib_xcore_math#readme

2.3 Usage

The following sections are intended to give the reader a general sense of how to use the API.

2.3.1 BFP API

Inthe BFP APl the BFP vectors are C structures such asbfp_s16_t, bfp_s32_t, or bfp_complex_s32_t, backed
by a memory buffer. These objects contain a pointer to the data carrying the content (mantissas) of the vector,
as well as information about the length, headroom and exponent of the BFP vector.

Below is the definition of bfp_s32_t from xmath/types.h.

C_TYPE
typedef struct {
/** Pointer to the underlying element buffer.*/
int32_t* data;
/** Exponent associated with the vector. */
exponent_t exp;
/** Current headroom in the ' ‘datal] " */
headroom_t hr;
/** Current size of "‘data[]’ ", expressed in elements */
unsigned length;
/** BFP vector flags. Users should not normally modify these manually. */
bfp_flags_e flags;
} bfp_s32_t;

The 32-bit BFP functions take bfp_s32_t pointers as input and output parameters.

Functions in the BFP API generally are prefixed with bfp_. More specifically, functions where the ‘main’
operands are 32-bit BFP vectors are prefixed with bfp_s32_, whereas functions where the ‘main’ operands are
complex 16-bit BFP vectors are prefixed with bfp_complex_s16_, and so on for the other BFP vector types.

2.3.1.1 Initializing BFP Vectors

Before calling these functions, the BFP vectors represented by the arguments must be initialized. For
bfp_s32_t this is accomplished with bfp_s32_init(). Initialization requires that a buffer of sufficient size
be provided to store the mantissa vector, as well as an initial exponent. If the first usage of a BFP vector is as
an output, then the exponent will not matter, but the object must still be initialized before use. Additionally,
the headroom of the vector may be computed upon initialization; otherwise it is set to 0.

Here is an example of a 32-bit BFP vector being initialized.

#define LEN (20)

//The object representing the BFP vector
bfp_s32_t bfp_vect;

// buffer backing bfp_vect
int32_t data_buffer[LEN];
for(int i = 0; i < LEN; i++) data_buffer[i] = i;

// The initial exponent associated with bfp_vect
exponent_t initial_exponent = 0;

// If non-zero, ‘"bfp_s32_init() " will compute headroom currently present in data_buffer.

// Otherwise, headroom is initialized to @ (which is always safe but may not be optimal)
unsigned calculate_headroom = 1;

(continues on next page)



(continued from previous page)

// Initialize the vector object
bfp_s32_init(&bfp_vec, data_buffer, initial_exponent, LEN, calculate_headroom);

// Go do stuff with bfp_vect

Once initialized, the exponent and mantissas of the vector can be accessed by bfp_vect.exp and bfp_vect.

data[ ] respectively, with the logical (floating-point) value of element k being given by bfp_vect.datalk] -
2bfp_vect.exp.

2.3.1.2 BFP Arithmetic Functions

The following snippet shows a function foo() which takes 3 BFP vectors, a, b and ¢, as arguments. It multi-
plies together a and b element-wise, and then subtracts ¢ from the product. In this example both operations
are performed in-place on a. (See bfp_s32_mul() and bfp_s32_sub() for more information about those func-
tions)

void foo(bfp_s32_t* a, const bfp_s32_t* b, const bfp_s32_t* c)

{
// Multiply together a and b, updating a with the result.
bfp_s32_mul(a, a, b);
// Subtract c from the product, again updating a with the result.
bfp_s32_sub(a, a, c);

}

The caller of foo() can then access the results through a. Note that the pointer a->data was not modified
during this call.

2.3.2 Vector API

The functions in the lower-level vector API are optimized for performance. They do very little to protect the
user from mangling their data by arithmetic saturation/overflows or underflows (although they do provide the
means to prevent this).

Functions in the vector API are generally prefixed with vect_. For example, functions which operate primarily
on 16-bit vectors are prefixed with vect_s16_.

Some functions are prefixed with chunk_ instead of vect_. A “chunk” is just a vector with a fixed memory
footprint (currently 32 bytes, or 8 32-bit elements) meant to match the width of the architecture’s vector
registers.

As an example of a function from the vector API, see vect_s32_mul() (from vect_s32.h)), which multiplies
together two int32_t vectors element by element.

C_API
headroom_t vect_s32_mul(
int32_t a[],

const int32_t b[],

const int32_t c[],

const unsigned length,
const right_shift_t b_shr,
const right_shift_t c_shr);

This function takes two int32_t arrays, b and ¢, as inputs and one int32_t array, a, as output (in the case of
vect_s32_mul(),itis safe to have a point to the same buffer as b or ¢, computing the result in-place). length
indicates the number of elements in each array. The final two parameters, b_shr and c_shr, are the arithmetic
right-shifts applied to each element of b and ¢ before they are multiplied together.



Why the right-shifts? In the case of 32-bit multiplication, the largest possible product is 262, which will not fit
in the 32-bit output vector. Applying positive arithmetic right-shifts to the input vectors reduces the largest
possible product. So, the shifts are there to manage the headroom/size of the resulting product in order to
maximize precision while avoiding overflow or saturation.

Contrast this with vect_s76_mul():

C_API
headroom_t vect_s16_mul(
int16_t a[],

const int16_t b[],

const int16_t c[],

const unsigned length,
const right_shift_t a_shr);

The parameters are similar here, but instead of b_shr and c_shr, there's only an a_shr. In this case, the
arithmetic right-shift a_shr is applied to the products of b and c. In this case the right-shift is also unsigned —
it can only be used to reduce the size of the product.

Shifts like those in these two examples are very common in the vector API, as they are the main mechanism for
managing exponents and headroom. Whether the shifts are applied to inputs, outputs, both, or only one input
will depend on a number of factors. In the case of vect_s32_mul () they are applied to inputs because the XS3
VPU includes a compulsory (hardware) right-shift of 30 bits on all products of 32-bit numbers, and so often
inputs may need to be left-shifted (negative shift) in order to avoid underflows. In the case of vect_s76_mul(),
this is unnecessary because no compulsory shift is included in 16-bit multiply-accumulates.

Both vect_s32_mul() and vect_s76_mul() return the headroom of the output vector a.

Functions in the vector API are in many cases closely tied to the instruction set architecture for XS3. As such,
if more efficient algorithms are found to perform an operation these low-level API functions are more likely to
change in future versions.



3 Block Floating-Point Background

3.1 Block Floating-Point Vectors

A standard (IEEE) floating-point object can exist either as a scalar, e.g.

//Single IEEE floating-point variable
float foo;

or as a vector, e.g.

//Array of IEEE floating-point variables
float foo[20];

Standard floating-point values carry both a mantissa m and an exponent p, such that the logical value repre-
sented by such a variable is m - 2P. When you have a vector of standard floating-point values, each element
of the vector carries its own mantissa and its own exponent: m/[k] - 2°%],

float foo[20];

By contrast, block floating-point objects have a vector of mantissas m which all share the same exponent p,
such that the logical value of the element at index k is m[k] - 2P.

struct {
// Array of mantissas
int32_t mant[20];
// Shared exponent
int32_t exp;

} bfp_vect;

exponent
(32 bits)

bfp_vect.mant][] bfp_vect.exp



3.2 Headroom

With a given exponent, p, the largest value that can be represented by a 32-bit BFP vector is given by a maximal
mantissa (23! —1), for a logical value of (23! —1)-27. The smallest non-zero value that an element can represent
is1-2P,

Because all elements must share a single exponent, in order to avoid overflow or saturation of the largest
magnitude values, the exponent of a BFP vector is constrained by the element with the largest (logical) value.
The drawback to this is that when the elements of a BFP vector represent a large dynamic range — that is,
where the largest magnitude element is many, many times larger than the smallest (non-zero) magnitude
element — the smaller magnitude elements effectively have fewer bits of precision.

Consider a 2-element BFP vector intended to carry the values 220 and 255 - 210 One way this vector can be
represented is to use an exponent of 0.

struct {
int32_t mant[2];
int32_t exp;
} vect = { { (1<<20), (OxFF >> 10) }, 0 };

exponent 2]
mant[o] D000 0D0OODODODODO100D0OODODODODODODODODODODODODOODOODO(OODOOOOODOODOO
mant[1] D 00D0ODOODOODODOODOODOODOODOODOOODOOOOOLOOLOAB(OL1I11111110
Integer Bits Fractional Bits
(Kept) (Discarded)

In the diagram above, the fractional bits (shown in red text) are discarded, as the mantissa is only 32 bits.
Then, with 0 as the exponent, mant[ 1] underflows to 0. Meanwhile, the 12 most significant bits of mant[0]
are all zeros.

The headroom of a signed integer is the number of redundant leading sign bits. Equivalently, it is the number
of bits that a mantissa can be left-shifted without losing any information. In the the diagram, the bits cor-
responding to headroom are shown in green text. Here mant[0] has 10 bits of headroom and mant[1] has
a full 32 bits of headroom. (mant[@] does not have 11 bits of headroom because in two's complement the
MSb serves as a sign bit). The headroom for a BFP vector is the minimum of headroom amongst each of its
elements; in this case, 10 bits.

If we remove headroom from one mantissa of a BFP vector, all other mantissas must shift by the same
number of bits, and the vector's exponent must be adjusted accordingly. A left-shift of one bit corresponds
to reducing the exponent by 1, because a single bit left-shift corresponds to multiplication by 2.

In this case, if we remove 10 bits of headroom and subtract 10 from the exponent we get the following:

struct {
int32_t mant[2];
int32_t exp;
} vect = { { (1<<380), (OxFF >> 0) }, -10 };

exponent -10
mant[o] 010000000000 OODOODOODOODODODODOODOODOODOLOOO|I0OODOODOOODOOLBOL
mant[1] D 0000D0OODODOODODODOODOODOODOOODOLOLO11111111000000D0O0O0BOOO
Integer Bits Fractional Bits
(Kept) (Discarded)

Now, no information is lost in either element. One of the main goals of BFP arithmetic is to keep the headroom
in BFP vectors to the minimum necessary (equivalently, keeping the exponent as small as possible). That
allows for maximum effective precision of the elements in the vector.

Note that the headroom of a vector also tells you something about the size of the largest magnitude mantissa
in the vector. That information (in conjunction with exponents) can be used to determine the largest possible
output of an operation without having to look at the mantissas.



For this reason, the BFP vectors in 1ib_xcore_math carry a field which tracks their current headroom. The
functions in the BFP API use this property to make determinations about how best to preserve precision.



4 APl Reference

4.1 XMath Types

Each of the main operand types used in this library has a short-hand which is used as a prefix in the naming
of APl operations. The following tables can be used for reference.

4.1.1 Common Vector Types

The following table indicates the types and abbreviations associated with various common vector types.

Table 4.1: Common Vector Types

Prefix Object Type Notes

vect_s32 int32_t[] Raw vector of signed 32-bit integers.
vect_s16 int16_t[] Raw vector of signed 16-bit integers.
vect_s8 int8_t[] Raw vector of signed 8-bit integers.

vect_complex_s32
vect_complex_s16

chunk_s32

vect_gXX

vect_f32
vect_float_s32
bfp_s32

bfp_s16
bfp_complex_s32

bfp_complex_s16

complex_s32_t[]

(int16_t[], int16_t[])

int32_t[8]

int32_t[]

float[]
float_s32_t[]
bfp_s32_t
bfp_s16_t

bfp_complex_s32_t

bfp_complex_s16_t

Raw vector of complex 32-bit integers.

Complex 16-bit vectors are usually represented as a
pair of 16-bit vectors. This is an optimization due to
the word-alignment requirement when loading data
into the VPU's vector registers.

A ‘chunk’ is a fixed size vector corresponding to the
size of the VPU vector registers.

When used in an API function name, the XX will be
an actual number (e.g. vect_q30_exp_small()) in-
dicating the fixed-point interpretation used by that
function.

Raw vector of standard IEEE float

Vector of non-standard 32-bit floating-point scalars.
Block floating-point vector contianing 32-bit mantis-
sas.

Block floating-point vector contianing 16-bit mantis-
sas.

Block floating-point vector contianing complex 32-
bit mantissas.

Block floating-point vector contianing complex 16-
bit mantissas.




4.1.2 Common Scalar Types

The following table indicates the types and abbreviations associated with various common scalar types.

Table 4.2: Common Scalar Types

Prefix Object Type Notes

s32 int32_t 32-bit signed integer. May be a simple integer, a
fixed-point value or the mantissa of a floating-point
value.

s16 int16_t 16-bit signed integer. May be a simple integer, a
fixed-point value or the mantissa of a floating-point
value.

s8 int8_t 8-bit signed integer. May be a simple integer, a fixed-

complex_s32
complex_s16
float_s64
float_s32

gxXX

32

f64
float_complex_s64

float_complex_s32

float_complex_s16

complex_s32_t
complex_sl6_t
float_s64_t
float_s32_t

int32_t

float

double
float_complex_s64_t

float_complex_s32_t

float_complex_s16_t

point value or the mantissa of a floating-point value.
Signed complex integer with 32-bit real and 32-bit
imaginary parts.

Signed complex integer with 16-bit real and 16-bit
imaginary parts.

Non-standard floating-point scalar with exponent
and 64-bit mantissa.

Non-standard floating-point scalar with exponent
and 32-bit mantissa.

32-bit fixed-point value with xx fractional bits (i.e.
exponent of -xx).

Standard IEEE 754 single-precision float.
Standard IEEE 754 double-precision float.
Floating-point value with exponent and complex
mantissa with 64-bit real and imaginary parts.
Floating-point value with exponent and complex
mantissa with 32-bit real and imaginary parts.
Floating-point value with exponent and complex
mantissa with 16-bit real and imaginary parts.

N/A exponent_t Represents an exponent p as in 2P. Unless oth-
erwise specified exponent are always assumed to
have a base of 2.

N/A headroom_t The headroom of a scalar or vector. See Headroom
for more information.

N/A right_shift_t Represents a rightward bit-shift of a certain number
of bits. Care should be taken, as sometimes this is
treated as unsigned.

N/A left_shift_t Represents a leftward bit-shift of a certain number
of bits. Care should be taken, as sometimes this is
treated as unsigned.

10



4.1.3 Block Floating-Point Types

group type_bfp

Enums

enum bfp_flags_e
(Opaque) Flags field for BFP vectors.

Warning: Users should not manually modify fields of this type, as it is intended to be opaque.

Values:

enumerator BFP_FLAG_DYNAMIC
Indicates that BFP vector's mantissa buffer(s) were allocated dynamically

This flag lets the bfp_*_dealloc() functions know whether the mantissa vector must be
free()ed.

struct bfp_s32_t
#include <types.h> A block floating-point vector of 32-bit elements.

Initialized with the bfp_s32_init() function.

The logical quantity represented by each element of this vector is: data[i]*2*(exp) where the
multiplication and exponentiation are using real (hon-modular) arithmetic.

The BFP API keeps the hr field up-to-date with the current headroom of data[ ] so as to minimize
precision loss as elements become small.

Public Members

int32_t *data
Pointer to the underlying element buffer.

exponent_t exp
Exponent associated with the vector.

headroom_t hr
Current headroom in the datal ]

unsigned length
Current size of datal[ ], expressed in elements

bip_flags_e flags
BFP vector flags. Users should not normally modify these manually.

struct bfp_s16_t

1 4



12

#include <types.h> A block floating-point vector of 16-bit elements.
Initialized with the bfp_s76_init() function.

The logical quantity represented by each element of this vector is: data[i] * 2~ (exp) where the
multiplication and exponentiation are using real (non-modular) arithmetic.

The BFP API keeps the hr field up-to-date with the current headroom of data[ ] so as to minimize
precision loss as elements become small. [bfp_s76_1]

Public Members

int16_t *data
Pointer to the underlying element buffer.

exponent_t exp
Exponent associated with the vector.

headroom_t hr
Current headroom in the datal ]

unsigned length
Current size of datal[ ], expressed in elements

bfp_flags_e flags
BFP vector flags. Users should not normally modify these manually.

struct bfp_complex_s32_t
#include <types.h> [bfp_s16_t]

A block floating-point vector of complex 32-bit elements.
Initialized with the bfp_complex_s32_init() function.

The logical quantity represented by each element of this vector is: data[k].re * 24(exp) + i *
datal[k].im * 27 (exp) where the multiplication and exponentiation are using real (non-modular)
arithmetic, and i is sqrt(-1)

The BFP API keeps the hr field up-to-date with the current headroom of data[ ] so as to minimize
precision loss as elements become small. [bfp_complex_s32_1]

Public Members

complex_s32_t *data
Pointer to the underlying element buffer.

exponent_t exp
Exponent associated with the vector.

headroom_t hr
Current headroom in the datal ]



unsigned length
Current size of data[ ], expressed in elements

bfp_flags_e flags
BFP vector flags. Users should not normally modify these manually.

struct bfp_complex_s16_t
#include <types.h> [bfp_complex_s32_t]

A block floating-point vector of complex 16-bit elements.
Initialized with the bfp_complex_si16_init() function.

The logical quantity represented by each element of this vector is: data[k].re * 24(exp) + i *
datal[k].im * 27 (exp) where the multiplication and exponentiation are using real (non-modular)
arithmetic, and i is sqrt(-1)

The BFP API keeps the hr field up-to-date with the current headroom of data[ ] so as to minimize
precision loss as elements become small. [bfp_complex_sT6_t]

Public Members

int16_t *real
Pointer to the underlying element buffer.

int16_t *imag
Pointer to the underlying element buffer.

exponent_t exp
Exponent associated with the vector.

headroom_t hr
Current headroom in the datal ]

unsigned length
Current size of data[ ], expressed in elements

bfp_flags_e flags
BFP vector flags. Users should not normally modify these manually.

4.1.4 Scalar Types (Integer)

group type_scalar_int

13



Typedefs

typedef int exponent_t
An exponent.

Many places in this APl make use of integers representing the exponent associated with some
floating-point value or block floating-point vector.

For a floating-point value z - 27, p is the exponent, and may usually be positive or negative.

typedef unsigned headroom_t
Headroom of some integer or integer array.

Represents the headroom of a signed or unsigned integer, complex integer or channel pair, or the
headroom of the mantissa array of a block floating-point vector.

typedef int right_shift_t
A rightwards arithmetic bit-shift.

Represents a right bit-shift to be applied to an integer. May be signed or unsigned, depending on
context. If signed, negative values represent leftward bit-shifts.

See also:
left_shift_t

typedef int left_shift_t
A leftwards arithmetic bit-shift.

Represents a left bit-shift to be applied to an integer. May be signed or unsigned, depending on
context. If signed, negative values represent rightward bit-shifts.

See also:
right_shift_t

struct complex_s64_t
#include <types.h> A complex number with a 64-bit real part and 64-bit imaginary part.

Public Members

int64_t re
Real Part.

iNte4_t im
Imaginary Part.

struct complex_s32_t
#include <types.h> A complex number with a 32-bit real part and 32-bit imaginary part.
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Public Members

int32_t re
Real Part.

iNt32_t im
Imaginary Part.

struct complex_s16_t
#include <types.h> A complex number with a 16-bit real part and 16-bit imaginary part.

Public Members

int16_t re
Real Part.

int16_t im
Imaginary Part.

4.1.5 Scalar Types (Floating-Point)
group type_scalar_float

struct float_s32_t
#include <types.h> A floating-point scalar with a 32-bit mantissa.

Represents a (non-standard) floating-point value given by M - 2%, where M is the 32-bit mantissa
mant, and z is the exponent exp.

To convert a float_s32_t to a standard IEEE754 single-precision floating-point value (which may
result in a loss of precision):

float to_ieee_float(float_s32_t x) {
return ldexpf(x.mant, x.exp);

}

Public Members

int32_t mant
32-bit mantissa

exponent_t exp
exponent

struct float_s64_t
#include <types.h> A floating-point scalar with a 64-bit mantissa.
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Represents a (non-standard) floating-point value given by M - 2%, where M is the 64-bit mantissa
mant, and z is the exponent exp.

To converta float_s64_t to a standard IEEE754 double-precision floating-point value (which may
result in a loss of precision):

double to_ieee_float(float_s64_t x) {
return ldexp(x.mant, x.exp);

}

Public Members

int64_t mant
64-bit mantissa

exponent_t exp
exponent

struct float_complex_s16_t
#include <types.h> A complex floating-point scalar with a complex 16-bit mantissa.

Represents a (non-standard) complex floating-point value given by A+ j - B - 2%, where A is mant .
re, the 16-bit real part of the mantissa, B is mant . im, the 16-bit imaginary part of the mantissa, and
x is the exponent exp.

Public Members

complex_sT16_t mant
complex 16-bit mantissa

exponent_t exp
exponent

struct float_complex_s32_t
#include <types.h> A complex floating-point scalar with a complex 32-bit mantissa.

Represents a (non-standard) complex floating-point value given by A+ j - B - 2%, where A is mant .
re, the 32-bit real part of the mantissa, B is mant.1im, the 32-bit imaginary part of the mantissa,
and z is the exponent exp.

Public Members

complex_s32_t mant
complex 32-bit mantissa

exponent_t exp
exponent



struct float_complex_s64_t
#include <types.h> A complex floating-point scalar with a complex 64-bit mantissa.

Represents a (non-standard) complex floating-point value given by A + j - B - 2%, where A is mant .
re, the 64-bit real part of the mantissa, B is mant.im, the 64-bit imaginary part of the mantissa,
and z is the exponent exp.

Public Members

complex_s64_t mant
complex 64-bit mantissa

exponent_t exp
exponent

struct complex_float_t
#include <types.h> [bfp_complex_s16_t]

A complex number with a single-precision floating-point real part and a single-precision floating-
point imaginary part.

Public Members

float re
Real Part.

float im
Imaginary Part.

struct complex_double_t

#include <types.h> A complex number with a double-precision floating-point real part and a double-
precision floating-point imaginary part.

Public Members

double re
Real Part.

double im
Imaginary Part.

17



4.1.6 Scalar Types (Fixed-Point)

group type_scalar_fixed
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Typedefs

typedef int32_t q1_31

Q1.31 (Signed) Fixed-point value.

Represents a signed, 32-bit, real, fixed-point value with 31 fractional bits (i.e. an implicit exponent
of —31).

Capable of representing values in the range [—1.0,1.0)

typedef int32_t q2_30

Q2.30 (Signed) Fixed-point value.

Represents a signed, 32-bit, real, fixed-point value with 30 fractional bits (i.e. an implicit exponent
of —30).

Capable of representing values in the range [—2.0, 2.0)

typedef int32_t q4_28

Q4.28 (Signed) Fixed-point value.

Represents a signed, 32-bit, real, fixed-point value with 28 fractional bits (i.e. an implicit exponent
of —28).

Capable of representing values in the range [—8.0, 8.0)

typedef int32_t q8_24

Q8.24 (Signed) Fixed-point value.

Represents a signed, 32-bit, real, fixed-point value with 24 fractional bits (i.e. an implicit exponent
of —24).

Capable of representing values in the range [—128.0, 128.0)

typedef uint32_t uqe_32

UQ0.32 (Unsigned) Fixed-point value.

Represents an unsigned, 32-bit, real, fixed-point value with 32 fractional bits (i.e. an implicit expo-
nent of —32).

Capable of representing values in the range [0, 1.0)

typedef uint32_t uq1_31

UQ1.31 (Unsigned) Fixed-point value.

Represents an unsigned, 32-bit, real, fixed-point value with 31 fractional bits (i.e. an implicit expo-
nent of —31).

Capable of representing values in the range [0, 2.0)

typedef uint32_t uq2_30

UQ2.30 (Unsigned) Fixed-point value.



Represents an unsigned, 32-bit, real, fixed-point value with 30 fractional bits (i.e. an implicit expo-
nent of —30).

Capable of representing values in the range [0, 4.0)

typedef uint32_t uq4_28
UQ4.28 (Unsigned) Fixed-point value.

Represents an unsigned, 32-bit, real, fixed-point value with 28 fractional bits (i.e. an implicit expo-
nent of —28).

Capable of representing values in the range [0, 16.0)

typedef uint32_t uq8_24
UQ8.24 (Unsigned) Fixed-point value.

Represents an unsigned, 32-bit, real, fixed-point value with 24 fractional bits (i.e. an implicit expo-
nent of —24).

Capable of representing values in the range [0, 256.0)

typedef q71_37 sbrad_t
Specialized angular unit used by this library.

'sbrad’ is a kind of modified binary radian (hence ‘brad’) which takes into account the symmetries
of sin(6).

Use radians_to_sbrads() to convert from radians to sbrad_t.

typedef q8_24 radian_q24_t
Angle measurement in radians using a Q8.24 representation.

4.1.7 Misc Types

group type_misc
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struct split_acc_s32_t
#include <types.h>Holds a set of sixteen 32-bit accumulators in the XS3 VPU’s internal format.

The XS3 VPU stores 32-bit accumulators with the most significant 16-bits stored in one 256-bit
vector register (called vD), and the least significant 16-bit stored in another 256-bit register (called
VR). This struct reflects that internal format, and is occasionally used to store intermediate results.

Note: VR is unsigned. This reflects the fact that a signed 16-bit integer 0xSTUVWXYZ is always
exactly 0x0000WxYZ larger than exSTUVe000. To combine the upper and lower 16-bits of an accu-
mulator, use (((int32_t)vD[k]) << 16) + VvR[k].



https://en.wikipedia.org/wiki/Binary_angular_measurement

Public Members

int16_t vD[16]
Most significant 16 bits of accumulators.

uint16_t vr[16]
Least significant 16 bits of accumulators.

4.2 Block Floating-Point API

4.2.1 BFP API Quick Reference

The tables below list the functions of the block floating-point API. The “EW” column indicates whether the
operation acts element-wise.

The “Signature” column is intended as a hint which quickly conveys the kind of the conceptual inputs to and
outputs from the operation. The signatures are only intended to convey how many (conceptual) inputs and
outputs there are, and their dimensionality.

The functions themselves will typically take more arguments than these signatures indicate. Check the func-
tion’s full documentation to get more detailed information.

The following symbols are used in the signatures:

Symbol Description

S A scalar input or output value.

A\ A vector-valued input or output.

M A matrix-valued input or output.

(7] Placeholder indicating no input or output.

For example, the operation signature (V x V x S) — V indicates the operation takes two vector inputs and a
scalar input, and the output is a vector.

« 32-Bit BFP Ops
+ 16-Bit BFP Ops
« Complex 32-Bit BFP Ops
« Complex 16-Bit BFP Ops
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4.2.1.1 32-Bit BFP API Quick Reference
Table 4.4; 32-Bit BFP API - Quick Reference
Function EW Signature Brief

bfp_s32_init()
bfp_s32_alloc()
bfp_s32_dealloc()
bfp_s32_set()
bfp_s32_use_exponent()
bfp_s32_headroom()
bfp_s32_shl()
bfp_s32_add()
bfp_s32_add_scalar()
bfp_s32_sub()
bfp_s32_mul()
bfp_s32_macc()
bfp_s32_nmacc()
bfp_s32_scale()
bfp_s32_abs()
bfp_s32_sum()
bfp_s32_dot()
bfp_s32_clip()
bfp_s32_rect()
bfp_s32_to_bfp_s16()
bfp_s32_sqrt()
bfp_s32_inverse()
bfp_s32_abs_sum()
bfp_s32_mean()
bfp_s32_energy()
bfp_s32_rms()
bfp_s32_max()
bfp_s32_min()

bfp_s32_max_elementwise()
bfp_s32_min_elementwise()

bfp_s32_argmax()
bfp_s32_argmin()

bfp_s32_convolve_valid()

bfp_s32_convolve_same()

x

X X X X

(VxS)—>V
g =V
Voo
(VxS)—>V
(VxS)—>V
V—=S
(VxS)—>V

Initialize (static)
Initialize (dynamic)
Deinitialize

Set All Elements

Force Exponent

Get Headroom

Shift Mantissas

Add Vector

Add Scalar

Subtract Vector

Multiply Vector
Multiply-Accumulate
Negated Multiply-Accumulate
Multiply Scalar
Absolute Values

Sum Elements

Inner Product

Clip Bounds

Rectify Elements
Convert to 16-bit
Square Root
Multiplicative Inverse
Absolute Sum Elements
Vector Mean Value
Vector Energy

Vector RMS Value
Vector Max Element
Vector Min Element
Elementwise Max
Elementwise Min

Max Element Index

Min Element Index
Convolve With Kernel (Valid
mode)

Convolve With Kernel (Same
mode)
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4.2.1.2 16-Bit BFP API Quick Reference

Table 4.5: 16-Bit BFP API - Quick Reference

Function

EW Signature

Brief

bfp_s16_init()
bfp_s16_alloc()
bfp_s16_dealloc()
bfp_s16_set()
bfp_s16_use_exponent()
bfp_s16_headroom()
bfp_s16_shl()
bfp_s16_add()
bfp_s16_add_scalar()
bfp_s16_sub()
bfp_s16_mul()
bfp_s16_macc()
bfp_s16_nmacc()
bfp_s16_scale()
bfp_s16_abs()
bfp_s16_sum()
bfp_s16_dot()
bfp_s16_clip()
bfp_si16_rect()
bfp_s16_to_bfp_s32()
bfp_s16_sqrt()
bfp_s16_inverse()
bfp_s16_abs_sum()
bfp_s16_mean()
bfp_s16_energy()
bfp_s16_rms()
bfp_s16_max()
bfp_s16_min()
bfp_s16_max_elementwise()
bfp_s16_min_elementwise()
bfp_s16_argmax()
bfp_s16_argmin()
bfp_s16_accumulate()

X X X X x

=

X X X X X

(VxS)—>V
g =V
Voo
(VxS)—>V
(VxS)—>V
V—=S
(VxS)—>V

Initialize (static)
Initialize (dynamic)
Deinitialize

Set All Elements
Force Exponent

Get Headroom

Shift Mantissas

Add Vector

Add Scalar

Subtract Vector
Multiply Vector
Multiply-Accumulate
Negated Multiply-Accumulate
Multiply Scalar
Absolute Values
Sum Elements

Inner Product

Clip Bounds

Rectify Elements
Convert to 32-bit
Square Root
Multiplicative Inverse
Absolute Sum Elements
Vector Mean Value
Vector Energy
Vector RMS Value
Vector Max Element
Vector Min Element
Elementwise Max
Elementwise Min
Max Element Index
Min Element Index
Elementwise Accumulate
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4.2.1.3 Complex 32-bit BFP API Quick Reference

Table 4.6: Complex 32-Bit BFP API - Quick Reference

Function EW Signature Brief
bfp_complex_s32_init() (VxS)—>V Initialize (static)
bfp_complex_s32_alloc() -V Initialize (dynamic)
bfp_complex_s32_dealloc() Voo Deinitialize
bfp_complex_s32_set() X (VxS)—>V Set All Elements
bfp_complex_s32_use_exponent() (VxS)—>V Force Exponent
bfp_complex_s32_headroom() V—S Get Headroom
bfp_complex_s32_shl() X (VxS)—>V Shift Mantissas
bfp_complex_s32_real_mul() X (VxV)—>V Real Vector Multiply
bfp_complex_s32_mul() X (VxV)—>V Complex Vector Multiply
bfp_complex_s32_conj_mul() X (VxV)—>V Complex Vector Conjugate Multi-
ply
bfp_complex_s32_macc() X (VxVxV)—V Complex Vector  Multiply-
Accumulate
bfp_complex_s32_nmacc() X (VxVxV)—=V  Complex Vector Negated
Multiply-Accumulate
bfp_complex_s32_conj_macc() X (VxVxV)—V Complex Vector Conjugate
Multiply-Accumulate
bfp_complex_s32_conj_nmacc() X (VxVxV)—V Complex Vector Negated Conju-
gate Multiply-Accumulate
bfp_complex_s32_real_scale() (VxS)—>V Real Scalar Multiply
bfp_complex_s32_scale() (VxS)—>V Complex Scalar Multiply
bfp_complex_s32_add() X (VxV)—=>V Complex Vector Add
bfp_complex_s32_add_scalar() (VxS)—>V Complex Scalar Add
bfp_complex_s32_sub() (VxV)—>V Complex Vector Subtract
bfp_complex_s32_to_bfp_complex_s16() X V>V Convert to 16-bit
bfp_complex_s32_squared_mag() X V=V Squared Magnitude
bfp_complex_s32_mag() X V=V Magnitude
bfp_complex_s32_sum() V—S Vector Sum
bfp_complex_s32_conjugate() x V=V Complex Conjugate
bfp_complex_s32_energy() V=S Vector Energy
bfp_complex_s32_make() X (VxV)—>V Construct Complex From Real
and Imaginary
bfp_complex_s32_real_part() X V>V Real Part
bfp_complex_s32_imag_part() X V>V Imaginary Part

23 p,



4.2.1.4 Complex 16-bit BFP API Quick Reference

Table 4.7: Complex 16-Bit BFP API - Quick Reference

Function EW Signature Brief
bfp_complex_s16_init() (VxS)—>V Initialize (static)
bfp_complex_si6_alloc() -V Initialize (dynamic)
bfp_complex_s16_dealloc() Voo Deinitialize
bfp_complex_sl16_set() X (VxS)—>V Set All Elements
bfp_complex_s16_use_exponent() (VxS)—>V Force Exponent
bfp_complex_s16_headroom() V—S Get Headroom
bfp_complex_s16_shl() X (VxS)—>V Shift Mantissas
bfp_complex_s16_real_mul() X (VxV)—>V Real Vector Multiply
bfp_complex_s16_mul() X (VxV)—>V Complex Vector Multiply
bfp_complex_si16_conj_mul() X (VxV)—>V Complex Vector Conjugate Multi-
ply
bfp_complex_s16_macc() X (VxVxV)—V Complex Vector  Multiply-
Accumulate
bfp_complex_s16_nmacc() X (VxVxV)—=V  Complex Vector Negated
Multiply-Accumulate
bfp_complex_s16_conj_macc() X (VxVxV)—V Complex Vector Conjugate
Multiply-Accumulate
bfp_complex_s16_conj_nmacc() X (VxVxV)—V Complex Vector Negated Conju-
gate Multiply-Accumulate
bfp_complex_s16_real_scale() (VxS)—>V Real Scalar Multiply
bfp_complex_si16_scale() (VxS)—>V Complex Scalar Multiply
bfp_complex_s16_add() X (VxV)—=>V Complex Vector Add
bfp_complex_s16_add_scalar() (VxS)—>V Complex Scalar Add
bfp_complex_s16_sub() (VxV)—>V Complex Vector Subtract
bfp_complex_s16_to_bfp_complex_s32() X V>V Convert to 32-bit
bfp_complex_s16_squared_mag() X V=V Squared Magnitude
bfp_complex_s16_sum() V—S Vector Sum
bfp_complex_s16_mag() X V=V Magnitude
bfp_complex_s16_conjugate() X V-V Complex Conjugate
bfp_complex_s16_energy() V=S Vector Energy

24 ).



4.2.2 16-Bit Block Floating-Point API

group bfp_s16_api

25

Functions

void bfp_s16_init (bfp_sT6_t *a, int16_t *data, const exponent_t exp, const unsigned length, const

unsigned calc_hr)
Initialize a 16-bit BFP vector.

This function initializes each of the fields of BFP vector a.

data points to the memory buffer used to store elements of the vector, so it must be at least 1ength
* 2 bytes long, and must begin at a word-aligned address.

exp is the exponent assigned to the BFP vector. The logical value associated with the kth element
of the vector after initialization is datay, - 2¢*P.

If calc_hr is false, a->hr is initialized to 0. Otherwise, the headroom of the the BFP vector is
calculated and used to initialize a->hr.

Parameters
+ a — [out] BFP vector to initialize
- data — [in] int16_t buffer used to back a
- exp — [in] Exponent of BFP vector
+ length — [in] Number of elements in the BFP vector

+ calc_hr - [in] Boolean indicating whether the HR of the BFP vector should be cal-
culated

bfp_s16_t bfp_s16_alloc(const unsigned length)

Dynamically allocate a 16-bit BFP vector from the heap.

If allocation was unsuccessful, the data field of the returned vector will be NULL, and the length
fleld will be zero. Otherwise, data will point to the allocated memory and the length field will be
the user-specified length. The 1length argument must not be zero.

Neither the BFP exponent, headroom, nor the elements of the allocated mantissa vector are set by
this function. To set the BFP vector elements to a known value, use bfp_s76_set() on the retuned
BFP vector.

BFP vectors allocated using this function must be deallocated using bfp_s76_dealloc() to avoid a
memory leak.

To initialize a BFP vector using static memory allocation, use bfp_sT6_init() instead.

See also:
bfp_s16_dealloc, bfp_s16_init

Note: Dynamic allocation of BFP vectors relies on allocation from the heap, and offers no guar-
antees about the execution time. Use of this function in any time-critical section of code is highly
discouraged.

Parameters

« length - [in] The length of the BFP vector to be allocated (in elements)



Returns
16-bit BFP vector

void bfp_s16_dealloc (bfp_s16_t *vector)
Deallocate a 16-bit BFP vector allocated by bfp_sT6_alloc().

Use this function to free the heap memory allocated by bfp_sT6_alloc().

BFP vectors whose mantissa buffer was (successfully) dynamically allocated have a flag set which
indicates as much. This function can safely be called on any bfp_s76_t which has not had its flags
or data manually manipulated, including:

+ bfp_sT6_t resulting from a successful call to bfp_s76_alloc()
« bfp_sT6_t resulting from an unsuccessful call to bfp_sT6_alloc()
+ bfp_sT6_tinitialized with a call to bfp_sT6_init()

In the latter two cases, this function does nothing. In the former, the data, length and flags fields
of vector are cleared to zero.

See also:
bfp_si16_alloc

Parameters

- vector — [in] BFP vector to be deallocated.

void bfp_s16_set (bip_s16_t *a, const int16_t b, const exponent_t exp)
Set all elements of a 16-bit BFP vector to a specified value.

The exponent of a is set to exp, and each element's mantissa is set to b.
After performing this operation, all elements will represent the same value b - 2677,
a must have been initialized (see bfp_sT6_init()).
Parameters
- a — [out] BFP vector to update
« b — [in] New value each mantissa is set to
- exp — [in] New exponent for the BFP vector

headroom_t bfp_s16_headroom(bfp_s16_t *b)
Get the headroom of a 16-bit BFP vector.

The headroom of a vector is the number of bits its elements can be left-shifted without losing
any information. It conveys information about the range of values that vector may contain, which
is useful for determining how best to preserve precision in potentially lossy block floating-point
operations.

In a BFP context, headroom applies to mantissas only, not exponents.

In particular, if the 16-bit mantissa vector z has N bits of headroom, then for any element z;, of z

_QI5-N < g < Q15-N

And for any element X}, = x;, - 27-*P of a complex BFP vector X

_215+z_exp—N < Xk < 215+r_emp—N

This function determines the headroom of b, updates b->hr with that value, and then returns b->hr.
Parameters

+ b — BFP vector to get the headroom of



Returns
Headroom of BFP vector b

void bfp_s16_use_exponent (bfp_sT16_t *a, const exponent_t exp)
Modify a 16-bit BFP vector to use a specified exponent.

This function forces BFP vector A to use a specified exponent. The mantissa vector a will be
bit-shifted left or right to compensate for the changed exponent.

This function can be used, for example, before calling a fixed-point arithmetic function to ensure
the underlying mantissa vector has the needed Q-format. As another example, this may be useful
when communicating with peripheral devices (e.g. via I12S) that require sample data to be in a
specified format.

Note that this sets the current encoding, and does not fix the exponent permanently (i.e. subse-
guent operations may change the exponent as usual).

If the required fixed-point Q-format is QX.Y, where Y is the number of fractional bits in the resulting
mantissas, then the associated exponent (and value for parameter exp) is -V.

a points to input BFP vector A, with mantissa vector a and exponent a_exp. a is updated in place
to produce resulting BFP vector A with mantissa vector @ and exponent a_ezp.

exp IS a_exp, the required exponent. Ap = a_exp — a_exp is the required change in exponent.
If Ap = 0, the BFP vector is left unmodified.

If Ap > 0, the required exponent is larger than the current exponent and an arithmetic right-shift
of Ap bits is applied to the mantissas a. When applying a right-shift, precision may be lost by
discarding the Ap least significant bits.

If Ap < 0, the required exponent is smaller than the current exponent and a left-shift of Ap bits is
applied to the mantissas a. When left-shifting, saturation logic will be applied such that any ele-
ment that can't be represented exactly with the new exponent will saturate to the 16-bit saturation
bounds.

The exponent and headroom of a are updated by this function.

Operation Performed

Ap = a_exp — a_exp
ay + satig(ay, - Q_Ap)
forke0..(N-1)
where N is the length of A (in elements)

Parameters

- a - [inout] Input BFP vector A4 / Output BFP vector A

+ exp - [in] The required exponent, a_exp

void bfp_s16_shl(bfp_sT6_t *a, const bfp_s16_t *b, const left_shift_t b_shl)
Apply a left-shift to the mantissas of a 16-bit BFP vector.

Each mantissa of input BFP vector B is left-shifted b_sh1 bits and stored in the corresponding
element of output BFP vector A.

This operation can be used to add or remove headroom from a BFP vector.

b_sh1 is the number of bits that each mantissa will be left-shifted. This shift is signed and arith-
metic, so negative values for b_sh1 will right-shift the mantissas.

a and b must have been initialized (see bfp_s16_init()), and must be the same length.



This operation can be performed safely in-place on b.

Note that this operation bypasses the logic protecting the caller from saturation or underflows.
Output values saturate to the symmetric 16-bit range (the open interval (—215,21%)). To avoid sat-
uration, b_sh1 should be no greater than the headroom of b (b->hr).

Operation Performed

ay, < satyg(|by - 2%°1])
forkeo0..(N—-1)
where N is the length of B
and b, and a;, are the kth mantissas from B and A respectively

Parameters

- a — [out] Output BFP vector A

« b - [in] Input BFP vector B

» b_shl - [in] Signed arithmetic left-shift to be applied to mantissas of B.

void bfp_s16_add(bfp_s16_t *a, const bfp_s16_t *b, const bfp_s16_t *c)

Add two 16-bit BFP vectors together.
Add together two input BFP vectors B and C and store the result in BFP vector A.
a, b and ¢ must have been initialized (see bfp_s76_init()), and must be the same length.

This operation can be performed safely in-place on b or c.

Operation Performed

b N
/]\
sl
+
Qi

Parameters
- a — [out] Output BFP vector A
« b - [in] Input BFP vector B
+ ¢ — [in] Input BFP vector C
void bfp_s16_add_scalar (bfp_s16_t *a, const bfp_s16_t *b, const float ¢)

Add a scalar to a 16-bit BFP vector.

Add a real scalar ¢ to input BFP vector B and store the result in BFP vector A.

a, and b must have been initialized (see bfp_s76_init()), and must be the same length.

This operation can be performed safely in-place on b.

Operation Performed

Parameters
- a — [out] Output BFP vector A
+ b — [in] Input BFP vector B

+ ¢ — [in] Input scalar ¢
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void bfp_s16_sub (bfp_s16_t *a, const bfp_s16_t *b, const bfp_s16_t *c)
Subtract one 16-bit BFP vector from another.

Subtract input BFP vector C from input BFP vector C and store the result in BFP vector A.
a, b and ¢ must have been initialized (see bfp_s76_init()), and must be the same length.

This operation can be performed safely in-place on b or c.

Operation Performed

N
/l\
o]l
|
Qi

Parameters
+ a — [out] Output BFP vector A
« b - [in] Input BFP vector B
+ ¢ — [in] Input BFP vector C

void bfp_s16_mul(bfp_s16_t *a, const bfp_s16_t *b, const bfp_s16_t *c)
Multiply one 16-bit BFP vector by another element-wise.

Multiply each element of input BFP vector B by the corresponding element of input BFP vector C
and store the results in output BFP vector A.

a, b and ¢ must have been initialized (see bfp_s76_init()), and must be the same length.

This operation can be performed safely in-place on b or c.

Operation Performed

Ak — Bk . Ok
forke0..(N—-1)
where N is the length of B and C

Parameters
+ a — Output BFP vector A
* b — Input BFP vector B
« ¢ — Input BFP vector C

void bfp_s16_macc (bfp_s16_t *acc, const bip_sT16_t *b, const bfp_s16_t *c)
Multiply one 16-bit BFP vector by another element-wise and add the result to a third vector.

Operation Performed

Ak — Ak + By - Cy,
forke0..(N—-1)
where N is the length of B and C

Parameters
« acc — [inout] Input/Output accumulator BFP vector A
+ b — [in] Input BFP vector B
+ ¢ — [in] Input BFP vector C
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void bfp_s16_nmacc (bfp_sT6_t *acc, const bfp_s16_t *b, const bfp_sT6_t *c)
Multiply one 16-bit BFP vector by another element-wise and subtract the result from a third vector.

Operation Performed

Ak < Ak — Bk . Ck
forke0..(N-1)
where N is the length of B and C

Parameters
+ acc — [inout] Input/Output accumulator BFP vector A
« b - [in] Input BFP vector B
« ¢ — [in] Input BFP vector C

void bfp_s16_scale(bfp_sT6_t *a, const bfp_s716_t *b, const float alpha)
Multiply a 16-bit BFP vector by a scalar.

Multiply input BFP vector B by scalar « - 22-¢*P and store the result in output BFP vector A.
a and b must have been initialized (see bfp_s16_init()), and must be the same length.
alpha represents the scalar « - 29-¢*P, where « is alpha.mant and a_exp is alpha.exp.

This operation can be performed safely in-place on b.

Operation Performed

A B-(a-20-07)

Parameters
- a — [out] Output BFP vector A
« b - [in] Input BFP vector B
- alpha — [in] Scalar by which B is multiplied
void bfp_s16_abs (bfp_s16_t *a, const bfp_s16_t *b)
Get the absolute values of elements of a 16-bit BFP vector.

Compute the absolute value of each element By, of input BFP vector B and store the results in
output BFP vector A.

a and b must have been initialized (see bfp_s76_init()), and must be the same length.

This operation can be performed safely in-place on b.

Operation Performed

Ak < |Bk‘
forke0..(N-1)
where N is the length of B

Parameters
- a — [out] Output BFP vector A
* b — [in] Input BFP vector B
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float_s32_t bfp_s16_sum(const bfp_s16_t *b)
Sum the elements of a 16-bit BFP vector.

Sum the elements of input BFP vector B to get a result A = a - 2%-°*P, which is returned. The
returned value has a 32-bit mantissa.

b must have been initialized (see bfp_s76_init()).

Operation Performed

N—-1
A+ > (By)
k=0
where N is the length of B

Parameters
« b — [in] Input BFP vector B
Returns B
A, the sum of elements of B

float_s64_t bfp_s16_dot (const bip_sT16_t *b, const bfp_sT16_t *c)
Compute the inner product of two 16-bit BFP vectors.

Adds together the element-wise products of input BFP vectors B and C for aresult A = a - 2%-°*P,
where a is the 64-bit mantissa of the result and a_exp is its associated exponent. A is returned.

b and ¢ must have been initialized (see bfp_s16_init()), and must be the same length.

Operation Performed

N-1
a- 2% « N (By - Cy)
k=0
where N is the length of B and C

Parameters
* b — [in] Input BFP vector B
« ¢ — [in] Input BFP vector C

Returns - B
A, the inner product of vectors B and C

void bfp_s16_clip(bfp_sT6_t *a, const bfp_s16_t *b, const int16_t lower_bound, const int16_t
upper_bound, const int bound_exp)
Clamp the elements of a 16-bit BFP vector to a specified range.

Each element A, of output BFP vector A is set to the corresponding element By, of input BFP
vector B if it is in the range [L - 2bound-exp [y . gboundexp] otherwise it is set to the nearest value

inside that range.
a and b must have been initialized (see bfp_s16_init()), and must be the same length.

This operation can be performed safely in-place on b.
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Operation Performed

L - 2bound,e:vp Bk <L- 2bound,e:vp
Ak «lU. 2bound,ea:p Bk SU- Qbound,exp

By, otherwise

forke0..(N-1)
where N is the length of B

Parameters
- a — [out] Output BFP vector A
« b — [in] Input BFP vector B
+ lower_bound — [in] Mantissa of the lower clipping bound, L
- upper_bound — [in] Mantissa of the upper clipping bound, U

* bound_exp - [in] Shared exponent of the clipping bounds

void bfp_s16_rect(Hfp_sT16_t *a, const bip_sT16_t *b)
Rectify a 16-bit BFP vector.

Each element Ay of output BFP vector A is set to the corresponding element By, of input BFP
vector B if it is non-negative, otherwise it is set to 0.

a and b must have been initialized (see bfp_s76_init()), and must be the same length.

This operation can be performed safely in-place on b.

Operation Performed

0 B <0
Ap .
B, otherwise

forke0..(N—-1)
where N is the length of B

Parameters
- a — [out] Output BFP vector A
* b — [in] Input BFP vector B

void bfp_s16_to_bfp_s32(bfp_s32_t *a, const bfp_s16_t *b)
Convert a 16-bit BFP vector into a 32-bit BFP vector.

Increases the bit-depth of each 16-bit element By, of input BFP vector B to 32 bits, and stores the
32-bit result in the corresponding element A, of output BFP vector A.

a and b must have been initialized (see bfp_s76_init() and bfp_s32_init()), and must be the same
length.

Operation Performed

A Y By
forke0..(N—-1)

where N is the length of B

Parameters



- a — [out] Output BFP vector A
« b - [in] Input BFP vector B

void bfp_s16_sqrt(bfp_s16_t *a, const bip_s16_t *b)
Get the square roots of elements of a 16-bit BFP vector.

Computes the square root of each element By, of input BFP vector B and stores the results in
output BFP vector A.

a and b must have been initialized (see bfp_s76_init()), and must be the same length.

This operation can be performed safely in-place on b.

Operation Performed

Ak — By,
forke0..(N-1)
where N is the length of B

Notes

+ Only the XMATH_BFP_SQRT_DEPTH_S16 (see xmath_conf.h) most significant bits of each re-
sult are computed.

+ This function only computes real roots. For any By, < 0, the corresponding output Ay, is
setto 0.
Parameters
- a — [out] Output BFP vector A
* b — [in] Input BFP vector B

void bfp_s16_inverse(bfp_s16_t *a, const bip_sT16_t *b)
Get the inverses of elements of a 16-bit BFP vector.

Computes the inverse of each element By, of input BFP vector B and stores the results in output
BFP vector A.

a and b must have been initialized (see bfp_s16_init()), and must be the same length.

This operation can be performed safely in-place on b.

Operation Performed

Ak — Bk_l
forke0..(N—-1)
where N is the length of B

Parameters
+ a — [out] Output BFP vector A
* b — [in] Input BFP vector B



float_s32_t bfp_s16_abs_sum(const bfp_s716_t *b)
Sum the absolute values of elements of a 16-bit BFP vector.

Sum the absolute values of elements of input BFP vector B for a result A = a - 2%-°*P, where a is
a 32-bit mantissa and a_exp is its associated exponent. A is returned.

b must have been initialized (see bfp_s76_init()).

Operation Performed

N-1
AN A
k=0
where N is the length of B

Parameters
« b - [in] Input BFP vector B

Returns B
A, the sum of absolute values of elements of B

float bfp_s16_mean(const bfp_s16_t *b)
Get the mean value of a 16-bit BFP vector.

Computes A = a - 2%-°*P, the mean value of elements of input BFP vector B, where a is the 16-bit
mantissa of the result, and a_exp is its associated exponent. A is returned.

b must have been initialized (see bfp_s76_init()).

Operation Performed

k=0
where N is the length of B

Parameters
« b - [in] Input BFP vector B

Returns -
A, the mean value of B’s elements

float_s64_t bfp_s16_energy(const bfp_s16_t *b)
Get the energy (sum of squared of elements) of a 16-bit BFP vector.

Computes A = a - 2%-°*P, the sum of squares of elements of input BFP vector B, where a is the
64-bit mantissa of the result, and a_exp is its associated exponent. A is returned.

b must have been initialized (see bfp_sT6_init()).

Operation Performed
N-1
A+ Z (B?)
k=0
where N is the length of B

Parameters



« b - [in] Input BFP vector B
Returns
A, B's energy

float_s32_t bfp_s16_rms(const bfp_s16_t *b)
Get the RMS value of elements of a 16-bit BFP vector.

Computes A = a - 2%-°*P, the RMS value of elements of input BFP vector B, where a is the 32-bit
mantissa of the result, and a_exp is its associated exponent. A is returned.

The RMS (root-mean-square) value of a vector is the square root of the sum of the squares of the
vector's elements.

b must have been initialized (see bfp_sT6_init()).

Operation Performed

where N is the length of B

Parameters

* b — [in] Input BFP vector B
Returns B

A, the RMS value of B's elements

float bfp_s16_max(const bfp_s716_t *b)
Get the maximum value of a 16-bit BFP vector.

Finds A, the maximum value among elements of input BFP vector B. A is returned by this function.

b must have been initialized (see bfp_sT6_init()).

Operation Performed

A+ max (B(), Bl, ceey BNfl)
where N is the length of B

Parameters
+ b - [in] Input vector
Returns -
A, the value of B's maximum element

void bfp_s16_max_elementwise (b/p_s76_t *a, const bfp_sT6_t *b, const bfp_sT16_t *C)
Get the element-wise maximum of two 16-bit BFP vectors.

Each element of output vector A is set to the maximum of the corresponding elements in the input
vectors B and C.

a, b and ¢ must have been initialized (see bfp_s76_init()), and must be the same length.

This operation can be performed safely in-place on b, but not on c.
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Operation Performed

Ay, + max(By, Cy)
forke0..(N—-1)
where N is the length of B and C

Parameters
- a — Output BFP vector A
* b — Input BFP vector B
« ¢ — Input BFP vector C

float bfp_s16_min(const bfp_sT16_t *b)
Get the minimum value of a 16-bit BFP vector.

Finds A, the minimum value among elements of input BFP vector B. A is returned by this function.

b must have been initialized (see bfp_sT6_init()).

Operation Performed

A <+ min (Bo, By, ..., BNfl)
where N is the length of B

Parameters
+ b — [in] Input vector
Returns -
A, the value of B's minimum element

void bfp_s16_min_elementwise (bfp_s76_t *a, const bfp_sT6_t *b, const bfp_sT6_t *c)
Get the element-wise minimum of two 16-bit BFP vectors.

Each element of output vector A is set to the minimum of the corresponding elements in the input
vectors B and C.

a, b and ¢ must have been initialized (see bfp_s76_init()), and must be the same length.

This operation can be performed safely in-place on b, but not on c.

Operation Performed

Ak — min(Bk, Ck)
forke0..(N-1)
where N is the length of B and C

Parameters
+ a — Output BFP vector A
« b — Input BFP vector B
« ¢ — Input BFP vector C
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unsigned bfp_s16_argmax(const bfp_s16_t *b)
Get the index of the maximum value of a 16-bit BFP vector.

Finds q, the index of the maximum value among the elements of input BFP vector B. a is returned
by this function.

If i is the value returned, then the maximum value in B is 1dexp(b->data[i], b->exp).

Operation Performed

a < argmaxy, (bg)
forke0..(IN—-1)
where N is the length of B

Notes

- If there is a tie for maximum value, the lowest tying index is returned.

Parameters
+ b — [in] Input vector

Returns B
a, the index of the maximum value from B

unsigned bfp_s16_argmin(const bip_s16_t *b)
Get the index of the minimum value of a 16-bit BFP vector.

Finds a, the index of the minimum value among the elements of input BFP vector B. a is returned
by this function.

If i is the value returned then the minimum value in B is 1dexp(b->data[i], b->exp).

Operation Performed

a <+ argming (bg)
forke0..(N-1)
where N is the length of B

Notes

« If there is a tie for minimum value, the lowest tying index is returned.

Parameters
* b — [in] Input vector

Returns B
a, the index of the minimum value from B

headroom_t bfp_s16_accumulate(split_acc_s32_t al], const exponent_t a_exp, const bfp_s16_t *b)
Accumulate a 16-bit BFP vector into a 32-bit accumulator vector.

This function is used for efficiently accumulating a series of 16-bit BFP vectors into a 32-bit vector.
Each call to this function adds a BFP vector B into the persistent 32-bit accumulator vector A.

Eventually the value of A will be needed for something other than simple accumulation,
which requires converting from the XS3-native split accumulator representation given by the
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split_acc_s32_t struct, into a standard vector of int32_t. This can be accomplished using
vect_s32_merge_accs(). From there, the int32_t vector can be dropped to a 16-bit vector with
vect_s32_to_vect_s16() if needed.

Note, in order for this operation to work, b_exp — a_exp must be no greater than 14.

Operation Performed

N
/I\
hN
+
i

Proper use of this function requires some book-keeping on the part of the caller. In particular, the
caller is responsible for tracking the exponent and monitoring the headroom of the accumulator
vector A.

Usage

To begin a sequence of accumulation, start by clearing the contents of A to all zeros. Then, an
appropriate exponent for A must be chosen. The only hard constraint is that the accumulator
exponent, a_exp must be within 14 of B’s exponent, b_exp. If b_exp is unknown, the caller may
choose to wait until the first B is available before initializing a_exp.

As vectors are accumulated into A with multiple calls to this function, it becomes possible for A
to saturate for some element. Each call to this function returns the headroom of A (note: no more
than 15 bits of headroom will be reported). If A has at least 1 bit of headroom, then a call to this
function is guarranteed not to saturate.

The larger a_exp is compared to each b_exp, the more 16-bit vectors can be accumulated before
saturation becomes possible (and by virtue of that, the more efficiently accumulation can take
place.). On the other hand, as long as a_exp < b_exp, there is no precision loss during accumula-
tion. It is the responsibility of the caller to manage this trade-off.

If and when this function reports that A has 0 headroom, if further accumulation is needed, the
caller can handle this by increasing a_exp. Increasing a_exp will require that the contents of the
mantissa vector a be right-shifted to avoid corrupting the value of A, making room for further
accumulation in the process. Shifting the split accumulators can be accomplished with a call to
vect_split_acc_s32_shr().

Finally, when accumulation is complete or the accumulator values must be used elsewhere,
the split accumulator vector can be converted to simple int32_t vector with a call to
vect_s32_merge_accs().

Parameters
- a — [inout] Mantissas of accumulator vector A
- a_exp — [in] Exponent of accumulator vector A
- b - [in] Input vector B

Returns
Headroom of A (up to 15 bits)



4.2.3 32-Bit Block Floating-Point API

group bfp_s32_api

39

Functions

void bfp_s32_init(bfp_s32_t *a, int32_t *data, const exponent_t exp, const unsigned length, const

unsigned calc_hr)
Initialize a 32-bit BFP vector.

This function initializes each of the fields of BFP vector a.

data points to the memory buffer used to store elements of the vector, so it must be at least 1ength
* 4 bytes long, and must begin at a word-aligned address.

exp is the exponent assigned to the BFP vector. The logical value associated with the kth element
of the vector after initialization is datay, - 2¢*P.

If calc_hr is false, a->hr is initialized to 0. Otherwise, the headroom of the the BFP vector is
calculated and used to initialize a->hr.

Parameters
+ a — [out] BFP vector to initialize
« data — [in] int32_t buffer used to back a
- exp — [in] Exponent of BFP vector
+ length — [in] Number of elements in the BFP vector

+ calc_hr - [in] Boolean indicating whether the HR of the BFP vector should be cal-
culated

bfp_s32_t bfp_s32_alloc(unsigned length)

Dynamically allocate a 32-bit BFP vector from the heap.

If allocation was unsuccessful, the data field of the returned vector will be NULL, and the length
fleld will be zero. Otherwise, data will point to the allocated memory and the length field will be
the user-specified length. The 1length argument must not be zero.

Neither the BFP exponent, headroom, nor the elements of the allocated mantissa vector are set by
this function. To set the BFP vector elements to a known value, use bfp_s32_set() on the retuned
BFP vector.

BFP vectors allocated using this function must be deallocated using bfp_s32_dealloc() to avoid a
memory leak.

To initialize a BFP vector using static memory allocation, use bfp_s32_init() instead.

See also:
bfp_s32_dealloc, bfp_s32_init

Note: This function always allocates an extra 2 elements so that bfp_fft_unpack_mono() can
safely be used, but these two elements will NOT be reflected in the returned vector length.




Note: Dynamic allocation of BFP vectors relies on allocation from the heap, and offers no guar-
antees about the execution time. Use of this function in any time-critical section of code is highly
discouraged.

Parameters

+ length — [in] The length of the BFP vector to be allocated (in elements)
Returns

32-bit BFP vector

void bfp_s32_dealloc (bfp_s32_t *vector)
Deallocate a 32-bit BFP vector allocated by bfp_s32_alloc().

Use this function to free the heap memory allocated by bfp_s32_alloc().

BFP vectors whose mantissa buffer was (successfully) dynamically allocated have a flag set which
indicates as much. This function can safely be called on any bfp_s32_t which has not had its f1ags
or data manually manipulated, including:

+ bfp_s32_t resulting from a successful call to bfp_s32_alloc()
+ bfp_s32_t resulting from an unsuccessful call to bfp_s32_alloc()
« bfp_s32_t initialized with a call to bfp_s32_init()

In the latter two cases, this function does nothing. In the former, the data, length and flags fields
of vector are cleared to zero.

See also:
bfp_s32_alloc

Parameters

- vector — [in] BFP vector to be deallocated.

void bfp_s32_set (bfp_s32_t *a, const int32_t b, const exponent_t exp)
Set all elements of a 32-bit BFP vector to a specified value.

The exponent of a is set to exp, and each element’'s mantissa is set to b.
After performing this operation, all elements will represent the same value b - 2¢*P.
a must have been initialized (see bfp_s32_init()).
Parameters
- a — [out] BFP vector to update
+ b — [in] New value each mantissa is set to
- exp — [in] New exponent for the BFP vector

void bfp_s32_use_exponent (bfp_s32_t *a, const exponent_t exp)
Modify a 32-bit BFP vector to use a specified exponent.

This function forces BFP vector A to use a specified exponent. The mantissa vector a will be
bit-shifted left or right to compensate for the changed exponent.

This function can be used, for example, before calling a fixed-point arithmetic function to ensure
the underlying mantissa vector has the needed Q-format. As another example, this may be useful
when communicating with peripheral devices (e.g. via I12S) that require sample data to be in a
specified format.
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Note that this sets the current encoding, and does not fix the exponent permanently (i.e. subse-
guent operations may change the exponent as usual).

If the required fixed-point Q-format is QX Y, where Y is the number of fractional bits in the resulting
mantissas, then the associated exponent (and value for parameter exp) is -Y.

a points to input BFP vector A, with mantissa vector a and exponent a_exp. a is updated in place
to produce resulting BFP vector A with mantissa vector a and exponent a_exp.

exp is a_exp, the required exponent. Ap = a_exp — a_exp is the required change in exponent.
If Ap = 0, the BFP vector is left unmodified.

If Ap > 0, the required exponent is larger than the current exponent and an arithmetic right-shift
of Ap bits is applied to the mantissas a. When applying a right-shift, precision may be lost by
discarding the Ap least significant bits.

If Ap < 0, the required exponent is smaller than the current exponent and a left-shift of Ap bits is
applied to the mantissas a. When left-shifting, saturation logic will be applied such that any ele-
ment that can't be represented exactly with the new exponent will saturate to the 32-bit saturation
bounds.

The exponent and headroom of a are updated by this function.

Operation Performed

Ap = a_exp — a_exp
day < satsa(ay - 2_Ap)
forke0..(N-1)
where N is the length of A (in elements)

Parameters

- a — [inout] Input BFP vector A / Output BFP vector A

- exp — [in] The required exponent, @_exp

headroom_t bfp_s32_headroom(bfp_s32_t *b)

Get the headroom of a 32-bit BFP vector.

The headroom of a vector is the number of bits its elements can be left-shifted without losing
any information. It conveys information about the range of values that vector may contain, which
is useful for determining how best to preserve precision in potentially lossy block floating-point
operations.

In a BFP context, headroom applies to mantissas only, not exponents.
In particular, if the 32-bit mantissa vector z has N bits of headroom, then for any element z; of z
72317N <z < 2317N
And for any element X, = x;, - 22-¢*? of a complex BFP vector X
_9314z_exp—N < X < 931+x_exp—N
This function determines the headroom of b, updates b->hr with that value, and then returns b->hr.
Parameters
- b — BFP vector to get the headroom of

Returns
Headroom of BFP vector b



void bfp_s32_shl(bfp_s32_t *a, const bfp_s32_t *b, const left_shift_t b_shl)
Apply a left-shift to the mantissas of a 32-bit BFP vector.

Each mantissa of input BFP vector B is left-shifted b_sh1 bits and stored in the corresponding
element of output BFP vector A.

This operation can be used to add or remove headroom from a BFP vector.

b_shl is the number of bits that each mantissa will be left-shifted. This shift is signed and arith-
metic, so negative values for b_sh1 will right-shift the mantissas.

a and b must have been initialized (see bfp_s32_init()), and must be the same length.
This operation can be performed safely in-place on b.

Note that this operation bypasses the logic protecting the caller from saturation or underflows.
Output values saturate to the symmetric 32-bit range (the open interval (23! 231)). To avoid
saturation, b_sh1 should be no greater than the headroom of b (b->hr).

Operation Performed

ay, + satza(|by - 2b*3hlj)
forke0..(N-1)
where N is the length of B
and b, and a;, are the kth mantissas from B and A respectively

Parameters
- a — [out] Output BFP vector A
« b - [in] Input BFP vector B
» b_shl - [in] Signed arithmetic left-shift to be applied to mantissas of B.
void bfp_s32_add(bfp_s32_t *a, const bfp_s32_t *b, const bfp_s32_t *c)

Add two 32-bit BFP vectors together.

Add together two input BFP vectors B and C and store the result in BFP vector A.

a, b and ¢ must have been initialized (see bfp_s32_init()), and must be the same length.

This operation can be performed safely in-place on b or c.

Operation Performed

b N
/r
o]
i
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Parameters
- a — [out] Output BFP vector A
+ b — [in] Input BFP vector B
« ¢ — [in] Input BFP vector C

void bfp_s32_add_scalar(bfp_s32_t *a, const bfp_s32_t *b, const float_s32_t c)
Add a scalar to a 32-bit BFP vector.

Add a real scalar ¢ to input BFP vector B and store the result in BFP vector A.
a, and b must have been initialized (see bfp_s32_init()), and must be the same length.

This operation can be performed safely in-place on b.



Operation Performed

N
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Parameters
- a — [out] Output BFP vector A
« b - [in] Input BFP vector B
+ ¢ — [in] Input scalar ¢
void bfp_s32_sub(bip_s32_t *a, const bfp_s32_t *b, const bfp_s32_t *c)

Subtract one 32-bit BFP vector from another.

Subtract input BFP vector C from input BFP vector C and store the result in BFP vector A.

a, b and ¢ must have been initialized (see bfp_s32_init()), and must be the same length.

This operation can be performed safely in-place on b or c.

Operation Performed

N
T
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Parameters
- a — [out] Output BFP vector A
« b - [in] Input BFP vector B
« ¢ — [in] Input BFP vector C

void bfp_s32_mul(bfp_s32_t *a, const bfp_s32_t *b, const bfp_s32_t *c)
Multiply one 32-bit BFP vector by another element-wise.

Multiply each element of input BFP vector B by the corresponding element of input BFP vector C
and store the results in output BFP vector A.

a, b and ¢ must have been initialized (see bfp_s32_init()), and must be the same length.

This operation can be performed safely in-place on b or c.

Operation Performed

Ak < Bk . Ck
forke0..(N—-1)
where N is the length of B and C

Parameters
+ a — Output BFP vector A
* b — Input BFP vector B
« ¢ — Input BFP vector C

void bfp_s32_macc (bfp_s32_t *acc, const bip_s32_t *b, const bfp_s32_t *c)
Multiply one 32-bit BFP vector by another element-wise and add the result to a third vector.
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Operation Performed

forke0..(N—-1)
where N is the length of B and C

Parameters
+ acc — [inout] Input/Output accumulator BFP vector A
* b — [in] Input BFP vector B
« ¢ — [in] Input BFP vector C

void bfp_s32_nmacc (bfp_s32_t *acc, const bip_s32_t *b, const bfp_s32_t *c)
Multiply one 32-bit BFP vector by another element-wise and subtract the result from a third vector.

Operation Performed

Ak — Ak — Bk . Ck
forke0..(N—-1)
where N is the length of B and C

Parameters
- acc — [inout] Input/Output accumulator BFP vector A
« b - [in] Input BFP vector B
+ ¢ — [in] Input BFP vector C

void bfp_s32_scale(bfp_s32_t *a, const bfp_s32_t *b, const float_s32_t alpha)
Multiply a 32-bit BFP vector by a scalar.

Multiply input BFP vector B by scalar « - 29-¢*P and store the result in output BFP vector A.
a and b must have been initialized (see bfp_s32_init()), and must be the same length.
alpha represents the scalar « - 2¢-¢*P, where « is alpha.mant and a_exp is alpha.exp.

This operation can be performed safely in-place on b.

Operation Performed

N

« B (a-2077)

Parameters
- a — [out] Output BFP vector A
« b - [in] Input BFP vector B
- alpha — [in] Scalar by which B is multiplied

void bfp_s32_abs (bfp_s32_t *a, const bfp_s32_t *b)
Get the absolute values of elements of a 32-bit BFP vector.

Compute the absolute value of each element By, of input BFP vector B and store the results in
output BFP vector A.

a and b must have been initialized (see bfp_s32_init()), and must be the same length.

This operation can be performed safely in-place on b.



Operation Performed

Ak < |Bk‘
forke0..(N-1)
where N is the length of B

Parameters
- a — [out] Output BFP vector A
« b - [in] Input BFP vector B

float_s64_t bfp_s32_sum(const bip_s32_t *b)
Sum the elements of a 32-bit BFP vector.

Sum the elements of input BFP vector B to get a result A = a - 2%-°*P, which is returned. The
returned value has a 64-bit mantissa.

b must have been initialized (see bfp_s32_init()).

Operation Performed

N-1
A« (B
k=0
where N is the length of B

Parameters
* b — [in] Input BFP vector B
Returns -
A, the sum of elements of B

float_s64_t bfp_s32_dot(const bfp_s32_t *b, const bfp_s32_t *c)
Compute the inner product of two 32-bit BFP vectors.

Adds together the element-wise products of input BFP vectors B and C for aresult A = a - 29-4*P,
where a is the 64-bit mantissa of the result and a_exp is its associated exponent. A is returned.

b and ¢ must have been initialized (see bfp_s32_init()), and must be the same length.

Operation Performed

N-1

a - 24-57P Z (Bk : Ck)
k=0
where N is the length of B and C

Parameters
« b - [in] Input BFP vector B
« ¢ — [in] Input BFP vector C

Returns B B
A, the inner product of vectors B and C
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void bfp_s32_clip(bfp_s32_t *a, const bfp_s32_t *b, const int32_t lower_bound, const int32_t
upper_bound, const int bound_exp)

Clamp the elements of a 32-bit BFP vector to a specified range.

Each element A, of output BFP vector A is set to the corresponding element By, of input BFP
vector B if it is in the range [L - 2bound-exp [y . gboundexp] otherwise it is set to the nearest value

inside that range.
a and b must have been initialized (see bfp_s32_init()), and must be the same length.

This operation can be performed safely in-place on b.

Operation Performed

L - 2b0und_e;cp Bk: < L. 2bound_ewp
Ak ! U. 2bound_emp Bk >U- 2bound_emp

By, otherwise

forke0..(N-1)
where N is the length of B

Parameters
- a — [out] Output BFP vector A
+ b — [in] Input BFP vector B
+ lower_bound — [in] Mantissa of the lower clipping bound, L
« upper_bound - [in] Mantissa of the upper clipping bound, U

* bound_exp — [in] Shared exponent of the clipping bounds

void bfp_s32_rect(bfp_s32_t *a, const bfp_s32_t *b)
Rectify a 32-bit BFP vector.

Each element A, of output BFP vector A is set to the corresponding element By, of input BFP
vector B if it is non-negative, otherwise it is set to 0.

a and b must have been initialized (see bfp_s32_init()), and must be the same length.

This operation can be performed safely in-place on b.

Operation Performed

0 B 0
Ak — k< .
By, otherwise

forke0..(N-1)
where N is the length of B

Parameters
- a — [out] Output BFP vector A
« b - [in] Input BFP vector B

void bfp_s32_to_bfp_s16 (bip_s16_t *a, const bip_s32_t *b)
Convert a 32-bit BFP vector into a 16-bit BFP vector.

Reduces the bit-depth of each 32-bit element B, of input BFP vector B to 16 bits, and stores the
16-bit result in the corresponding element A;, of output BFP vector A.



a and b must have been initialized (see bfp_s32_init() and bfp_sT6_init()), and must be the same
length.

As much precision as possible will be retained.

Operation Performed

16—bit
P,

Ak By

forke0..(IN—-1)
where N is the length of B

Parameters
+ a — [out] Output BFP vector A
* b — [in] Input BFP vector B

void bfp_s32_sqrt(bfp_s32_t *a, const bip_s32_t *b)
Get the square roots of elements of a 32-bit BFP vector.

Computes the square root of each element By, of input BFP vector B and stores the results in
output BFP vector A.

a and b must have been initialized (see bfp_s32_init()), and must be the same length.

This operation can be performed safely in-place on b.

Operation Performed

Ak — \/Bk
forke0..(N—-1)
where N is the length of B

Notes

+ Only the XMATH_BFP_SQRT_DEPTH_S32 (see xmath_conf.h) most significant bits of each re-
sult are computed.

+ This function only computes real roots. For any By < 0, the corresponding output A is
setto 0.
Parameters
- a — [out] Output BFP vector A
« b - [in] Input BFP vector B

void bfp_s32_inverse(bfp_s32_t *a, const bfp_s32_t *b)
Get the inverses of elements of a 32-bit BFP vector.

Computes the inverse of each element By, of input BFP vector B and stores the results in output
BFP vector A.

a and b must have been initialized (see bfp_s32_init()), and must be the same length.

This operation can be performed safely in-place on b.
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Operation Performed

Ak — B;l
forke0..(N—1)
where N is the length of B

Parameters
- a — [out] Output BFP vector A
« b - [in] Input BFP vector B

float_s64_t bfp_s32_abs_sum(const bfp_s32_t *b)
Sum the absolute values of elements of a 32-bit BFP vector.

Sum the absolute values of elements of input BFP vector B for a result A = a - 2%-°*P, where a is
a 64-bit mantissa and a_exp is its associated exponent. A is returned.

b must have been initialized (see bfp_s32_init()).

Operation Performed

N-1
AN Ay
k=0
where N is the length of B

Parameters
« b - [in] Input BFP vector B

Returns B
A, the sum of absolute values of elements of B

float_s32_t bfp_s32_mean(const bfp_s32_t *b)
Get the mean value of a 32-bit BFP vector.

Computes A = a - 2%-°*P, the mean value of elements of input BFP vector B, where a is the 32-bit
mantissa of the result, and a_exp is its associated exponent. A is returned.

b must have been initialized (see bfp_s32_init()).

Operation Performed

where N is the length of B

Parameters
« b - [in] Input BFP vector B

Returns
A, the mean value of B’s elements



float_s64_t bfp_s32_energy(const bfp_s32_t *b)
Get the energy (sum of squared of elements) of a 32-bit BFP vector.

Computes A = a - 2%-°*P, the sum of squares of elements of input BFP vector B, where a is the
64-bit mantissa of the result, and a_exp is its associated exponent. A is returned.

b must have been initialized (see bfp_s32_init()).

Operation Performed

N-1
A Z (B?)
k=0
where N is the length of B

Parameters

* b — [in] Input BFP vector B
Returns

A, B's energy

float_s32_t bfp_s32_rms(const bfp_s32_t *b)
Get the RMS value of elements of a 32-bit BFP vector.

Computes A = a - 2%-°*P, the RMS value of elements of input BFP vector B, where q is the 32-bit
mantissa of the result, and a_exp is its associated exponent. A is returned.

The RMS (root-mean-square) value of a vector is the square root of the sum of the squares of the
vector's elements.

b must have been initialized (see bfp_s32_init()).

Operation Performed

where N is the length of B

Parameters
« b - [in] Input BFP vector B

Returns ~
A, the RMS value of B's elements

float_s32_t bfp_s32_max(const bfp_s32_t *b)
Get the maximum value of a 32-bit BFP vector.

Finds A, the maximum value among elements of input BFP vector B. A is returned by this function.

b must have been initialized (see bfp_s32_init()).

Operation Performed

A+ mazx (B(),Bl, ceny BN—l)
where N is the length of B

Parameters



* b — [in] Input vector
Returns -
A, the value of B's maximum element

void bfp_s32_max_elementwise(bfp_s32_t *a, const bfp_s32_t *b, const bfp_s32_t *c)
Get the element-wise maximum of two 32-bit BFP vectors.

Each element of output vector A is set to the maximum of the corresponding elements in the input
vectors B and C.

a, b and ¢ must have been initialized (see bfp_s32_init()), and must be the same length.

This operation can be performed safely in-place on b, but not on c.

Operation Performed

Ay, <+ max(By, Cy)
forke0..(N—-1)
where N is the length of B and C

Parameters
+ a — Output BFP vector A
* b — Input BFP vector B
- ¢ — Input BFP vector C

float_s32_t bfp_s32_min(const bip_s32_t *b)
Get the minimum value of a 32-bit BFP vector.

Finds A, the minimum value among elements of input BFP vector B. A is returned by this function.

b must have been initialized (see bfp_s32_init()).

Operation Performed

A+ min (Bo, Bl, ceny BN,1)
where N is the length of B

Parameters
+ b - [in] Input vector
Returns B
A, the value of B's minimum element

void bfp_s32_min_elementwise (bfp_s32_t *a, const bfp_s32_t *b, const bfp_s32_t *c)
Get the element-wise minimum of two 32-bit BFP vectors.

Each element of output vector A is set to the minimum of the corresponding elements in the input
vectors B and C.

a, b and ¢ must have been initialized (see bfp_s32_init()), and must be the same length.

This operation can be performed safely in-place on b, but not on c.
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Operation Performed

Ak {— min(Bk, Ck)
forke0..(N-1)
where N is the length of B and C

Parameters
+ a — Output BFP vector A
* b — Input BFP vector B
« ¢ — Input BFP vector C

unsigned bfp_s32_argmax(const bip_s32_t *b)
Get the index of the maximum value of a 32-bit BFP vector.

Finds a, the index of the maximum value among the elements of input BFP vector B. a is returned
by this function.

If i is the value returned, then the maximum value in B is 1dexp(b->data[i], b->exp).

Operation Performed

a < argmaxy, (bg)
forke0..(IN—-1)
where N is the length of B

Notes

« If there is a tie for maximum value, the lowest tying index is returned.

Parameters
+ b — [in] Input vector

Returns B
a, the index of the maximum value from B

unsigned bfp_s32_argmin(const bip_s32_t *b)
Get the index of the minimum value of a 32-bit BFP vector.

Finds q, the index of the minimum value among the elements of input BFP vector B. a is returned
by this function.

If i is the value returned, then the minimum value in B is 1dexp(b->data[i], b->exp).

Operation Performed

a < argming (by)
forke0..(N—-1)
where N is the length of B

Notes

- If there is a tie for minimum value, the lowest tying index is returned.

Parameters
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* b — [in] Input vector

Returns B
a, the index of the minimum value from B

void bfp_s32_convolve_valid(bfp_s32_t *y, const bfp_s32_t *x, const int32_t b_g30[], const unsigned
b_length)

Convolve a 32-bit BFP vector with a short convolution kernel (“valid” mode).

Input BFP vector X is convolved with a short fixed-point convolution kernel b to produce output
BFP vector Y. In other words, this function applies the Kth-order FIR filter with coefficients given
by b to the input signal X. The convolution is “valid” in the sense that no output elements are
emitted where the filter taps extend beyond the bounds of the input vector, resulting in an output
vector Y with fewer elements.

The maximum filter order K supported by this function is 7.

y is the output vector Y. If input X has N elements, and the filter has K coefficients, then Y has
N — 2P elements, where P = | K/2].

x is the input vector X with length IV and elements.

b_q30[ ] is the vector b of filter coefficients. The coefficients of b are encoded in a Q2.30 fixed-point
format. The effective value of the ith coefficient is then b; - 2730,

b_length is the length K of b in elements (i.e. the number of filter taps). b_length must be one of
{1,3,5,7}.

Operation Performed

K-1

Y, « Z (X(k-H) “by - 2730)
=0

forke0..(N —2P)
where P = | K /2]

Parameters
- y — [out] Output BFP vector Y
+ x — [in] Input BFP vector X
+ b_q30 - [in] Convolution kernel b
+ b_length - [in] The number of elements K in b

void bfp_s32_convolve_same(bfp_s32_t *y, const bfp_s32_t *x, const int32_t b_g30[], const unsigned
b_length, const pad_mode_e padding_mode)

Convolve a 32-bit BFP vector with a short convolution kernel ("same” mode).

Input BFP vector X is convolved with a short fixed-point convolution kernel b to produce output
BFP vector Y. In other words, this function applies the Kth-order FIR filter with coefficients given
by b to the input signal X. The convolution mode is “same” in that the input vector is effectively

padded such that the input and output vectors are the same length. The padding behavior is one
of those given by pad_mode_e.

The maximum filter order K supported by this function is 7.
y and x are the output and input BFP vectors Y and X respectively.

b_qg30[ ] is the vector b of filter coefficients. The coefficients of b are encoded in a Q2.30 fixed-point
format. The effective value of the ith coefficient is then b; - 2730,



b_lengthis the length K of bin elements (i.e. the number of filter taps). b_length must be one of
{1,3,5,7}.

padding_mode is one of the values from the pad_mode_e enumeration. The padding mode indi-
cates the filter input values for filter taps that have extended beyond the bounds of the input vector
X. See pad_mode_e for a list of supported padding modes and associated behaviors.

Operation Performed

determined by padding mode i < 0
Z; = < determined by padding mode i > N
T; otherwise

K-1

Uk < > (Fgegi—p) b 27%)
1=0

forke0..(N —2P)
where P = | K /2|

Note: Unlike bfp_s32_convolve_valid(), this operation cannot be performed safely in-place on x

Parameters
+ y — [out] Output BFP vector Y
+ x — [in] Input BFP vector X
+ b_q30 - [in] Convolution kernel b
+ b_length — [in] The number of elements K in b

- padding_mode — [in] The padding mode to be applied at signal boundaries

4.2.4 Complex 16-Bit Block Floating-Point API

group bfp_complex_s16_api

Functions

void bfp_complex_s16_init(bfp_complex_s16_t *a, int16_t *real_data, int16_t *imag_data, const
exponent_t exp, const unsigned length, const unsigned calc_hr)

Initialize a complex 16-bit BFP vector.
This function initializes each of the fields of BFP vector a.

Unlike complex 32-bit BFP vectors (bfp_complex_s16_t), for the sake of various optimizations the
real and imaginary parts of elements’ mantissas are stored in separate memory buffers.

real_data points to the memory buffer used to store the real part of each mantissa. It must be at
least length * 2 bytes long, and must begin at a word-aligned address.

imag_data points to the memory buffer used to store the imaginary part of each mantissa. It must
be at least 1length * 2 bytes long, and must begin at a word-aligned address.

exp is the exponent assigned to the BFP vector. The logical value associated with the kth element
of the vector after initialization is datay, - 2¢*P.
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If calc_hr is false, a->hr is initialized to 0. Otherwise, the headroom of the the BFP vector is
calculated and used to initialize a->hr.

Parameters
« a — [out] BFP vector to initialize
* real_data — [in] int16_t buffer used to back the real part of a
- imag_data - [in] int16_t buffer used to back the imaginary part of a
« exp — [in] Exponent of BFP vector
« length — [in] Number of elements in BFP vector

+ calc_hr - [in] Boolean indicating whether the HR of the BFP vector should be cal-
culated

bfp_complex_sT16_t bfp_complex_s16_alloc (const unsigned length)
Dynamically allocate a complex 16-bit BFP vector from the heap.

If allocation was unsuccessful, the real and imag fields of the returned vector will be NULL, and
the length field will be zero. Otherwise, real and imag will point to the allocated memory and the
length field will be the user-specified length. The 1ength argument must not be zero.

This function allocates a single block of memory for both the real and imaginary parts of the BFP
vector. Because all BFP functions require the mantissa buffers to begin at a word- aligned address,
if length is odd, this function will allocate an extra int16_t element for the buffer.

Neither the BFP exponent, headroom, nor the elements of the allocated mantissa vector are set by
this function. To set the BFP vector elements to a known value, use bfp_complex_s16_set() on the
retuned BFP vector.

BFP vectors allocated using this function must be deallocated using bfp_complex_s16_dealloc() to
avoid a memory leak.

To initialize a BFP vector using static memory allocation, use bfp_complex_s16_init() instead.

See also:

bfp_complex_s16_dealloc, bfp_complex_s16_init

Note: Dynamic allocation of BFP vectors relies on allocation from the heap, and offers no guar-
antees about the execution time. Use of this function in any time-critical section of code is highly
discouraged.

Parameters

+ length — [in] The length of the BFP vector to be allocated (in elements)
Returns

Complex 16-bit BFP vector

void bfp_complex_s16_dealloc (bfp_complex_s16_t *vector)
Deallocate a complex 16-bit BFP vector allocated by bfp_complex_s16_alloc().

Use this function to free the heap memory allocated by bfp_complex_s16_alloc().

BFP vectors whose mantissa buffer was (successfully) dynamically allocated have a flag set which
indicates as much. This function can safely be called on any bfp_complex_s16_t which has not had
its flags or real manually manipulated, including:

+ bfp_complex_s16_t resulting from a successful call to bfp_complex_s16_alloc()

« bfp_complex_s16_t resulting from an unsuccessful call to bfp_complex_s16_alloc()



+ bfp_complex_s16_t initialized with a call to bfp_complex_s16_init()

In the latter two cases, this function does nothing. In the former, the real, imag, length and flags
fields of vector are cleared to zero.

See also:

bfp_complex_s16_alloc

Parameters

- vector — [in] BFP vector to be deallocated.

void bfp_complex_s16_set (bfp_complex_sT16_t *a, const complex_s16_t b, const exponent_t exp)
Set all elements of a complex 16-bit BFP vector to a specified value.

The exponent of a is set to exp, and each element's mantissa is set to b.
After performing this operation, all elements will represent the same value b - 2677,
a must have been initialized (see bfp_complex_sT6_init()).
Parameters
- a — [out] BFP vector to update
b — [in] New value each complex mantissa is set to
- exp — [in] New exponent for the BFP vector

void bfp_complex_s16_use_exponent (bfp_complex_s16_t *a, const exponent_t exp)
Modify a complex 16-bit BFP vector to use a specified exponent.

This function forces complex BFP vector A to use a specified exponent. The mantissa vector a
will be bit-shifted left or right to compensate for the changed exponent.

This function can be used, for example, before calling a fixed-point arithmetic function to ensure
the underlying mantissa vector has the needed Q-format. As another example, this may be useful
when communicating with peripheral devices (e.g. via 12S) that require sample data to be in a
specified format.

Note that this sets the current encoding, and does not fix the exponent permanently (i.e. subse-
guent operations may change the exponent as usual).

If the required fixed-point Q-format is QX.Y, where Y is the number of fractional bits in the resulting
mantissas, then the associated exponent (and value for parameter exp) is -V.

a points to input BFP vector A, with complex mantissa vector @ and exponent a_exp. a is updated
in place to produce resulting BFP vector A with complex mantissa vector @ and exponent a_ezp.

exp is a_exp, the required exponent. Ap = a_exp — a_exp is the required change in exponent.
If Ap = 0, the BFP vector is left unmodified.

If Ap > 0, the required exponent is larger than the current exponent and an arithmetic right-shift
of Ap bits is applied to the mantissas a. When applying a right-shift, precision may be lost by
discarding the Ap least significant bits.

If Ap < 0, the required exponent is smaller than the current exponent and a left-shift of Ap bits is
applied to the mantissas a. When left-shifting, saturation logic will be applied such that any ele-
ment that can't be represented exactly with the new exponent will saturate to the 16-bit saturation
bounds.

The exponent and headroom of a are updated by this function.



Operation Performed

Ap = a_exp — a_exp
ay < satig(ay - 2_Ap)
forke0..(N-1)
where N is the length of A (in elements)

Parameters

- a - [inout] Input BFP vector A4 / Output BFP vector A

- exp — [in] The required exponent, a_exp

headroom_t bfp_complex_s16_headroom(bfp_complex_s16_t *b)
Get the headroom of a complex 16-bit BFP vector.

The headroom of a complex vector is the number of bits that the real and imaginary parts of each
of its elements can be left-shifted without losing any information. It conveys information about
the range of values that vector may contain, which is useful for determining how best to preserve
precision in potentially lossy block floating-point operations.

In a BFP context, headroom applies to mantissas only, not exponents.

In particular, if the complex 16-bit mantissa vector z has IV bits of headroom, then for any element
z, of &

—215-N < Refa,} < 215N
and
215N < Imfay,) < 215N
And for any element X, = x;, - 22-¢*? of a complex BFP vector X
_glbteeap—N < RelX,} < 215+w-cap—N
and
_glteenp—N < [{X,} < 215+z-eap—N
This function determines the headroom of b, updates b->hr with that value, and then returns b->hr.
Parameters
+ b — complex BFP vector to get the headroom of

Returns
Headroom of complex BFP vector b

void bfp_complex_s16_shl(bfp_complex_s16_t *a, const bfp_complex_s16_t *b, const left_shift_t
b_shl)

Apply a left-shift to the mantissas of a complex 16-bit BFP vector.

Each complex mantissa of input BFP vector B is left-shifted b_sh1 bits and stored in the corre-
sponding element of output BFP vector A.

This operation can be used to add or remove headroom from a BFP vector.

b_shr is the number of bits that the real and imaginary parts of each mantissa will be left-shifted.
This shift is signed and arithmetic, so negative values for b_sh1 will right-shift the mantissas.

a and b must have been initialized (see bfp_complex_sT6_init()), and must be the same length.
This operation can be performed safely in-place on b.

Note that this operation bypasses the logic protecting the caller from saturation or underflows.
Output values saturate to the symmetric 16-bit range (the open interval (—215,219)). To avoid sat-
uration, b_sh1 should be no greater than the headroom of b (b->hr).



Operation Performed

Re{ay} « satig(|Re{by} - 20-5M1))
Im{ay} < sati6(| Im{by} - 20-°"1))
forke0..(N—1)
where N is the length of B
and b, and a;, are the kth mantissas from B and A respectively

Parameters
- a — [out] Complex output BFP vector A
- b — [in] Complex input BFP vector B
+ b_shl - [in] Signed arithmetic left-shift to be applied to mantissas of B.

void bfp_complex_s16_real_mul(bfp_complex_s16_t *a, const bfp_complex_sT6_t *b, const bfp_sT6_t
*C)
Multiply a complex 16-bit BFP vector element-wise by a real 16-bit BFP vector.

Each complex output element A, of complex output BFP vector A is set to the complex product of
By, and Cy, the corresponding elements of complex input BFP vector B and real input BFP vector

C respectively.

a, b and ¢ must have been initialized (see bfp_complex_sT6_init() and bfp_s76_init()), and must be
the same length.

This operation can be performed safely in-place on b.

Operation Performed

Ak — Bk . Ck
forke0..(N—-1)
where N is the length of B and C

Parameters
- a — [out] Output complex BFP vector A
« b - [in] Input complex BFP vector B
+ ¢ — [in] Input real BFP vector C

void bfp_complex_s16_mul(bfp_complex_sT6_t *a, const bfp_complex_s16_t *b, const
bfp_complex_s16_t *c)

Multiply one complex 16-bit BFP vector element-wise another.

Each complex output element A, of complex output BFP vector A is set to the complex product
of By and Cy, the corresponding elements of complex input BFP vectors B and C respectively.

a, b and ¢ must have been initialized (see bfp_complex_s16_init()), and must be the same length.

This operation can be performed safely in-place on b or c.

Operation Performed

Ak — Bk . Ck
forke0..(N—-1)
where N is the length of B and C
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Parameters
- a — [out] Output complex BFP vector A
+ b — [in] Input complex BFP vector B
+ ¢ — [in] Input complex BFP vector C

void bfp_complex_s16_conj_mul(bfp_complex_s16_t *a, const bfp_complex_s16_t *b, const
bfp_complex_s16_t *c)

Multiply one complex 16-bit BFP vector element-wise by the complex conjugate of another.

Each complex output element A, of complex output BFP vector A is set to the complex product of
By, the corresponding element of complex input BFP vectors B, and (C},)*, the complex conjugate
of the corresponding element of complex input BFP vector C.

Operation Performed

Ay < By - (C)”
forke0..(N—-1)
where N is the length of B and C
and (Cy)* is the complex conjugate of Cy

Parameters
- a — [out] Output complex BFP vector A
« b — [in] Input complex BFP vector B
+ ¢ — [in] Input complex BFP vector C

void bfp_complex_s16_macc (bfp_complex_s16_t *acc, const bfp_complex_s16_t *b, const
bfp_complex_s16_t *c)

Multiply one complex 16-bit BFP vector by another element-wise and add the result to a third vector.

Operation Performed

Ay (—AkJr(Bk'Ck)
forke0..(N—-1)
where N is the length of B and C

Parameters
- acc — [inout] Input/Output accumulator complex BFP vector A
* b — [in] Input complex BFP vector B
« ¢ — [in] Input complex BFP vector C

void bfp_complex_s16_nmacc (bip_complex_sT16_t *acc, const bip_complex_sT16_t *b, const
bfp_complex_s16_t *c)

Multiply one complex 16-bit BFP vector by another element-wise and subtract the result from a
third vector.

Operation Performed

Ay« Ay, — (B - Ck)
forke0..(N—-1)
where N is the length of B and C
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Parameters
« acc — [inout] Input/Output accumulator complex BFP vector A
+ b — [in] Input complex BFP vector B
+ ¢ — [in] Input complex BFP vector C
void bfp_complex_s16_conj_macc (bfp_complex_sT6_t *acc, const bfp_complex_s16_t *b, const
bfp_complex_s16_t *c)

Multiply one complex 16-bit BFP vector by the complex conjugate of another element-wise and
add the result to a third vector.

Operation Performed

Ay A+ (B - CF)
forke0..(N-1)
where N is the length of B and C
and (Cy)* is the complex conjugate of Cy

Parameters
- acc — [inout] Input/Output accumulator complex BFP vector A
+ b - [in] Input complex BFP vector B
+ ¢ — [in] Input complex BFP vector C
void bfp_complex_s16_conj_nmacc (bfp_complex_s16_t *acc, const bfp_complex_s16_t *b, const

bfp_complex_s16_t *c)

Multiply one complex 16-bit BFP vector by the complex conjugate of another element-wise and
subtract the result from a third vector.

Operation Performed

Ay Ax — (Bi - C})
forke0..(N-1)
where N is the length of B and C
and (Cy)* is the complex conjugate of Cy,

Parameters
- acc — [inout] Input/Output accumulator complex BFP vector A
* b — [in] Input complex BFP vector B
+ ¢ — [in] Input complex BFP vector C
void bfp_complex_s16_real_scale(bfp_complex_s16_t *a, const bfp_complex_s16_t *b, const float
alpha)
Multiply a complex 16-bit BFP vector by a real scalar.

Each complex output element A, of complex output BFP vector A is set to the complex product
of By, the corresponding element of complex input BFP vector B, and real scalar o - 22-°*P, where
a and a_exp are the mantissa and exponent respectively of parameter alpha. a and b must have
been initialized (see bfp_complex_s16_init()), and must be the same length.

This operation can be performed safely in-place on b.
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Operation Performed

A+ B-(a-20-c)

Parameters
- a — [out] Output complex BFP vector A
« b - [in] Input complex BFP vector B
- alpha — [in] Real scalar by which B is multiplied
void bfp_complex_s16_scale(bfp_complex_sT6_t *a, const bfp_complex_sT6_t *b, const
float_complex_s16_t alpha)
Multiply a complex 16-bit BFP vector by a complex scalar.

Each complex output element A, of complex output BFP vector_[l is set to the complex product
of By, the corresponding element of complex input BFP vector B, and complex scalar « - 24-¢%P,
where « and a_exp are the complex mantissa and exponent respectively of parameter alpha.

a and b must have been initialized (see bfp_complex_sT6_init()), and must be the same length.

This operation can be performed safely in-place on b.

Operation Performed

A< B (a-2007)

Parameters
- a — [out] Output complex BFP vector A
« b — [in] Input complex BFP vector B
- alpha — [in] Complex scalar by which B is multiplied
void bfp_complex_s16_add(bfp_complex_s16_t *a, const bfp_complex_s16_t *b, const
bfp_complex_sT6_t *c)
Add one complex 16-bit BFP vector to another.

Each complex output element A, of complex output BFP vector A is set to the sum of By, and C,
the corresponding elements of complex input BFP vectors B and C respectively.

a, b and ¢ must have been initialized (see bfp_complex_s16_init()), and must be the same length.

This operation can be performed safely in-place on b or c.

Operation Performed

b N
/F
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Parameters
- a — [out] Output complex BFP vector A
« b — [in] Input complex BFP vector B

+ ¢ — [in] Input complex BFP vector C
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void bfp_complex_s16_add_scalar (bfp_complex_sT6_t *a, const bfp_complex_s16_t *b, const
float_complex_sT6_t c)

Add a complex scalar to a complex 16-bit BFP vector.
Add a real scalar ¢ to input BFP vector B and store the result in BFP vector A.
a, and b must have been initialized (see bfp_complex_s16_init()), and must be the same length.

This operation can be performed safely in-place on b.

Operation Performed
A+« B +c
Parameters
- a — [out] Output complex BFP vector A
+ b - [in] Input complex BFP vector B
+ ¢ — [in] Input complex scalar ¢

void bfp_complex_s16_sub (bfp_complex_sT6_t *a, const bfp_complex_s16_t *b, const
bfp_complex_sT6_t *c)

Subtract one complex 16-bit BFP vector from another.

Each complex output element A4;, of complex output BFP vector A is set to the difference between
By, and Cy, the corresponding elements of complex input BFP vectors B and C respectively.

a, b and ¢ must have been initialized (see bfp_complex_s16_init()), and must be the same length.

This operation can be performed safely in-place on b or c.

Operation Performed

b N
T
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Parameters
- a — [out] Output complex BFP vector A
« b — [in] Input complex BFP vector B

+ ¢ — [in] Input complex BFP vector C

void bfp_complex_s16_to_bfp_complex_s32(Hfp_complex_s32_t *a, const bfp_complex_s16_t *b)
Convert a complex 16-bit BFP vector to a complex 32-bit BFP vector.

Each complex 32-bit output element A, of complex output BFP vector Ais set to the value of By,
the corresponding element of complex 16-bit input BFP vector B, sign-extended to 32 bits.

a and b must have been initialized (see bfp_complex_s32_init() and bfp_complex_s16_init()), and
must be the same length.

Operation Performed

A PEY By,
forke0..(N-1)

where N is the length of B

Parameters



- a — [out] Output complex 32-bit BFP vector A
« b - [in] Input complex 16-bit BFP vector B

void bfp_complex_s16_squared_mag(bfp_s76_t *a, const bip_complex_s16_t *b)
Get the squared magnitude of each element of a complex 16-bit BFP vector.

Each element A;, of real output BFP vector A is set to the squared magnitude of By, the corre-
sponding element of complex input BFP vector B.

a and b must have been initialized (see bfp_s76_init() bfp_complex_sT16_init()), and must be the
same length.

Operation Performed

Ay < By - (By)*
forke0..(N—-1)
where N is the length of B
and (Bg)* is the complex conjugate of By,

Parameters
- a — [out] Output real BFP vector A

+ b - [in] Input complex BFP vector B

void bfp_complex_s16_mag(bfp_sT6_t *a, const bfp_complex_sT16_t *b)
Get the magnitude of each element of a complex 16-bit BFP vector.

Each element A;, of real output BFP vector A is set to the magnitude of By, the corresponding
element of complex input BFP vector B.

a and b must have been initialized (see bfp_sT6_init() bfp_complex_s16_init()), and must be the
same length.

Operation Performed

Ay, | By
forke0..(IN—-1)
where N is the length of B

Parameters
- a — [out] Output real BFP vector A

+ b — [in] Input complex BFP vector B

float_complex_s32_t bfp_complex_s16_sum(const bfp_complex_sT6_t *b)
Get the sum of elements of a complex 16-bit BFP vector.

The elements of complex input BFP vector B are summed together. The result is a complex 32-bit
floating-point scalar a, which is returned.

b must have been initialized (see bfp_complex_sT6_init()).
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Operation Performed

N—-1

a3 (b 2P)

k=0
forke0..(N-1)
where N is the length of B

Parameters
« b - [in] Input complex BFP vector B

Returns
a, the sum of vector B’s elements

void bfp_complex_s16_conjugate (bfp_complex_sT6_t *a, const bfp_complex_s16_t *b)
Get the complex conjugate of each element of a complex 16-bit BFP vector.

Each element A, of complex output BFP vector A_is set to the complex conjugate of By, the cor-
responding element of complex input BFP vector B.

Operation Performed

Ay <+ By,
forke0..(N—-1)
where N is the length of B and C
and Bj, is the complex conjugate of By,

Parameters
- a — [out] Output complex BFP vector A

« b - [in] Input complex BFP vector B

float_s64_t bfp_complex_s16_energy(const bfp_complex_s16_t *b)

Get the energy of a complex 16-bit BFP vector.
The energy of a complex 16-bit BFP vector here is the sum of the squared magnitudes of each of

the vector’s elements.

Operation Performed

N-1
0o S (he-2o o)
k=0

forke0..(N-1)
where N is the length of B

Parameters
+ b — [in] Input complex BFP vector B

Returns B
a, the energy of vector B
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4.2.5 Complex 32-Bit Block Floating-Point API

group bfp_complex_s32_api

64

Functions

void bfp_complex_s32_init(bfp_complex_s32_t *a, complex_s32_t *data, const exponent_t exp, const

unsigned length, const unsigned calc_hr)
Initialize a 32-bit complex BFP vector.

This function initializes each of the fields of a.

Unlike bfp_complex_si6_t, complex 32-bit BFP vectors use a single buffer to store the real and
imaginary parts of each mantissa, such that the imaginary part of element k follows the real part
of element k in memory. data points to the memory buffer used to store elements of the vector,
and must be at least length * 8 bytes long.

exp is the exponent assigned to the BFP vector. The logical value associated with the kth complex
element of the vector after initialization will be (datagy, + @ - dataggy1) - 2°%P.

If calc_hr is false, a->hr is initialized to 0. Otherwise, the headroom of the the BFP vector is
calculated and used to initialize a->hr.

Parameters
- a — [out] BFP vector struct to initialize
« data — [in] complex_s32_t buffer used to back a
- exp — [in] Exponent of BFP vector
« length — [in] Number of elements in BFP vector

» calc_hr — [in] Boolean indicating whether the HR of the BFP vector should be cal-
culated

bfp_complex_s32_t bfp_complex_s32_alloc(const unsigned length)

Dynamically allocate a complex 32-bit BFP vector from the heap.

If allocation was unsuccessful, the data field of the returned vector will be NULL, and the length
fleld will be zero. Otherwise, data will point to the allocated memory and the length field will be
the user-specified length. The 1length argument must not be zero.

Neither the BFP exponent, headroom, nor the elements of the allocated mantissa vector are set
by this function. To set the BFP vector elements to a known value, use bfp_complex_s32_set() on
the retuned BFP vector.

BFP vectors allocated using this function must be deallocated using bfp_complex_s32_dealloc() to
avoid a memory leak.

To initialize a BFP vector using static memory allocation, use bfp_complex_s32_init() instead.

See also:

bfp_complex_s32_dealloc, bfp_complex_s32_init

Note: Dynamic allocation of BFP vectors relies on allocation from the heap, and offers no guar-
antees about the execution time. Use of this function in any time-critical section of code is highly
discouraged.

Parameters



- 1length - [in] The length of the BFP vector to be allocated (in elements)
Returns
Complex 32-bit BFP vector

void bfp_complex_s32_dealloc (bfp_complex_s32_t *vector)
Deallocate a complex 32-bit BFP vector allocated by bfp_complex_s32_alloc().

Use this function to free the heap memory allocated by bfp_complex_s32_alloc().

BFP vectors whose mantissa buffer was (successfully) dynamically allocated have a flag set which
indicates as much. This function can safely be called on any bfp_complex_s32_t which has not had
its flags or data manually manipulated, including:

+ bfp_complex_s32_t resulting from a successful call to bfp_complex_s32_alloc()
 bfp_complex_s32_t resulting from an unsuccessful call to bfp_complex_s32_alloc()
+ bfp_complex_s32_t initialized with a call to bfp_complex_s32_init()

In the latter two cases, this function does nothing. In the former, the data, 1ength and flags fields
of vector are cleared to zero.

See also:

bfp_complex_s32_alloc

Parameters

- vector — [in] BFP vector to be deallocated.

void bfp_complex_s32_set(bfp_complex_s32_t *a, const complex_s32_t b, const exponent_t exp)
Set all elements of a complex 32-bit BFP vector to a specified value.

The exponent of a is set to exp, and each element’s mantissa is set to b.
After performing this operation, all elements will represent the same value b - 26*?,
a must have been initialized (see bfp_complex_s32_init()).
Parameters
- a — [out] BFP vector to update
+ b - [in] New value each complex mantissa is set to
- exp — [in] New exponent for the BFP vector

void bfp_complex_s32_use_exponent (bip_complex_s32_t *a, const exponent_t exp)
Modify a complex 32-bit BFP vector to use a specified exponent.

This function forces complex BFP vector A to use a specified exponent. The mantissa vector a
will be bit-shifted left or right to compensate for the changed exponent.

This function can be used, for example, before calling a fixed-point arithmetic function to ensure
the underlying mantissa vector has the needed Q-format. As another example, this may be useful
when communicating with peripheral devices (e.g. via I12S) that require sample data to be in a
specified format.

Note that this sets the current encoding, and does not fix the exponent permanently (i.e. subse-
guent operations may change the exponent as usual).

If the required fixed-point Q-format is Qx. Y, where Y is the number of fractional bits in the resulting
mantissas, then the associated exponent (and value for parameter exp) is -Y.

a points to input BFP vector A, with complex mantissa vector a and exponent a_exp. a is updated
in place to produce resulting BFP vector A with complex mantissa vector a and exponent a_exp.
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exp is a_exp, the required exponent. Ap = a_exp — a_exp is the required change in exponent.
If Ap = 0, the BFP vector is left unmodified.

If Ap > 0, the required exponent is larger than the current exponent and an arithmetic right-shift
of Ap bits is applied to the mantissas a. When applying a right-shift, precision may be lost by
discarding the Ap least significant bits.

If Ap < 0, the required exponent is smaller than the current exponent and a left-shift of Ap bits is
applied to the mantissas a. When left-shifting, saturation logic will be applied such that any ele-
ment that can't be represented exactly with the new exponent will saturate to the 32-bit saturation
bounds.

The exponent and headroom of a are updated by this function.

Operation Performed

Ap = a_exp — a_exp
day < satza(ag - 27Ap)
forke0..(N-1)
where N is the length of A (in elements)

Parameters

- a - [inout] Input BFP vector A / Output BFP vector A

- exp — [in] The required exponent, a_exp

headroom_t bfp_complex_s32_headroom(bfp_complex_s32_t *b)

Get the headroom of a complex 32-bit BFP vector.

The headroom of a complex vector is the number of bits that the real and imaginary parts of each
of its elements can be left-shifted without losing any information. It conveys information about
the range of values that vector may contain, which is useful for determining how best to preserve
precision in potentially lossy block floating-point operations.

In a BFP context, headroom applies to mantissas only, not exponents.

In particular, if the complex 32-bit mantissa vector z has N bits of headroom, then for any element
x, of 2

_931-N < Re{x}} < 931-N
and
—231=N < Im{ay} < 231N
And for any element X}, = x;, - 27-*P of a complex BFP vector X
_98l4weap—N < Rel X} < 231+w-cap—N
and
_93ltaexp—N < Im{X,} < 931+z_exp—N
This function determines the headroom of b, updates b->hr with that value, and then returns b->hr.
Parameters
- b — complex BFP vector to get the headroom of

Returns
Headroom of complex BFP vector b



void bfp_complex_s32_shl(bfp_complex_s32_t *a, const bfp_complex_s32_t *b, const left_shift_t
b_shl)

Apply a left-shift to the mantissas of a complex 32-bit BFP vector.

Each complex mantissa of input BFP vector B is left-shifted b_sh1 bits and stored in the corre-
sponding element of output BFP vector A.

This operation can be used to add or remove headroom from a BFP vector.

b_sh1 is the number of bits that the real and imaginary parts of each mantissa will be left-shifted.
This shift is signed and arithmetic, so negative values for b_sh1 will right-shift the mantissas.

a and b must have been initialized (see bfp_complex_s32_init()), and must be the same length.
This operation can be performed safely in-place on b.

Note that this operation bypasses the logic protecting the caller from saturation or underflows.
Output values saturate to the symmetric 32-bit range (the open interval (—23! 231)). To avoid
saturation, b_sh1 should be no greater than the headroom of b (b->hr).

Operation Performed

Re{ay} « satsy(|Re{by} - 20-5h1))
Im{ay} < satsp(|Im{by} - 20-°"1))
forke0..(N-1)
where N is the length of B
and by, and a;, are the kth mantissas from B and A respectively

Parameters
- a — [out] Complex output BFP vector A
+ b — [in] Complex input BFP vector B
« b_shl — [in] Signed arithmetic left-shift to be applied to mantissas of B.
void bfp_complex_s32_real_mul(bfp_complex_s32_t *a, const bfp_complex_s32_t *b, const bfp_s32_t
*C)
Multiply a complex 32-bit BFP vector element-wise by a real 32-bit BFP vector.

Each complex output element A, of complex output BFP vector A is set to the complex product of
By, and Cy, the corresponding elements of complex input BFP vector B and real input BFP vector
C respectively.

a, b and ¢ must have been initialized (see bfp_complex_s32_init() and bfp_s32_init()), and must be
the same length.

This operation can be performed safely in-place on b.

Operation Performed

Ak — Bk . Ck
forke0..(N-1)
where N is the length of B and C

Parameters
- a — [out] Output complex BFP vector A

« b - [in] Input complex BFP vector B



« ¢ — [in] Input real BFP vector C'
void bfp_complex_s32_mul(bfp_complex_s32_t *a, const bfp_complex_s32_t *b, const
bfp_complex_s32_t *c)
Multiply one complex 32-bit BFP vector element-wise by another.

Each complex output element A, of complex output BFP vector A is set to the complex product
of By and C, the corresponding elements of complex input BFP vectors B and C respectively.

a, b and ¢ must have been initialized (see bfp_complex_s32_init()), and must be the same length.

This operation can be performed safely in-place on b or c.

Operation Performed

Ak “— Bk . C].C
forke0..(N—-1)
where N is the length of B and C

Parameters
- a — [out] Output complex BFP vector A
« b — [in] Input complex BFP vector B
+ ¢ — [in] Input complex BFP vector C
void bfp_complex_s32_conj_mul(bfp_complex_s32_t *a, const bfp_complex_s32_t *b, const
bfp_complex_s32_t *c)
Multiply one complex 32-bit BFP vector element-wise by the complex conjugate of another.

Each complex output element A of complex output BFP vector A is set to the complex product of
By, the corresponding element of complex input BFP vectors B, and (C}.)*, the complex conjugate
of the corresponding element of complex input BFP vector C.

a, b and ¢ must have been initialized (see bfp_complex_s32_init()), and must be the same length.

This operation can be performed safely in-place on b or c.

Operation Performed

Ay« By - (C)”
forke0..(N-1)
where N is the length of B and C
and (Cy)* is the complex conjugate of Cy

Parameters
- a — [out] Output complex BFP vector A
« b - [in] Input complex BFP vector B
« ¢ — [in] Input complex BFP vector C

void bfp_complex_s32_macc (bfp_complex_s32_t *acc, const bfp_complex_s32_t *b, const
bfp_complex_s32_t *c)

Multiply one complex 32-bit BFP vector by another element-wise and add the result to a third vector.
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Operation Performed

Ay = Ay + (B - Ck)
forke0...(N—-1)
where N is the length of B and C

Parameters
+ acc — [inout] Input/Output accumulator complex BFP vector A
+ b — [in] Input complex BFP vector B
+ ¢ — [in] Input complex BFP vector C

void bfp_complex_s32_nmacc (bfp_complex_s32_t *acc, const bfp_complex_s32_t *b, const
bfp_complex_s32_t *c)

Multiply one complex 32-bit BFP vector by another element-wise and subtract the result from a
third vector.

Operation Performed

Ak < Ak — (Bk . Ck)
forke0..(N-1)
where N is the length of B and C

Parameters
- acc — [inout] Input/Output accumulator complex BFP vector A
« b - [in] Input complex BFP vector B
+ ¢ — [in] Input complex BFP vector C

void bfp_complex_s32_conj_macc (bfp_complex_s32_t *acc, const bfp_complex_s32_t *b, const
bfp_complex_s32_t *c)

Multiply one complex 32-bit BFP vector by the complex conjugate of another element-wise and
add the result to a third vector.

Operation Performed

Ay < A+ (B - CF)
forke0..(N-1)
where N is the length of B and C
and (Cy)* is the complex conjugate of Cy,

Parameters
- acc — [inout] Input/Output accumulator complex BFP vector A
« b - [in] Input complex BFP vector B
+ ¢ — [in] Input complex BFP vector C

void bfp_complex_s32_conj_nmacc (bfp_complex_s32_t *acc, const bfp_complex_s32_t *b, const
bfp_complex_s32_t *c)

Multiply one complex 32-bit BFP vector by the complex conjugate of another element-wise and
subtract the result from a third vector.
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Operation Performed

Ak — A}C — (Bk . C;ck)
forke0..(N-1)
where N is the length of B and C
and (Cy)* is the complex conjugate of Cj,

Parameters
- acc — [inout] Input/Output accumulator complex BFP vector A
« b - [in] Input complex BFP vector B
+ ¢ — [in] Input complex BFP vector C

void bfp_complex_s32_real_scale(bip_complex_s32_t *a, const bip_complex_s32_t *b, const
float_s32_t alpha)

Multiply a complex 32-bit BFP vector by a real scalar.

Each complex output element Ay of complex output BFP vector A is set to the complex product
of By, the corresponding element of complex input BFP vector B, and real scalar « - 2¢-¢*?, where
a and a_exp are the mantissa and exponent respectively of parameter alpha.

a and b must have been initialized (see bfp_complex_s32_init()), and must be the same length.

This operation can be performed safely in-place on b.

Operation Performed

Ae B (a-20co)

Parameters
- a — [out] Output complex BFP vector A
« b - [in] Input complex BFP vector B
- alpha — [in] Real scalar by which B is multiplied

void bfp_complex_s32_scale(bip_complex_s32_t *a, const bip_complex_s32_t *b, const
float_complex_s32_t alpha)

Multiply a complex 32-bit BFP vector by a complex scalar.

Each complex output element A;, of complex output BFP vector_]l is set to the complex product
of By, the corresponding element of complex input BFP vector B, and complex scalar « - 24-¢%P,
where o and a_exp are the complex mantissa and exponent respectively of parameter alpha.

a and b must have been initialized (see bfp_complex_s32_init()), and must be the same length.

This operation can be performed safely in-place on b.

Operation Performed

A B-(a-20-)

Parameters
- a — [out] Output complex BFP vector A

« b - [in] Input complex BFP vector B
- alpha — [in] Complex scalar by which B is multiplied
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void bfp_complex_s32_add(bfp_complex_s32_t *a, const bfp_complex_s32_t *b, const
bfp_complex_s32_t *c)

Add one complex 32-bit BFP vector to another.

Each complex output element A;, of complex output BFP vector Zli_s set to the sum of By, and C,
the corresponding elements of complex input BFP vectors B and C respectively.

a, b and ¢ must have been initialized (see bfp_complex_s32_init()), and must be the same length.

This operation can be performed safely in-place on b or c.

Operation Performed

b N
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Parameters
- a — [out] Output complex BFP vector A
« b — [in] Input complex BFP vector B
+ ¢ — [in] Input complex BFP vector C

void bfp_complex_s32_add_scalar (bfp_complex_s32_t *a, const bfp_complex_s32_t *b, const
float_complex_s32_t c)

Add a complex scalar to a complex 32-bit BFP vector.
Add a real scalar ¢ to input BFP vector B and store the result in BFP vector A.
a, and b must have been initialized (see bfp_complex_s32_init()), and must be the same length.

This operation can be performed safely in-place on b.

Operation Performed
A« B+c¢
Parameters
- a — [out] Output complex BFP vector A
+ b — [in] Input complex BFP vector B
+ ¢ — [in] Input complex scalar ¢

void bfp_complex_s32_sub(bfp_complex_s32_t *a, const bfp_complex_s32_t *b, const
bfp_complex_s32_t *c)

Subtract one complex 32-bit BFP vector from another.

Each complex output element A, of complex output BFP vector A is set to the difference between
By, and Cy, the corresponding elements of complex input BFP vectors B and C respectively.

a, b and ¢ must have been initialized (see bfp_complex_s32_init()), and must be the same length.

This operation can be performed safely in-place on b or c.

Operation Performed

b N
T
[ou]]
\
Qi

Parameters
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- a — [out] Output complex BFP vector A
« b - [in] Input complex BFP vector B

+ ¢ — [in] Input complex BFP vector C

void bfp_complex_s32_to_bfp_complex_s16(bfp_complex_s16_t *a, const bfp_complex_s32_t *b)
Convert a complex 32-bit BFP vector to a complex 16-bit BFP vector.

Each complex 16-bit output element A, of complex output BFP vector A is set to the value of By,
the corresponding element of complex 32-bit input BFP vector B, with its bit-depth reduced to 16
bits.

a and b must have been initialized (see bfp_complex_sT6_init() and bfp_complex_s32_init()), and
must be the same length.

This function preserves as much precision as possible.

Operation Performed

16—bit
P,

Ak By,

forke0..(IN-1)
where N is the length of B

Parameters
- a — [out] Output complex 16-bit BFP vector A
+ b — [in] Input complex 32-bit BFP vector B

void bfp_complex_s32_squared_mag(bfp_s32_t *a, const bfp_complex_s32_t *b)
Get the squared magnitude of each element of a complex 32-bit BFP vector.

Each element A;, of real output BFP vector A is set to the squared magnitude of By, the corre-
sponding element of complex input BFP vector B.

a and b must have been initialized (see bfp_s32_init() bfp_complex_s32_init()), and must be the
same length.

Operation Performed

Ay < By - (Bg)*
forke0..(N—-1)
where N is the length of B
and (Bg)* is the complex conjugate of By,

Parameters
- a — [out] Output real BFP vector A
« b — [in] Input complex BFP vector B

void bfp_complex_s32_mag(bfp_s32_t *a, const bfp_complex_s32_t *b)
Get the magnitude of each element of a complex 32-bit BFP vector.

Each element A, of real output BFP vector A is set to the magnitude of By, the corresponding
element of complex input BFP vector B.

a and b must have been initialized (see bfp_s32_init() bfp_complex_s32_init()), and must be the
same length.



Operation Performed
Ay, | By
forke0..(N—-1)
where N is the length of B

Parameters
- a — [out] Output real BFP vector A
+ b — [in] Input complex BFP vector B

float_complex_s64_t bfp_complex_s32_sum(const bfp_complex_s32_t *b)
Get the sum of elements of a complex 32-bit BFP vector.

The elements of complex input BFP vector B are summed together. The result is a complex 64-bit
floating-point scalar a, which is returned.

b must have been initialized (see bfp_complex_s32_init()).

Operation Performed

N-1
a3 (by - 25-e)
k=0

forke0..(N—1)
where N is the length of B

Parameters
+ b - [in] Input complex BFP vector B

Returns
a, the sum of vector B’s elements

void bfp_complex_s32_conjugate(bfp_complex_s32_t *a, const bfp_complex_s32_t *b)
Get the complex conjugate of each element of a complex 32-bit BFP vector.

Each element A;, of complex output BFP vector les set to the complex conjugate of By, the cor-
responding element of complex input BFP vector B.

Operation Performed

Ay + B}
forke0..(N-1)
where N is the length of B and C
and B}, is the complex conjugate of By,

Parameters
- a — [out] Output complex BFP vector A

+ b — [in] Input complex BFP vector B

float_s64_t bfp_complex_s32_energy(const bfp_complex_s32_t *b)
Get the energy of a complex 32-bit BFP vector.

The energy of a complex 32-bit BFP vector here is the sum of the squared magnitudes of each of
the vector's elements.
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Operation Performed

N—-1
0o S (pe-27ep)

k=0
forke0..(N-1)
where N is the length of B

Parameters

« b - [in] Input complex BFP vector B
Returns -

a, the energy of vector B

void bfp_complex_s32_make(bfp_complex_s32_t *a, const bfp_s32_t *b, const bfp_s32_t *c)
Create complex 32-bit BFP vector from real and imaginary parts.

Create a complex 32-bit BFP vector as the sum of a real vector B and imaginary vector Ci.

a, b and ¢ must have been initialized (see bfp_complex_s32_init() and bfp_s32_init()), must be the
same length. &a->data[@] must be a double-word-aligned address.

Operation Performed

b N
T
o]l
+
9|

Parameters
- a — [out] Complex BFP output vector A
« b - [in] Real BFP input vector B
+ ¢ — [in] Real BFP input vector C

void bfp_complex_s32_real_part(bfp_s32_t *a, const bfp_complex_s32_t *b)
Extract the real part of a complex 32-bit BFP vector.

This function populates the real 32-bit BFP vector A with the real part of complex 32-bit BFP vector
B.

&b->data[@] must be a double-word-aligned address.

Operation Performed

A < Real{B}

Parameters
- a — [out] Real BFP output vector 4
- b — [in] Complex BFP input vector B

void bfp_complex_s32_imag_part(bfp_s32_t *a, const bip_complex_s32_t *b)
Extract the imaginary part of a complex 32-bit BFP vector.

This function populates the real 32-bit BFP vector A with the imaginary part of complex 32-bit BFP
vector B.

&b->data[@] must be a double-word-aligned address.
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Operation Performed
A < I'mag{B}

Parameters
+ a — [out] Real BFP output vector A
+ b — [in] Complex BFP input vector B

4.3 Discrete Cosine Transform API

4.3.1 DCT API Quick Reference

Note: The forward DCTs are Type-Il. The inverse of the Type-ll DCT is the Type-Ill DCT, so Type-Il and Type-llI

are supported here.

Table 4.8: DCT Functions - Quick Reference

Brief Forward Function Inverse Function
6-point DCT det6_forward() det6_inverse()
8-point DCT dct8_forward() dct8_inverse()
12-point DCT det12_forward() det12_inverse()
16-point DCT det16_forward() dct16_inverse()
24-point DCT det24_forward() det24_inverse()
32-point DCT det32_forward() det32_inverse()
48-point DCT dct48_forward() dct48_inverse()
64-point DCT dct64_forward() dct64_inverse()
8-by-8 2-dimensional DCT dct8x8_forward() dct8x8_inverse()
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group det_api

Functions
void dct6é_forward(int32_t y[6], const int32_t x[6])
6-point 32-bit forward DCT.

This function performs a 6-point forward type-Il DCT on input vector z, and populates output vector
7 with the result. To avoid possible overflow or saturation, output 3 is scaled down by a factor of
24 (see doto_exp).

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

N-1
1 2n +1
yke24<2 E xncos<k7r SN >>

n=0
fork=0,1,...,(N—1)
With N =6

Parameters
+ y — [out] Output vector g
+ x — [in] Input vector z
Throws ET_LOAD_STORE

Raised if x or y is not double word-aligned (See Note: Vector Alignment)

void det8_forward (int32_t y[8], const int32_t x[8])
8-point 32-bit forward DCT.

This function performs a 8-point forward type-Il DCT on input vector z, and populates output vector
7 with the result. To avoid possible overflow or saturation, output g is scaled down by a factor of
24 (see dct8_exp).

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

N-1
1 2n+1
Yk 51 (2 nio T, COS (k’ﬂ' oN ))

fork=0,1,...,(N—-1)
with N =8

Parameters
-y — [out] Output vector g
+ x — [in] Input vector z

Throws ET_LOAD_STORE
Raised if x or y is not double word-aligned (See Note: Vector Alignment)
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void det12_forward (int32_t y[12], const int32_t x[12])
12-point 32-bit forward DCT.

This function performs a 12-point forward type-ll DCT on input vector z, and populates output
vector g with the result. To avoid possible overflow or saturation, output g is scaled down by a
factor of 27 (see dct12_exp).

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

N-1
1 2n+1
Yk 57 (2 ;,0 T, COS <k7r SN >>

fork=0,1,...,(N—-1)
with NV =12

Parameters
+ y — [out] Output vector g
+ x = [in] Input vector z
Throws ET_LOAD_STORE
Raised if x or y is not double word-aligned (See Note: Vector Alignment)

void det16_forward (int32_t y[16], const int32_t x[16])
16-point 32-bit forward DCT.

This function performs a 16-point forward type-ll DCT on input vector z, and populates output
vector g with the result. To avoid possible overflow or saturation, output 3 is scaled down by a
factor of 27 (see dct16_exp).

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

N-1
1 2n+1
y;ﬁ—i (2;_:0%1008 <k7r oN >>
fork=0,1,...,(N—-1)
with NV = 16

Parameters
+ y — [out] Output vector g
+ x = [in] Input vector z
Throws ET_LOAD_STORE
Raised if x or y is not double word-aligned (See Note: Vector Alignment)

void det24_forward (int32_t y[24], const int32_t x[24])
24-point 32-bit forward DCT.
This function performs a 24-point forward type-Il DCT on input vector z, and populates output

vector ¢ with the result. To avoid possible overflow or saturation, output g is scaled down by a
factor of 210 (see dct24_exp).



This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

N-1
1 2n+1
2 1
Yk 510 < nEZO Z,, COS <k‘7r o ))

fork=0,1,...,(N —1)
with N = 24

Parameters
+ y — [out] Output vector 3
« x — [in] Input vector z
Throws ET_LOAD_STORE
Raised if x or y is not double word-aligned (See Note: Vector Alignment)

void det32_forward(int32_t y[32], const int32_t x[32])
32-point 32-bit forward DCT.

This function performs a 32-point forward type-ll DCT on input vector Z, and populates output
vector ¢ with the result. To avoid possible overflow or saturation, output g is scaled down by a
factor of 210 (see dct32_exp).

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

N-1
1 2n+1
yke21O<2 E xncos<k7r oN >>

n=0
fork=0,1,...,(N —1)
with N = 32

Parameters
+ y — [out] Output vector g
+ x — [in] Input vector z
Throws ET_LOAD_STORE
Raised if x or y is not double word-aligned (See Note: Vector Alignment)

void dct48_forward(int32_t y[48], const int32_t x[48])
48-point 32-bit forward DCT.

This function performs a 48-point forward type-ll DCT on input vector Z, and populates output
vector g with the result. To avoid possible overflow or saturation, output g is scaled down by a
factor of 213 (see dct48_exp).

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.
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Operation Performed

N-1
1 2n+1
— (2 E
Yk 513 < 2 T, COS (kjﬂ' o >>

fork=0,1,..., (N —-1)
with N = 48

Parameters
-y — [out] Output vector g
+ x — [in] Input vector z
Throws ET_LOAD_STORE
Raised if x or y is not double word-aligned (See Note: Vector Alignment)

void dct64_forward(int32_t y[64], const int32_t x[64])
64-point 32-bit forward DCT.

This function performs a 64-point forward type-Il DCT on input vector z, and populates output
vector g with the result. To avoid possible overflow or saturation, output g is scaled down by a
factor of 213 (see dct64_exp).

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

N-1
1 2n+1
Yk 518 <2 ng_o T, COS <k7r oN >>

fork=0,1,..., (N —1)
with N = 64

Parameters
+ y — [out] Output vector g
+ x — [in] Input vector z
Throws ET_LOAD_STORE
Raised if x or y is not double word-aligned (See Note: Vector Alignment)

void det6_inverse (int32_t y[6], const int32_t x[6])
6-point 32-bit inverse DCT.

This function performs a 6-point inverse DCT (same as type-lll DCT) on input vector z, and popu-
lates output vector ¢ with the result.

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

fork=0,1,...,(N —1)
with N =6

79 4



Parameters
-y — [out] Output vector g
+ x — [in] Input vector z
Throws ET_LOAD_STORE
Raised if x or y is not double word-aligned (See Note: Vector Alignment)

void dct8_inverse(int32_t y[8], const int32_t x[8])
8-point 32-bit inverse DCT.

This function performs a 8-point inverse DCT (same as type-lll DCT) on input vector z, and popu-
lates output vector g with the result.

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

Yk % (m; + ]:zjllxncos (nﬂ'z];;l))
fork=0,1,...,(N —1)
with N =8
Parameters
-y — [out] Output vector g
+ x — [in] Input vector z
Throws ET_LOAD_STORE

Raised if x or y is not double word-aligned (See Note: Vector Alignment)

void det12_inverse(int32_t y[12], const int32_t x[12])
12-point 32-bit inverse DCT.

This function performs a 12-point inverse DCT (same as type-lIl DCT) on input vector Z, and pop-
ulates output vector g with the result.

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

fork =0,1,...,(N —1)
with N = 12
Parameters
+ y — [out] Output vector g
+ x — [in] Input vector z

Throws ET_LOAD_STORE
Raised if x or y is not double word-aligned (See Note: Vector Alignment)
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void det16_inverse (int32_t y[16], const int32_t x[16])
16-point 32-bit inverse DCT.

This function performs a 16-point inverse DCT (same as type-lll DCT) on input vector z, and pop-
ulates output vector g with the result.

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

N-1
1 2k + 1
Y N (Q;O + E Xy COS <n7r 2;\; >>

fork=0,1,...,(N—-1)
with N = 16
Parameters
+ y — [out] Output vector g
+ x — [in] Input vector z
Throws ET_LOAD_STORE

Raised if x or y is not double word-aligned (See Note: Vector Alignment)

void det24_inverse (int32_t y[24], const int32_t x[24])
24-point 32-bit inverse DCT.

This function performs a 24-point inverse DCT (same as type-lll DCT) on input vector z, and pop-
ulates output vector g with the result.

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

N-1
1 [z 2k +1
yk.<—N<2o+ ng_lxncos<mr ON >>

fork=0,1,...,(N—1)
with N = 24

Parameters
+ y — [out] Output vector g
+ x — [in] Input vector z
Throws ET_LOAD_STORE
Raised if x or y is not double word-aligned (See Note: Vector Alignment)

void det32_inverse(int32_t y[32], const int32_t x[32])
32-point 32-bit inverse DCT.

This function performs a 32-point inverse DCT (same as type-lIl DCT) on input vector z, and pop-
ulates output vector g with the result.

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.



Operation Performed

N-1
Y N (2 + 321 X, COS <n7r N >>

fork=0,1,...,(N—1)
with v = 32

Parameters
+ y — [out] Output vector g
+ x — [in] Input vector z
Throws ET_LOAD_STORE

Raised if x or y is not double word-aligned (See Note: Vector Alignment)

void dct48_inverse (int32_t y[48], const int32_t x[48])
48-point 32-bit inverse DCT.

This function performs a 48-point inverse DCT (same as type-Ill DCT) on input vector z, and pop-
ulates output vector g with the result.

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

N—-1
1 2k +1
Yk — ~ (20 + nE:1 Ty, COS (mr 2; ))

fork=0,1,...,(N—-1)
with V = 48

Parameters
+ y — [out] Output vector g
+ x — [in] Input vector z
Throws ET_LOAD_STORE
Raised if x or y is not double word-aligned (See Note: Vector Alignment)

void det64_inverse (int32_t y[64], const int32_t x[64])
64-point 32-bit inverse DCT.

This function performs a 64-point inverse DCT (same as type-lil DCT) on input vector z, and pop-
ulates output vector g with the result.

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

fork=0,1,...,(N —1)
with N = 64
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Parameters
-y — [out] Output vector g
+ x — [in] Input vector z
Throws ET_LOAD_STORE
Raised if x or y is not double word-aligned (See Note: Vector Alignment)

headroom_t det8x8_forward (int8_t y[8][8], const int8_t x[8][8], const right_shift_t sat)
8-by-8 2D 8-bit forward DCT.

This function performs a 2-dimensional 8-by-8 type-ll DCT on 8-bit input tensor z (with elements
z,.). Output tensor ¢ (with elements y,..) is populated with the result.

This 2D DCT is performed by first applying a 1D 8-point DCT across each row of z, and then applying
a 1D 8-point DCT to each column of that intermediate tensor.

The output is scaled by a factor of 27%8t=8 With sat = 0 this scaling is just enough to avoid any
possible saturation. If saturation is considered acceptable, or known a priori to not be possible,
negative values for sat can be used to increase precision on the output.

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.

Operation Performed

430 Eazo (i cos (en 3531 ) cos (rm 255t ))

23at+8

Yre <

forr,c € {0,1,..., (N —1)}
with N =8

Parameters
+ y — [out] Output vector g
+ x — [in] Input vector z
- sat — [in] Additional output scaling exponent.
Throws ET_LOAD_STORE
Raised if x or y is not double word-aligned (See Note: Vector Alignment)

headroom_t det8x8_inverse (int8_t y[8][8], const int8_t x[8][8], const right_shift_t sat)
8-by-8 2D 8-bit inverse DCT.

This function performs a 2-dimensional 8-by-8 type-lll (inverse) DCT on 8-bit input tensor z (with
elements z,..). Output tensor 3 (with elements y,..) is populated with the result.

This 2D DCT is performed by first applying a 1D 8-point DCT across each row of z, and then applying
a 1D 8-point DCT to each column of that intermediate tensor.

The output is scaled by a factor of 2752t With sat = 0 this scaling is just enough to avoid any
possible saturation. If saturation is considered acceptable, or known a priori to not be possible,
negative values for sat can be used to increase precision on the output.

This operation may be safely performed in-place if x and y point to the same vector.

x and y must point to 8-byte-aligned addresses.



Operation Performed

7 Dm0 Lon—o (#mn €05 (nm25L) cos (mr 2t ))

2sat

Yre

forr,e € {0,1,...,(N —1)}
with N =8

Parameters
+ y — [out] Output vector g
+ x — [in] Input vector z
- sat — [in] Additional output scaling exponent.

Throws ET_LOAD_STORE
Raised if x or y is not double word-aligned (See Note: Vector Alignment)

Variables

static const exponent_t det6_exp = 4
Scaling exponent associated with det6_forward()

Let z be the input to dect6_forward() and g the output. If z_exp and y_exp are the exponents
associated with z and 7 respectively, then the following relation holds: y_exp = z_exp + dctb6_exp

static const exponent_t dct8_exp = 4
Scaling exponent associated with det8_forward()
Let z be the input to det6_forward() and g the output. If z_exp and y_exp are the exponents
associated with  and g respectively, then the following relation holds: y_exp = x_exp + dct8.xp

static const exponent_t det12_exp = 7
Scaling exponent associated with dct12_forward()

Let z be the input to det12_forward() and g the output. If z_exp and y_exp are the exponents
associated with z and 7 respectively, then the following relation holds: y_exp = z_exp + dct12.xp

static const exponent_t det16_exp = 7
Scaling exponent associated with det16_forward()
Let z be the input to det76_forward() and g the output. If z_exp and y_exp are the exponents
associated with  and g respectively, then the following relation holds: y_exp = z_exp + dct16.xp

static const exponent_t det24_exp = 10
Scaling exponent associated with dct24_forward()

Let z be the input to det24_forward() and ¢ the output. If z_exp and y_exp are the exponents
associated with z and 7 respectively, then the following relation holds: y_exp = z_exp + dct24.xp

static const exponent_t det32_exp = 10
Scaling exponent associated with det32_forward()

Let z be the input to dct32_forward() and g the output. If z_exp and y_exp are the exponents
associated with  and g respectively, then the following relation holds: y_exp = z_exp + dct32.xp
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static const exponent_t dct48_exp = 13
Scaling exponent associated with det48_forward()

Let £ be the input to dct48_forward() and g the output. If z_exp and y_exp are the exponents
associated with z and 7 respectively, then the following relation holds: y_exp = z_exp + dct48_exp

static const exponent_t det64_exp = 13
Scaling exponent associated with dct64_forward()

Let z be the input to dete4_forward() and g the output. If z_exp and y_exp are the exponents
associated with z and g respectively, then the following relation holds: y_exp = xz_exp + dctb64_exp

4.4 Fast Fourier Transform API

4.4.1 FFT API Quick Reference

Table 4.9: FFT Functions - Quick Reference

Brief Forward Function Inverse Function

BFP FFT on single real signal bfp_fft_forward_mono() bfp_fft_inverse_mono()
BFP FFT on single complex signal bfp_fft_forward_complex()  bfp_fft_inverse_complex()
BFP FFT on pair of real signals bfp_fft_forward_stereo() bfp_fft_inverse_stereo()
BFP spectrum packing bfp_fft_unpack_mono() bfp_fft_pack_mono()
Low-level decimation-in-time FFT fft_dit_forward() fft_dit_inverse()
Low-level decimation-in-frequency FFT fft_dif_forward() fft_dif_inverse()

FFT on real signal of float fft_f32_forward() fft_f32_inverse()
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group fft_api

Functions

bfp_complex_s32_t *bfp_fft_forward_mono (bfp_s32_t *x)
Performs a forward real Discrete Fourier Transform on a real 32-bit sequence.

Performs an N-point forward real DFT on the real 32-bit BFP vector x, where N is x->1ength. The
operation is performed in-place, resulting in an N /2-element complex 32-bit BFP vector.

Operation Performed

where z[n] is the BFP vector initially represented by x, and X|[f] is the DFT of z[n] represented by
the returned pointer.

The exponent, headroom, length and data contents of x are all updated by this function, though
x->data will continue to point to the same address.

x->length must be a power of 2, and must be no larger than (1<<MAX_DIT_FFT_L0G2).

This function returns a bfp_complex_s32_t pointer. This points to the same address as . This is
intended as a convenience for user code.

Upon completion, the spectrum data is encoded in x->data as specified for real DFTs in Spectrum
Packing. Thatis, x->data[f] for1 <= f < (x->length) represent X[f] for1 < f < (N/2) and
x->data[@] represents X[0] + jX[N/2].

Example

// Initialize time domain data with samples.
int32_t buffer[N] = { ... };

bfp_s32_t samples;

bfp_s32_init(&samples, buffer, 0, N, 1);

// Perform the forward DFT

{
bfp_complex_s32_t* spectrum = bfp_fft_forward_mono(&samples);
// ‘samples’ should no longer be used.
// Operate on frequency domain data using ‘spectrum’
// Perform the inverse DFT to go back to time domain
bfp_fft_inverse_mono(spectrum); // returns (bfp_s32_t*) which is the address of
— ‘samples’
}

// Use ‘samples’ again to use new time domain data.

Parameters
- x — [inout] The BFP vector z[n] to be DFTed.

Returns
Address of input BFP vector x, cast as bfp_complex_s32_t*.
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bfp_s32_t *bfp_fft_inverse_mono (bfp_complex_s32_t *x)
Performs an inverse real Discrete Fourier Transform on a complex 32-bit sequence.

Performs an N-point inverse real DFT on the real 32-bit BFP vector x, where N is 2*x->1length.
The operation is performed in-place, resulting in an N-element real 32-bit BFP vector.

Operation Performed

N/2
aln] = 3 (X[f] - 27/
f=0
for0<n< N

where X |[f] is the BFP vector initially represented by x, and z[n] is the IDFT of X|[f] represented by
the returned pointer.

The exponent, headroom, length and data contents of x are all updated by this function, though
x->data will continue to point to the same address.

x->1length must be a power of 2, and must be no larger than (1<<(MAX_DIT_FFT_L0G2-1)).

This function returns a bfp_s32_t pointer. This points to the same address as . This is intended
as a convenience for user code.

When calling, the spectrum data must be encoded in x->data as specified for real DFTs in Spec-
trum Packing. That is, x->data[f] for1 <= f < (x->length) represent X[f]forl1 < f < N/2,
and x->data[@] represents X[0] + jX[N/2].

Example

// Initialize time domain data with samples.
int32_t buffer[N] = { ... };

bfp_s32_t samples;

bfp_s32_init(&samples, buffer, 0, N, 1);

// Perform the forward DFT

{
bfp_complex_s32_t* spectrum = bfp_fft_forward_mono(&samples);
// “samples’ should no longer be used.
// Operate on frequency domain data using “spectrum’
// Perform the inverse DFT to go back to time domain
bfp_fft_inverse_mono(spectrum); // returns (bfp_s32_t*) which is the address of
— samples’
}

// Use ‘samples’ again to use new time domain data.

Parameters

+ x — [inout] The BFP vector X|[f] to be IDFTed.
Returns

Address of input BFP vector x, cast as bfp_s32_t*.

void bfp_fft_forward_complex(bfp_complex_s32_t *x)
Performs a forward complex Discrete Fourier Transform on a complex 32-bit sequence.

Performs an N-point forward complex DFT on the complex 32-bit BFP vector x, where N is
x->1length. The operation is performed in-place.
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Operation Performed

N-1

X[f] = Y (aln] - ems2n i/
n=0
foro< f<N

where z[n] is the BFP vector initially represented by x, and X [f] is the DFT of z[n], also represented
by x upon completion.

The exponent, headroom and data contents of x are updated by this function. x->data will continue
to point to the same address.

x->1length ( N) must be a power of 2, and must be no larger than (1<<MAX_DIT_FFT_L0G2).

Upon completion, the spectrum data is encoded in x as specified in Spectrum Packing. That is,
x->data[f] for@ <= f < (x->length) represent X[f]for0 < f < N.

Example

// Initialize complex time domain data with samples.
complex_s32_t buffer[N] = { ... };

bfp_complex_s32_t vector;
bfp_complex_s32_init(&vector, buffer, 0, N, 1);

// Perform the forward DFT
bfp_fft_forward_mono(&vector);

// Operate on frequency domain data

// Perform the inverse DFT to go back to time domain
bfp_fft_inverse_mono(&vector);
// “vector® contains (complex) time-domain data again

Parameters
« x — [inout] The BFP vector z[n] to be DF Ted.

void bfp_fft_inverse_complex(bfp_complex_s32_t *x)

Performs an inverse complex Discrete Fourier Transform on a complex 32-bit sequence.

Performs an N-point inverse complex DFT on the complex 32-bit BFP vector x, where N is
x->1length. The operation is performed in-place.

Operation Performed

N-1

ol = Y (X1f]-e2eIm)
£=0
for0< f< N

where X[ f]is the BFP vector initially represented by x, and z[n] is the DFT of X |[f], also represented
by x upon completion.

The exponent, headroom and data contents of x are updated by this function. x->data will continue
to point to the same address.

x->1length must be a power of 2, and must be no larger than (1<<MAX_DIT_FFT_LOG2).

The data initially encoded in x are interpreted as specified in Spectrum Packing. That is,
x->data[f] fore <= f < (x->length) represent X[f]for0 < f < N.



89

Example

// Initialize complex time domain data with samples.
complex_s32_t buffer[N] = { ... };

bfp_complex_s32_t vector;
bfp_complex_s32_init(&vector, buffer, 0, N, 1);

// Perform the forward DFT
bfp_fft_forward_mono(&vector);

// Operate on frequency domain data

// Perform the inverse DFT to go back to time domain
bfp_fft_inverse_mono(&vector);
// “vector  contains (complex) time-domain data again

Parameters
- x — [inout] The BFP vector z[n] to be IDFTed.

void bfp_fft_forward_stereo(bfp_s32_t *a, bfp_s32_t *b, complex_s32_t scratch]])

Performs a forward real Discrete Fourier Transform on a pair of real 32-bit sequences.

Performs an N-point forward real DFT on the real 32-bit BFP vectors a and b, where N is a->1length
(which must equal b->1ength). The resulting spectra, A and B, are placed in a and b. Each spec-
trum is a N /2-element complex 32-bit BFP vectors. To access the spectrum, the pointers a and b
should be cast to bfp_complex_s32_t* following a call to this function.

Operation Performed

Alf] = (a[n]~efj2“f”/N) for0 < f < N/2

Sy
=
I
—~

bln] - e—j‘“fn/N) for0 < f < N/2

where a[n] and b[n] are the two time-domain sequences represented by input BFP vectors a and b,
and A[f] and B][f] are the DFT of a[n] and b[n] respectively.

a->length ( N) must be equal to b->1length, must be a power of 2, and must be no larger
than(1«MAX_DIT_FFT_LOG2)".

The parameters and are used as both inputs and outputs. To access the result of the FFT, a and b
should be cast to bfp_complex_s32_t* The structs’ metadata (e.g. exp, hr, length) are updated
by this function to reflect this change of interpretation. The bfp_s32_t references should be con-
sidered corrupted after this call (at least until bfp_fft_inverse_stereo() is called).

The spectrum data is encoded in a->data and b->data as specified for real DFTs in Spectrum
Packing. Thatis, a->data[f] for 1 <= f < (a->length) represent A[f] for1 < f < (N/2) and
a->data[0] represents A[0] + jA[N/2]. Likewise for the encoding of b->data.

This function requires a scratch buffer large enough to contain NV complex_s32_t elements.

Deprecated:

Example



// Initialize time domain data with samples.

int32_t bufferA[N] = { ... };
int32_t bufferB[N] = { ... };
complex_s32_t scratch[N]; // scratch buffer -- contents don't matter

bfp_s32_t channel_A, channel_B;
bfp_s32_init(&channel_A, buffer, @, N, 1);
bfp_s32_init(&channel_B, buffer, @, N, 1);

// Perform the forward DFT
bfp_fft_forward_stereo(&channel_A, &channel_B, scratch);

// channel_A and channel_B should now be considered clobbered as the structs are now
// effectively bfp_complex_s32_t

bfp_complex_s32_t* chanA = (bfp_complex_s32_t*) &channel_A;

bfp_complex_s32_t* chanB = (bfp_complex_s32_t*) &channel_B;

// Operate on frequency domain data using ‘chanA® and ‘"chanB"

// Perform the inverse DFT to go back to time domain
bfp_fft_inverse_stereo(&chanA, &chanB, scratch);

// Use channel_A and channel_B again to use new time domain data.

// Suppress this from generated documentation for the time being //

Note:

Use of this functionis not currently recommended. It functions correctly, but a recent change in this
library’s APl (namely, dropping support for channel-pair vectors) means this function is no more
computationally efficient than calling bfp_fft_forward_mono() on each input vector separately.
Additionally, this function currently requires a scratch buffer, whereas the mono FFT does not.

Parameters

+ a - [inout] [Input] Time-domain BFP vector a. [Output] Frequency domain BFP vec-
tor A

+ b - [inout] [Input] Time-domain BFP vector b. [Output] Frequency domain BFP vector
B

« scratch — Scratch buffer of at least a->1length complex_s32_t elements

void bfp_fft_inverse_stereo(bfp_complex_s32_t *A_fft, bfp_complex_s32_t *B_fft, complex_s32_t
scratch[])

Performs an inverse real Discrete Fourier Transform on a pair of complex 32-bit sequences.

Performs an N-point inverse real DFT on the 32-bit complex BFP vectors A and B (A_fft and
B_fft respectively), where N is A_fft->length . The resulting real signals, @ and b, are placed in
A_fft and B_fft. Each time-domain result is a N/2-element real 32-bit BFP vectors. To access
the spectrum, the pointers A_fft and B_fft should be cast to bfp_s32_t* following a call to this
function.
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Operation Performed

N/2-1
an] = 3 (A[f] -eﬂﬂfn/N) for0<n <N
f=0
N/2-1
b= 3 (B[f] : eﬂ”f"/N) for0<n<N
F=0

where A[f] and B|[f] are the frequency spectra represented by BFP vectors A_fft and B_fft, and
a[n] and b[n] are the IDFT of A[f] and B[f].

A_fft->length ( N) must be a power of 2, and must be no larger than
(1<<(MAX_DIT_FFT_LOG2-1)).

The parameters and are used as both inputs and outputs. To access the result of the IFFT, A_fft
and B_fft should be cast to bfp_s32_t*. The structs’ metadata (e.g. exp, hr, length) are updated
by this function to reflect this change of interpretation. The bfp_complex_s32_t references should
be considered corrupted after this call.

The spectrum data encoded in A_fft->data and A_fft->data are interpreted as specified for real
DFTs in Spectrum Packing. That is, A_fft->data[f] for 1 <= f < (a->length) represent A[f]
forl1 < f < (N/2)and A_fft->data[0] represents A[0] + jA[N/2]. Likewise for the encoding of
B_fft->data

This function requires a scratch buffer large enough to contain 2N complex_s32_t elements.
Deprecated:

Example

// Initialize time domain data with samples.

int32_t bufferA[N] = { ... };
int32_t bufferB[N] = { ... };
complex_s32_t scratch[N]; // scratch buffer -- contents don't matter

bfp_s32_t channel_A, channel_B;
bfp_s32_init(&channel_A, buffer, @, N, 1);
bfp_s32_init(&channel_B, buffer, @, N, 1);

// Perform the forward DFT
bfp_fft_forward_stereo(&channel_A, &channel_B, scratch);

// channel_A and channel_B should now be considered clobbered as the structs are now
// effectively bfp_complex_s32_t

bfp_complex_s32_t* chanA = (bfp_complex_s32_t*) &channel_A;

bfp_complex_s32_t* chanB = (bfp_complex_s32_t*) &channel_B;

// Operate on frequency domain data using ‘chanA’ and "chanB"

// Perform the inverse DFT to go back to time domain
bfp_fft_inverse_stereo(&chanA, &chanB, scratch);

// Use channel_A and channel_B again to use new time domain data.

// Suppress this from generated documentation for the time being //

Note:

Use of this functionis not currently recommended. It functions correctly, but arecent changein this
library’s APl (namely, dropping support for channel-pair vectors) means this function is no more
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computationally efficient than calling bfp_fft_forward_mono() on each input vector separately.
Additionally, this function currently requires a scratch buffer, whereas the mono FFT does not.

Parameters
- A_fft - [inout] [Input] Freq-domain BFP vector A. [Output] Time domain BFP vector
b
» B_fft — [inout] [Input] Freq-domain BFP vector b. [Output] Time domain BFP vector
b

« scratch — Scratch buffer of at least 2*A_fft->1length complex_s32_t elements

void bfp_fft_unpack_mono (bp_complex_s32_t *x)
Unpack the spectrum resulting from bfp_fft_forward_mono().

The DFT of areal signalis periodic with period FFT_N (the FFT length) and has a complex conjugate
symmetry about index 0. These two properties guarantee that the imaginary part of both the DC
component (index 0) and the Nyquist component (index FFT_N/2) of the spectrum are zero. To
compute the forward FFT in-place, bfp_fft_forward_mono() packs the real part of the Nyquist rate
component of the output spectrum into the imaginary part of the DC component.

This may be undesirable when operating on the signal's complex spectrum. Use this function to
unpack the Nyquist component. This function will also adjust the BFP vector’s length to reflect
this unpacking.

NOTE: If you intend to unpack the spectrum using this function, the buffer for the time-domain BFP
vector must have length FFT_N+2, rather than FFT_N (int32_t elements), but these should NOT be
reflected in the time-domain BFP vector's 1ength field.

Operation Performed

Rexp o — Imxg

Imxg 0

Imzyn, <0

x.length < z.length + 1

NOTE: Before bfp_fft_inverse_mono() may be applied, bfp_fft_pack_mono() must be called, as the
inverse FFT expects the data to be packed.

See also:

bfp_fft_forward_mono, bfp_fft_pack_mono

Parameters

+ x — [inout] The spectrum to be unpacked

void bfp_fft_pack_mono (bfp_complex_s32_t *x)
Pack the spectrum resulting from bfp_fft_unpack_mono().

This function applies the reverse process of bfp_fft_unpack_mono(), to prepare it for an inverse
FFT using bfp_fft_inverse_mono().

See also:

bfp_fft_inverse_mono, bfp_fft_unpack_mono
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Parameters
+ x — [inout] The spectrum to be packed

void fft_dit_forward(complex_s32_t x[], const unsigned N, headroom_t *hr, exponent_t *exp)
Compute a forward DFT using the decimation-in-time FFT algorithm.

This function computes the N-point forward DFT of a complex input signal using the decimation-
in-time FFT algorithm. The result is computed in-place.

Operation Performed

N-1

X1 = 5 Y (ao] -e7s2em/)
n=0
foro< f< N

x[ ] isinterpreted to be a block floating-point vector with shared exponent *exp and with *hr bits of
headroominitially in x[ ]. During computation, this function monitors the headroom of the data and
compensates to avoid overflows and underflows by bit-shifting the data up or down as appropriate.
In the equation above, o represents the (net) number of bits that the data was right-shifted by.

Upon completion, *hr is updated with the final headroom in x[ ], and the exponent *exp is incre-
mented by a.

Note: In order to guarantee that saturation will not occur, x[ ] must have an initial headroom of at
least 2 bits.

Parameters
+ x — [inout] The N-element complex input vector to be transformed.
+ N — [in] The size of the DFT to be performed.
hr — [inout] Pointer to the initial headroom in x[ ].
- exp - [inout] Pointer to the initial exponent associated with x[ .
Throws ET_LOAD_STORE

Raised if x is not word-aligned (See Note: Vector Alignment)

void fft_dit_inverse(complex_s32_t x[], const unsigned N, headroom_t *hr, exponent_t *exp)
Compute an inverse DFT using the decimation-in-time IFFT algorithm.

This function computes the N-point inverse DFT of a complex spectrum using the decimation-in-
time IFFT algorithm. The result is computed in-place.

Operation Performed

1 N—
?Z( J i)

f
foro<n< N

x[ ] is interpreted to be a block floating-point vector with shared exponent *exp and with *hr bits of
headroominitially in x[ 1. During computation, this function monitors the headroom of the data and
compensates to avoid overflows and underflows by bit-shifting the data up or down as appropriate.
In the equation above, a represents the (net) number of bits that the data was right-shifted by.



Upon completion, *hr is updated with the final headroom in x[ ], and the exponent *exp is incre-
mented by a.

Note: In order to guarantee that saturation will not occur, x[ ] must have an initial headroom of at
least 2 bits.

Parameters
+ x — [inout] The N-element complex input vector to be transformed.
* N — [in] The size of the inverse DFT to be performed.
+ hr — [inout] Pointer to the initial headroom in x[ ].
- exp — [inout] Pointer to the initial exponent associated with x| ].
Throws ET_LOAD_STORE
Raised if x is not word-aligned (See Note: Vector Alignment)

void fft_dif_forward(complex_s32_t x[], const unsigned N, headroom_t *hr, exponent_t *exp)
Compute a forward DFT using the decimation-in-frequency FFT algorithm.

This function computes the N-point forward DFT of a complex input signal using the decimation-
in-frequency FFT algorithm. The result is computed in-place.

Operation Performed

N-1

X[f] = g O (oln] - e 7720/
n=0
for0< f<N

x[ ] isinterpreted to be a block floating-point vector with shared exponent *exp and with *hr bits of
headroominitially in x[ ]. During computation, this function monitors the headroom of the data and
compensates to avoid overflows and underflows by bit-shifting the data up or down as appropriate.
In the equation above, a represents the (net) number of bits that the data was right-shifted by.

Upon completion, *hr is updated with the final headroom in x[ ], and the exponent *exp is incre-
mented by a.

Note: In order to guarantee that saturation will not occur, x[ ] must have an initial headroom of at
least 2 bits.

Parameters
+ x — [inout] The N-element complex input vector to be transformed.
+ N - [in] The size of the DFT to be performed.
+ hr — [inout] Pointer to the initial headroom in x[ ].
- exp — [inout] Pointer to the initial exponent associated with x[ ].

Throws ET_LOAD_STORE
Raised if x is not word-aligned (See Note: Vector Alignment)
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void fft_dif_inverse(complex_s32_t x[], const unsigned N, headroom_t *hr, exponent_t *exp)

Compute an inverse DFT using the decimation-in-frequency IFFT algorithm.

This function computes the N-point inverse DFT of a complex spectrum using the decimation-in-
frequency IFFT algorithm. The result is computed in-place.

Operation Performed

1 N-—1
_ L oi2nfn/N
2ln] = 32 > (X[f]- 20N
=0
for0<n< N

x[ ] is interpreted to be a block floating-point vector with shared exponent *exp and with *hr bits of
headroominitially in x[ 1. During computation, this function monitors the headroom of the data and
compensates to avoid overflows and underflows by bit-shifting the data up or down as appropriate.
In the equation above, «a represents the (net) number of bits that the data was right-shifted by.

Upon completion, *hr is updated with the final headroom in x[ ], and the exponent *exp is incre-
mented by a.

Note: In order to guarantee that saturation will not occur, x[ ] must have an initial headroom of at
least 2 bits.

Parameters
+ x — [inout] The N-element complex input vector to be transformed.
+ N — [in] The size of the inverse DFT to be performed.
« hr — [inout] Pointer to the initial headroom in x[ .
- exp — [inout] Pointer to the initial exponent associated with x[ .

Throws ET_LOAD_STORE
Raised if x is not word-aligned (See Note: Vector Alignment)

4.5 Filtering API

Table 4.10: Filtering API - Quick Reference

Filter Function Brief
32-bit FIR filter_fir_s32_init() Initialize filter
32-bit FIR filter_fir_s32_add_sample() Add sample (without computing output)
32-bit FIR filter_fir_s32() Process next sample
16-bit FIR filter_fir_s16_init() Initialize filter
16-bit FIR filter_fir_s16_add_sample() Add sample (without computing output)
16-bit FIR filter_fir_s16() Process next sample
32-bit Biquad  filter_biquad_s32() Process next sample (single block)
32-bit Biquad  filter_biquads_s32() Process next sample (multi block)
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Functions

void filter_fir_s32_init(filter_fir_s32_t *filter, int32_t *sample_buffer, const unsigned tap_count,

const int32_t *coefficients, const right_shift_t shift)
Initialize a 32-bit FIR filter.

Before filter_fir_s32() or filter_fir_s32_add_sample() can be used on a filter it must be initialized with
a call to this function.

sample_buffer and coefficients must be at least 4 * tap_count bytes long, and aligned to a
4-byte (word) boundary.

See filter_fir_s32_t for more information about 32-bit FIR filters and their operation.

See also:
filter_fir_s32_t

Parameters
- filter — [out] Filter struct to be initialized

- sample_buffer — [in] Buffer used by the filter to contain state information. Must be
at least tap_count elements long

« tap_count — [in] Order of the FIR filter; number of filter taps
- coefficients — [in] Array containing filter coefficients.

- shift - [in] Unsigned arithmetic right-shift applied to accumulator to get filter out-
put sample

void filter_fir_s32_add_sample(f//ter_fir_s32_t *filter, const int32_t new_sample)

Add a new input sample to a 32-bit FIR filter without processing an output sample.

This function adds a new input sample to filter’s state without computing a new output sample.
This is a constant- time operation and can be used to quickly pre-load a filter with sample data.

See filter_fir_s32_t for more information about FIR filters and their operation.

See also:
filter_fir_s32_t

Parameters
- filter — [inout] Filter struct to have the sample added

+ new_sample — [in] Sample to be added to filter’s history

iNt32_t filter_fir_s32(filter_fir_s32_t *filter, const int32_t new_sample)

This function implements a Finite Impulse Response (FIR) filter.

The new input sample new_sample is added to this filter’s state, and a new output sample is com-
puted and returned as specified in filter_fir_s32_t.

With a large number of filter taps, this function takes approximately 3 thread cycles per 8 filter taps.



See also:
filter_fir_s32_t

Parameters

- filter — [inout] Filter to be processed

* new_sample — [in] New input sample to be processed by filter
Returns

Next filtered output sample

void filter_fir_s16_init(filter_fir_s16_t *filter, int16_t *sample_buffer, const unsigned tap_count,
const int16_t *coefficients, const right_shift_t shift)

Initialize a 16-bit FIR filter.

Before filter_fir_s16() or filter_fir_s16_add_sample() can be used on a filter it must be initialized with
a call to this function.

sample_buffer and coefficients must be at least 2 * tap_count bytes long, and aligned to a
4-byte (word) boundary.

See filter_fir_s16_t for more information about 16-bit FIR filters and their operation.

See also:

filter_fir_s16_t

Parameters
- filter — [out] Filter struct to be initialized

- sample_buffer — [in] Buffer used by the filter to contain state information. Must be
at least tap_count elements long

+ tap_count - [in] Order of the FIR filter; number of filter taps

- coefficients — [in] Array containing filter coefficients

- shift — [in] Unsigned arithmetic right-shift applied to accumulator to get filter out-
put sample

void filter_fir_s16_add_sample(f//ter_fir_s716_t *filter, const int16_t new_sample)
Add a new input sample to a 16-bit FIR filter without processing an output sample.

This function adds a new input sample to filter’s state without computing a new output sample.

See filter_fir_s16_t for more information about FIR filters and their operation.

See also:
filter_fir_s16_t

Parameters
- filter - [inout] Filter struct to have the sample added

* new_sample — [in] Sample to be added to filter’s history



int16_t filter_fir_s16(filter_fir_s76_t *filter, const int16_t new_sample)
This function implements a Finite Impulse Response (FIR) filter.

The new input sample new_sample is added to this filter's state, and a new output sample is com-
puted and returned as specified in filter_fir_si6_t.

With a large number of filter taps, this function takes approximately 3 thread cycles per 16 filter
taps.

See also:
filter_fir_s16_t

Parameters
- filter - [inout] Filter to be processed

- new_sample — [in] New input sample to be processed by filter

Returns
Next filtered output sample

int32_t filter_biquad_s32(f//ter_biquad_s32_t *filter, const int32_t new_sample)
This function implements a 32-bit Biquad filter.

The new input sample new_sample is added to this filter's state, and a new output sample is com-
puted and returned as specified in filter_biquad_s32_t.

This function processes a single filter block containing (up to) 8 biquad filter sections. For
biquad filters containing 2 or more filter blocks (more than 8 biquad filter sections), see fil-
ter_biquads_s32().

See also:
filter_biquad_s32_t, filter_biquads_s32

Parameters
- filter — [inout] Filter to be processed

+ new_sample — [in] New input sample to be processed by filter
Returns
Next filtered output sample

int32_t filter_biquads_s32(filter_biquad_s32_t biquads[], const unsigned block_count, const int32_t
new_sample)

This function implements a 32-bit Biquad filter.

The new input sample new_sample is added to this filter’s state, and a new output sample is com-
puted and returned as specified in filter_biquad_s32_t.

This function processes one or more filter blocks, with each block containing up to 8 biquad filter
sections.

See also:
filter_biquad_s32_t, filter_biquad_s32

Parameters

* biquads - [inout] Filter blocks to be processed



* block_count — [in] Number of filter blocks in biquads
* new_sample — [in] New input sample to be processed by filter

Returns
Next filtered output sample

struct filter_fir_s32_t
#include <filter.h> 32-bit Discrete-Time Finite Impulse Response (FIR) Filter

Todo:
Move most of this information out to higher-level documentation

Filter Model

This struct represents an N-tap 32-bit discrete-time FIR Filter.

At each time step, the FIR filter consumes a single 32-bit input sample and produces a single
32-bit output sample.

To process a new input sample and compute a new output sample, use filter_fir_s32().
To add a new input sample to the filter without computing a new output sample, use fil-
ter_fir_s32_add_sample().

An N-tap FIR filter contains N 32-bit cofficients (pointed to by coef) and N words of state data
(pointed to by state. The state data is a vector of the N most recent input samples. When
processing a new input sample at time step t, x[t] is the new input sample, x[t-1] is the
previous input sample, and so on, up to x[t-(N-1)], which is the oldest input considered
when computing the new output sample (see note 1 below). The coefficients form a vector
b[ ], whereb[k] isthe coefficient by which the kth oldest input sample is multiplied. Thereisan
additional parameter shift which scales the output as described below. Both the coefficients
and shift are considered to be constants which do not change after initialization (although
nothing should break if they are changed to new valid values).

At time step t, the output sample y[t] is computed based on the inner product (i.e. sum of
element-wise products) of the coefficients and state data as follows (a more detailed descrip-
tion is below):

acc = x[t-0] * b[@] + x[t-1] * b[1] + x[t-2] * b[2] + ... + x[t-(N-1)] * b[N-1]
y[t] = acc >> shift

Importantly, all three of the operators above (addition, multiplication and the rightwards bit-
shift) have slightly ideosyncratic meanings.

The products have a built-in rounding arithmetic right-shift of 30 bits, where ties round to-
ward positive infinity. This is a hardware feature which allows for longer filters (larger N) with-
out sacrificing coefficient precision. These element-wise products accumulate into 8 40-bit
accumulators saturate the sums at symmetric 40-bit bounds (see Symmetrically Saturating
Arithmetic). The order in which the taps are accumulated is unspecified (see note 2 below).

After each tap has been accumulated, the 8 accumulators are then added together to get a 64-
bit penultimate result (with 43 useful bits). Finally, an unsigned rounding arithmetic right-shift
of shift bits is applied to the 64-bit sum, and the final result is saturated to the symmetric
32-bit range (-INT32_MAX to INT32_MAX inclusive).

Below is a more detailed description of the operations performed (not including the saturation
logic applied by the accumulators).
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y[t] = satsa (round ((il round(x[t — k] - blk] - 230)> ) 23hift>>

where satsy () saturates to + (23! — 1)
and round() rounds to the nearest integer, with ties rounding towards +oo

Operations

Initialize: A filter_fir_s32_t filter is initialized with a call to filter_fir_s32_init(). The caller
supplies information about the filter, including the number of taps and pointers the coefficients
and a state buffer. It is typically recommended that the state buffer be cleared to all s before
initializing.

Add Sample: To add a new input sample without computing a new output sample, use fi-
ter_fir_s32_add_sample(). This is a constant-time operation which does not depend on the
number of filter taps. This may be useful in some situations, for example, to quickly pre-load
the filter's state buffer with multiple samples, without incurring the cost of computing an out-
put with each added sample.

Process Sample: To process a new input sample and produce a new output sample, use
filter_fir_s32().

Fields

After initialization via filter_fir_s32_init(), the contents of the filter_fir_s32_t struct are con-
sidered to be opaque, and may change between major versions. In general, user code should
not need to access its members.

num_taps is the order of the filter, or the number of taps. It is also the (minimum) size of the
buffers to which coef and state point, in elements (where each element is 4 bytes). The time
required to process an input sample and produce an output sample is approximately linear in
num_taps (see Performance below).

head is the index into state at which the next sample will be added.

shiftisthe unsigned arithmetic rounding saturating right-shift applied to internal accumulator
to get a final output.

coef is a pointer to a buffer (supplied by the user at initialization) containing the tap coeffi-
cients. The coefficients are stored in forward order, with lower indices corresponding to newer
samples. coef[0], then, corresponds to b[0], coef[1] to b[1], and so on. None of the func-
tions which operateon filter_fir_s32_t structsin this library will modify the contents of the
buffer to which coef points. This buffer must be at least num_taps words long.

state is a pointer to a buffer (supplied by the user at initialization) containing the state data
&#8212; a history of the num_taps most recent input samples. state is used in a circular
fashion with head indicating the index at which the next sample will be inserted.

Performance

More work remains to fully characterize the time performance of this FIR filter, but asymptot-
ically (i.e. with a large number of filter taps) processing a new input sample to produce a new
output sample takes approximately 3 thread cycles per 8 filter taps.
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That assumes that both the coefficients (pointed to by coef) and state buffer (pointed to by
state) are stored directly in SRAM.

Coefficient Scaling

Suppose you're starting with a floating-point FIR filter model with coefficients B[k ] which op-
erates on a sequence of 32-bit integer input samples x[t] to get aresult Y[ t] where

Y[t] = x[t-8] * B[@] + x[t-1] * B[1] + ... + x[t-(N-1)] * B[N-1]

Because of the 30-bit right-shift and the right-shift of the final accumulator by shift bits, the
coefficients b[k] to use with this library can be thought of as fixed-point values with 38 +
shift fractional bits.

The floating-point coefficients B[ k] can then be naively converted to fixed-point coefficients
blk]

shift = @
b[k] = (int32_t) round(ldexp(B[k], 30)

After this, any further doubling of the coefficients can be compensated for without changing
the overall gain by incrementing shift.

To maximize precision, you'll typically want shift to be as large as possible while in the worst
case to be considered neither saturates the internal accumulator (which, for safety, should
generally be assumed to be 42 bits), nor saturates the final 32-bit output when shift is applied.

The details of this depend on various details, such as your filter's gain and the statistics of the
sequence x[t] (e.g. any headroom x[t] is known a priori to have).

Filter Conversion

This library includes a python script which converts existing floating-point FIR filter coefficients
into a suitable representation and generates code for easily initializing and executing the filter.
See Note: Digital Filter Conversion for more.

Usage Example

#define N 256 // Tap count

#define B_VAL  ldexp(71.0/N, 30+7) // Value for (all) coefficients

const int32_t b[TAPS] = // The filter coefficients

{ B_VAL, B_VAL, B_VAL, ..., B_VAL };

const right_shift_t shift = 7; // The (unsigned) right-shift applied to the
—final accumulator

int32_t state_buff[TAPS] = { 0 }; // Filter state buffer, initialized to @'s
filter_fir_s32_t filter; // The filter struct

#define SAMPLE_COUNT 1024
int32_t x[SAMPLE_COUNT] = { ... }; // Some sequence of input samples

(continues on next page)
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(continued from previous page)

// Initialize
filter_fir_s32_init(&filter, state_buff, N, b, shift);

// Just add the first 64 without processing output samples. (not necessary)
for(unsigned i = 0; i < 64; i++)
filter_fir_s32_add_sample(&filter, x[i]);

// Process the rest, generating a sequence of filtered output samples
int32_t y[SAMPLE_COUNT] = { 0@ }; //0utput samples (first 64 never get updated
—here)
for(unsigned i = 64; i < SAMPLE_COUNT; i++)
y[i] = filter_fir_s32(&filter, x[i]);

// Do something with output sequence

This example creates a simple 256-tap filter which averages the most recent 256 samples.

Each b[k] is 222, and the final accumulator is right-shifted 7 bits. In the worst case, all input
samples are —231. In that case, the final accumulator value is 256 - (229 - —231 . 2730) =
—238 well below the saturation limit of the accumulator. After shift is applied, that becomes
—238.9277 = 231 Finally, the 32-bit symmetric saturation logic is applied, making the final
output value —23! + 1.

Notes

a. state is a circular buffer, and so the index of x[t] within state changes with each input
sample. The state field of this struct is considered to be opaque &#8212; its exact usage
may change between versions.

b. Ordinarily integer sums are associative, so the order in which elements are added added
does not affect the final result. The sum that the FIR filters use, however, is saturating,
with the saturation logic being applied throughout the sum. This saturation is a hard non-
linearity and is not associative. The details of exactly when each tap is accumulated and
into which accumulator are complicated and subject to change. It is best to construct a
filter such that no ordering of the taps will saturate the accumulators.

See also:
filter_fir_s32_init, filter_fir_s32_add_sample, filter_fir_s32

struct filter_fir_s16_t
#include <filter.h> 16-bit Discrete-Time Finite Impulse Response (FIR) Filter

Filter Model

This struct represents an N-tap 16-bit discrete-time FIR Filter.

At each time step, the FIR filter consumes a single 16-bit input sample and produces a single
16-bit output sample.

To process a new input sample and compute a new output sample, use filter_fir_s16().
To add a new input sample to the filter without computing a new output sample, use fil-
ter_fir_s16_add_sample().
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An N-tap FIR filter contains N 16-bit cofficients (pointed to by coef) and N int16_ts of state
data (pointed to by state. The state data is a vector of the N most recent input samples.
When processing a new input sample at time step t, x[t] is the new input sample, x[t-1] is
the previous input sample, and so on, up to x[t-(N-1) ], which is the oldest input considered
when computing the new output sample (see note 1 below). The coefficients form a vector
b[ ], whereb[k] is the coefficient by which the kth oldest input sample is multiplied. Thereisan
additional parameter shift which scales the output as described below. Both the coefficients
and shift are considered to be constants which do not change after initialization (although
nothing should break if they are changed to new valid values).

At time step t, the output sample y[t] is computed based on the inner product (i.e. sum of
element-wise products) of the coefficients and state data as follows (a more detailed descrip-
tion is below):

acc = x[t-0] * b[@] + x[t-1] * b[1] + x[t-2] * b[2] + ... + x[t-(N-1)] * b[N-1]
y[t] = acc >> shift

Unlike the 32-bit FIR filters (see filter_fir_si6_t), the products x[t-k] * b[k] are the raw
32-bit products of the 16-bit elements. These element-wise products accumulate into a 32-
bit accumulator which saturates the sums at symmetric 32-bit bounds (see Symmetrically
Saturating Arithmetic).

After all taps have been accumulated, a rounding arithmetic right-shift of shift bits is applied
to the 64-bit sum, and the final result is saturated to the symmetric 16-bit range (the open
interval (—215,219)).

Below is a more detailed description of the operations performed (not including the saturation
logic applied by the accumulators).

y[t] = satig (round ((Z_:l round(z[t — k] - b[k;])) . 2—shift>>
k=0

where satsy () saturates to + (2% — 1)
and round() rounds to the nearest integer, with ties rounding towards +oo

Operations

Initialize: A rilter_frir_si6_t filter is initialized with a call to filter_fir_s16_init(). The caller
supplies information about the filter, including the number of taps and pointers the coefficients
and a state buffer. It is typically recommended that the state buffer be cleared to all s before
initializing.

Add Sample: To add a new input sample without computing a new output sample, use fi-
ter_fir_s16_add_sample(). Unlike filter_fir_s32_add_sample(), this is not a constant-time opera-
tion, and does depend on the number of filter taps. Nevertheless, this is faster than computing
output samples, and may be useful in some situations, for example, to moer quickly pre-load
the filter's state buffer with multiple samples, without incurring the cost of computing an out-
put with each added sample.

Process Sample: To process a new input sample and produce a new output sample, use
filter_fir_s16().

Fields
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After initialization via filter_fir_s76_init(), the contents of the filter_fir_s16_t struct are con-
sidered to be opaque, and may change between major versions. In general, user code should
not need to access its members.

num_taps is the order of the filter, or the number of taps. It is also the (minimum) size of the
buffers to which coef and state point, in elements (where each element is 2 bytes). The time
required to process an input sample and produce an output sample is approximately linear in
num_taps (see Performance below).

shiftisthe unsigned arithmetic rounding saturating right-shift applied to internal accumulator
to get a final output.

coef is a pointer to a buffer (supplied by the user at initialization) containing the tap coeffi-
cients. The coefficients are stored in forward order, with lower indices corresponding to newer
samples. coef[8], then, corresponds to b[@], coef[1] to b[1], and so on. None of the func-
tions which operateon filter_fir_s16_t structs in this library will modify the contents of the
buffer to which coef points. This buffer must be at least num_taps elements long, and must
begin at a word-aligned address.

state is a pointer to a buffer (supplied by the user at initialization) containing the state data
&#8212; a history of the num_taps most recent input samples. state must begin at a word-
aligned address.

Coefficient Scaling

Filter Conversion

This library includes a python script which converts existing floating-point FIR filter coefficients
into a suitable representation and generates code for easily initializing and executing the filter.
See Note: Digital Filter Conversion for more.

Todo:

Usage Example

See also:

filter_fir_s16_init, filter_fir_s16_add_sample, filter_fir_s16

struct filter_biquad_s32_t
#include <filter.h> A biquad filter block.

Contains the coeffient and state information for a cascade of up to 8 biquad filter sections.

To process a new input sample, filter_biquad_s32() can be used with a pointer to one of these
structs.

For longer cascades, an array of filter_biquad_s32_t structs can be used with fi-
ter_biquads_s32().



Filter Conversion

This library includes a python script which converts existing floating-point cascaed biquad
filter coefficients into a suitable representation and generates code for easily initializing and
executing the filter. See Note: Digital Filter Conversion for more.

4.6 Scalar API

4.6.1 Scalar API Quick Reference

« Scalar Type Conversion

+ Fixed-Point Scalar Ops

« |IEEE 754 Float Scalar Ops
+ Non-standard Float Scalar Ops

+ Non-standard Complex Float Scalar Ops

4.6.1.1

Scalar Type Conversion

Table 4.11: Scalar Type Conversion

Function Type In Type Out
f32_unpack() float int32_t, exponent_t
f32_unpack_s16() float int16_t, exponent_t
f32_to_float_s32() float float_s32_t
f64_to_float_s32() double float_s32_t
float_s32_to_float_s64() float_s32_t float_s64_t
float_s32_to_float() float_s32_t float
float_s32_to_double() float_s32_t double

s16_to_s32()
s32_to_s16()
s64_to_s32()
s32_to_f32()
radians_to_sbrads()
s$32_to_chunk_s32()
float_s64_to_float_s32()

int16_t, exponent_t
int32_t, exponent_t
intbé4_t, exponent_t
int32_t, exponent_t
radian_q24_t
int32_t
float_s64_t

int32_t, exponent_t
intl6_t, exponent_t
int32_t, exponent_t
float

sbrad_t

int32_t[8]
float_s32_t

4.6.1.2 Fixed-Point Scalar Ops

Table 4.12: Fixed-Point Scalar Ops

Function Input Depth Fractional

Bits
s16_inverse() 16 0 z7 !
s32_inverse() 32 0 z7 !
sbrad_sin() 32 31 sin(x)
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Table 4.12 — continued from previous page

Function Input Depth Fractional Brief
Bits
sbrad_tan() 32 31 tan(z)
g24_sin() 32 24 sin(x)
g24_cos() 32 24 cos(z)
g24_tan() 32 24 tan(x)
G30_exp_small() 32 30 exp(x)
g24_logistic() 32 24 1+i—$
g24_logistic_fast() 32 24 1-&-%
q30_powers() 32 30 0,z,2%, 23,...)
u32_ceil_log2() 32 0 [logs ()]

4.6.1.3 IEEE 754 Float Ops
Table 4.13: IEEE 754 Float Ops
Function Brief
£32_sin() sin(zx)
f32_cos() cos(x)
£32_1og2() loga(z)

f32_power_series()
f32_normA()

Evaluate Power Series
Normalized Form A

4.6.1.4 Non-standard Scalar Float Ops

Table 4.14: Non-standard Scalar Float Ops

Function Brief
float_s32_mul() T Xy
float_s32_add() T+y
float_s32_sub() T—y
float_s32_div() %
float_s32_abs() |z]
float_s32_gt() T >y
float_s32_gte() T >y
float_s32_ema() ax + (1 —a)y
float_s32_sqrt() NG
float_s32_exp() exp(z)
s16_mul() T XYy
s32_sqrt() NG
s32_mul() T Xy
s32_odd_powers() x, 23, 2% 27, ...
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4.6.1.5 Non-standard Complex Scalar Float Ops

Table 4.15: Non-standard Complex Scalar Float Ops

Function Brief
float_complex_s16_mul() T Xy
float_complex_s16_add() Tty
float_complex_s16_sub() T —y
float_complex_s32_mul() T Xy
float_complex_s32_add() T+y
float_complex_s32_sub() T—y

4.6.2 16-bit Scalar API

group scalar_s16_api

Functions

int32_t s16_to_s32(exponent_t *a_exp, const int16_t b, const exponent_t b_exp, const unsigned
remove_hr)

Convert a 16-bit floating-point scalar to a 32-bit floating-point scalar.

Converts a 16-bit floating-point scalar, represented by the 16-bit mantissa b and exponent b_exp,
into a 32-bit floating-point scalar, represented by the 32-bit returned mantissa and output exponent
a_exp.

remove_hr, if nonzero, indicates that the output mantissa should have no headroom. Otherwise,
the output mantissa will be the same as the input mantissa.

Parameters
+ a_exp — [out] Output exponent
+ b — [in] 16-bit input mantissa
+ b_exp — [in] Input exponent
* remove_hr — [in] Whether to remove headroom in output

Returns
32-bit output mantissa

int16_t s16_inverse (exponent_t *a_exp, const int16_t b)
Compute the inverse of a 16-bit integer.

b represents the integer b. a and a_exp together represent the result a - 29-¢7.

Operation Performed

1
.9a-erp .
“ b

Parameters
- a_exp — [out] Output exponent a_exp

* b - [in] Input integer b
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Returns
Output mantissa a

int16_t s16_mul(exponent_t *a_exp, const int16_t b, const int16_t ¢, const exponent_t b_exp, const
exponent_t c_exp)

Compute the product of two 16-bit floating-point scalars.
a and a_exp together represent the result @ - 29-°7P,
b and b_exp together represent the result b - 20-¢7.

c and c_exp together represent the result ¢ - 26-¢P,

Operation Performed
D e (b . 2b,emp) . (C . 2c,eacp)

Parameters
- a_exp — [out] Output exponent a_exp
« b — [in] First input mantissa b
+ ¢ — [in] Second input mantissa c
+ b_exp — [in] First input exponent b_exp
+ c_exp — [in] Second input exponent c_exp

Returns
Output mantissa a

4.6.3 32-bit Scalar API

group scalar_s32_api

Defines

$32_SQRT_MAX_DEPTH
Maximum bit-depth to calculate with s32_sqrt().

Functions

float s32_to_f32(const int32_t mantissa, const exponent_t exp)
Pack a floating point value into an IEEE 754 single-precision float.

The value returned is the nearest representable approximation to m - 27 where m is mantissa and
pis exp.

Example
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// Pack -12345678 * 2/{-13} into a float
int32_t mant = -12345678;

exponent_t exp = -13;

float val = s32_to_f32(mant, exp);

printf("%e <-- %1d * 24(%d)\n", val, mant, exp);

Note: This operation may result in a loss of precision.

Parameters
- mantissa — [in] Mantissa of value to be packed
+ exp — [in] Exponent of value to be packed
Returns
float representation of input value

iNnt16_t s32_to_s16(exponent_t *a_exp, const int32_t b, const exponent_t b_exp)
Convert a 32-bit floating-point scalar to a 16-bit floating-point scalar.

Converts a 32-bit floating-point scalar, represented by the 32-bit mantissa b and exponent b_exp,
into a 16-hit floating-point scalar, represented by the 16-bit returned mantissa and output exponent

a_exp.
Parameters
+ a_exp — [out] Output exponent
+ b — [in] 32-bit input mantissa
* b_exp - [in] Input exponent
Returns

16-bit output mantissa

int32_t s32_sqrt(exponent_t *a_exp, const int32_t b, const exponent_t b_exp, const unsigned depth)
Compute the square root of a 32-bit floating-point scalar.

b and b_exp together represent the input b - 20-¢*P_ |ikewise, a and a_exp together represent the
result @ - 29-¢*P,

depth indicates the number of MSb's which will be calculated. Smaller values here will exe-
cute more quickly at the cost of reduced precision. The maximum valid value for depth is
S32_SQRT_MAX_DEPTH.

Operation Performed
a-20-°"P < ([ (b - 2b-exp)

Parameters
- a_exp — [out] Output exponent a_exp
* b — [in] Input mantissa b
+ b_exp — [in] Input exponent b_exp
« depth - [in] Number of most significant bits to calculate

Returns
Output mantissa a
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int32_t s32_inverse(exponent_t *a_exp, const int32_t b)
Compute the inverse of a 32-bit integer.

b represents the integer b. a and a_exp together represent the result a - 23-6*7,

Operation Performed

a- 2067

If b is the mantissa of a fixed- or floating-point value with an implicit or explicit exponent b_exp,
then

Fixed- or Floating-point

1 _ 1 . 27b,erp

b-2bear
— ¢ .90-cap  9—bexp
— g . 9a-eap—b_exp
and so b_exp should be subtracted from the output exponent a_exp.
Parameters
- a_exp — [out] Output exponent a_exp
* b - [in] Input integer b

Returns
Output mantissa a

int32_t s32_mul(exponent_t *a_exp, const int32_t b, const int32_t ¢, const exponent_t b_exp, const
exponent_t c_exp)

Compute the product of two 32-bit floating-point scalars.
a and a_exp together represent the result a - 29-¢%P.
b and b_exp together represent the result b - 20-¢P.

c and c_exp together represent the result ¢ - 26-6*P,

Operation Performed
D (b . 2b_exp) . (C . 2c_ezp)

Parameters
- a_exp — [out] Output exponent a_exp
+ b - [in] First input mantissa b
+ ¢ — [in] Second input mantissa ¢
* b_exp — [in] First input exponent b_exp
- c_exp — [in] Second input exponent c_exp

Returns
Output mantissa a
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sbrad_t radians_to_sbrads(const radian_q24_t theta)
Convert angle from radians to a modified binary representation.

Some trig functions, such as shrad_sin(), rather than taking an angle specified in radians (e.g. ra-
dian_g24_t), require their argument to be a modified representation of the angle, as an sbrad._t.
The modified binary representation takes into account various properies of the sin(6) function to
simplify certain operations.

For any angle 6 there is a unique angle o where —1 < o < 1 and sin(Fa) = sin(f). This function

essentially just maps the input angle 6 onto the corresponding angle « in that region and returns
the result in a Q1.31 format.

In this library, the unit of the resulting angle « is referred to as an ‘sbrad’. ‘brad’ because « is a
kind of binary angular measurement, and ‘s’ because the symmetries of sin(#) are what's being
accounted for.

Parameters
- theta — [in] Input angle 6, in radians (Q8.24)

Returns
Output angle a, in sbrads

q2_30 sbrad_sin(const sbrad_t theta)
Compute the sine of the specified angle.

This function computes sin(%6), returning the result in Q2.30 format.

The input angle @ must be expressed in sbrads (sbrad_t), and must represent a value between 4-0.5
(inclusive) (as a Q1.31).

Operation Performed
. ™
sin( 50)

Parameters

- theta — [in] Input angle 6, in sbrads (see radians_to_sbrads)
Returns

Sine of the specified angle in Q2.30 format.

q2_30 sbrad_tan(const sbrad_t theta)
Compute the tangent of the specified angle.

This function computes tan (%), returning the result in Q2.30 format.

The input angle & must be expressed in sbrads (shrad_t), and must represent a value between
+0.25 (inclusive) (as a Q1.31).

Operation Performed
Qo
tan(§ 0)

Parameters
- theta — [in] Input angle 6, in sbrads (see radians_to_sbrads)

Returns
Tangent of the specified angle in Q2.30 format.


https://en.wikipedia.org/wiki/Binary_angular_measurement

q2_30 q24_sin(const radian_q24._t theta)
Compute the sine of the specified angle.

This function computes sin(6), returning the result in Q2.30 format.

Operation Performed

sin(0)

Parameters

- theta — [in] Input angle 6, in radians (Q8.24)
Returns

sin(#) as a Q2.30

q2_30 q24_cos(const radian_q24._t theta)
Compute the cosine of the specified angle.

This function computes cos(0), returning the result in Q2.30 format.

Operation Performed

cos(8)

Parameters

- theta — [in] Input angle 6, in radians (Q8.24)
Returns

cos(f) as a Q2.30

float_s32_t q24_tan(const radian_g24_t theta)
Compute the tangent of the specified angle.
This function computes tan(8). The result is returned as a float_s32_t containing a mantissa and
exponent.

The value of tan(0) is considered undefined where theta = 7 + k for any integer k. An exception
will be raised if # meets this condition.

Operation Performed

tan(6)

Parameters
- theta — [in] Input angle 6, in radians (Q8.24)

Throws ET_ARITHMETIC
Raised if tan(0) is undefined.

Returns
tan(9) as a float_s32_t
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g2_30 q30_exp_small(const g2 30 x)

Compute e® for Q2.30 value near 0.
This function computes e* where z is a fixed-point value with 30 fractional bits.

This function implements e* using a truncated power series, and is only intended to be used for
inputs in the range —0.5 < z < 0.5.

The output is also in the Q2.30 format.

For the range —0.5 < x < 0.5, the maximum observed error (compared to exp(double) from
math.h) was 2 (which corresponds to 2729).

For the range —1.0 < z < 1.0, the corresponding maximum observed error was 324, or approxi-
mately 2721,

To compute e for z outside of [—0.5,0.5], use float_s32_exp().

Operation Performed

y<—e

Parameters
+ x — [in] Input value z

Returns
Yy

g8_24 q24_logistic(const g8 24 x)

Evaluate the logistic function at the specified point.

This function computes the value of the logistic function y = This is a sigmoidal curve

bounded below by y = 0 and above by y = 1.

1
THe o

The input z and output y are both Q8.24 fixed-point values.

If speed is greatly preferred to precision, g24_logistic_fast() can be used instead.

Operation Performed

%
y l1+e®

Parameters
+ x — [in] Input value =

Returns
Yy

g8_24 q24_logistic_fast(const g8_24 x)

Evaluate the logistic function at the specified point.

This function computes the value of the logistic function y = This is a sigmoidal curve

bounded below by y = 0 and above by y = 1.

_ 1
14+e—="

The input z and output y are both Q8.24 fixed-point values.

This implementation trades off precision for speed, approximating results in a piece-wise linear
manner. If a precise result is desired, g24_logistic() should be used instead.



Operation Performed

Hi
Y 1+e®

Parameters
+ x — [in] Input value z
Returns
Y
void s32_to_chunk_s32 (int32_t a[VPU_INT32_EPV], int32_t b)
Broadcast an integer to a vector chunk.

This function broadcasts the input b to the 8 elements of a.

Operation Performed

ak%b

Parameters
+ a — [out] Output chunk @
+ b — [in] Input value b
Throws ET_LOAD_STORE
Raised if a is not double word-aligned (See Note: Vector Alignment)

void q38_powers(q2_30 afl, const g2_30 b, const unsigned N)
Get the first N powers of b.

This function computes the first N powers (starting with 0) of the Q2.30 input b. The results are
output as @, also in Q2.30 format.

Operation Performed

ap + 23Y = Q30(1.0)

_1-b
ag < round (ak2310 )

forke0.N -1

Parameters
+ a — [out] Output @
« b —[in] Inputd

* N - [in] Number of elements of @ to compute

void s32_odd_powers (int32_t af], const int32_t b, const unsigned count, const right_shift_t shr)
Fill vector with odd powers of b.

This function populates the elements of output vector a with the odd powers of input b. The first
count odd powers of b are output. The highest power output will be 2 - count — 1.

The 64-bit product of each multiplication is right-shifted by shr bits and truncated to the 32 least
significant bits. If b is a fixed-point value with shr fractional bits, then each a;, will have the same
Q-format as input b. shr must be non-negative.
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This function neither rounds nor saturates results. It is up to the user to ensure overflows are
avoided.

Typical use-case is computing a power series of a function with odd symmetry.

Operation Performed
b2
bsqr = ﬁ
ag < b

Qf—1, bsqr
shr
forke1,2,3,...,count — 1

ag <

Parameters
+ a — [out] Output vector a
« b [in] Input b
» count — [in] Number of elements to output.
« shr — [in] Number of bits to right-shift 64-bit products.

4.6.4 Scalar IEEE 754 Float API

group scalar_f32_api

Functions

void £32_unpack (int32_t *mantissa, exponent_t *exp, const float input)
Unpack an IEEE 754 single-precision float into a 32-bit mantissa and exponent.

Example

// Unpack 1.52345246 * 104(-5)
float val = 1.52345246e-5;
int32_t mant;

exponent_t exp;
f32_unpack(&mant, &exp, val);

printf("%ld * 2A(%d) <-- %e\n", mant, exp, val);

Parameters
- mantissa — [out] Unpacked output mantissa
- exp — [out] Unpacked output exponent

+ input - [in] Float value to be unpacked

void f32_unpack_s16(int16_t *mantissa, exponent_t *exp, const float input)
Unpack an IEEE 754 single-precision float into a 16-bit mantissa and exponent.

Example
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// Unpack 1.52345246 * 107(-5)
float val = 1.52345246e-5;
int16_t mant;

exponent_t exp;
f32_unpack_s16(&mant, &exp, val);

printf("%ld * 2A(%d) <-- %e\n", mant, exp, val);

Note: This operation may result in a loss of precision.

Parameters
- mantissa — [out] Unpacked output mantissa
- exp — [out] Unpacked output exponent

- input - [in] Float value to be unpacked

float_s32_t £32_to_float_s32(const float x)
Convert an IEEE754 float to a float_s32_t.

Parameters
« x — [in] Input value

Throws ET_ARITHMETIC
Raised if x is infinite or NaN

Returns
float_s32_t representation of x

float_s32_t f64_to_float_s32(const double x)
Convert an IEEE754 double to a float_s32_t.

Note: This operation may result in precision loss.

Parameters
« x — [in] Input value

Throws ET_ARITHMETIC
Raised if x is infinite or NaN

Returns
float_s32_t representation of x

float £32_sin(const float theta)
Get the sine of a specified angle.

Computes sin(6) using the power series expansion of sin() truncated to 8 terms.
This implementation is meant to make optimal use of the XS3 floating-point unit.
Parameters
+ theta - [in] Angle 8 to compute the sine of (in radians)

Throws ET_ARITHMETIC
Raised if @ is infinite or NaN

Returns
Sine of the angle #
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float £32_cos(const float theta)
Get the cosine of a specified angle.
Computes cos(f) = sin(6 + T using the power series expansion of sin() truncated to 8 terms.
This implementation is meant to make optimal use of the XS3 floating-point unit.
Parameters
- theta — [in] Angle # to compute the cosine of (in radians)

Throws ET_ARITHMETIC
Raised if 8 is infinite or NaN

Returns
Cosine of the angle 6

float £32_l1og2(const float x)
Get the base-2 logarithm of the specified value.

This function computes logs () using the power series expansion of logs() truncated to 11 terms.
Parameters
- x — [in] Input value z to get the logarithm of.

Throws ET_ARITHMETIC
Raised if x is infinite or NaN

Returns
loga ()
float £32_power_series(const float x, const float b[], const unsigned N)
Compute power series summation using specified coefficients.

This function is used to compute the sum of terms in a power series, truncated to N terms, starting
with the 2% term.

b is an N-element vector of coefficients b which are multiplied by the corresponding powers of z.

N is the length of b and number of terms to sum together.

Operation Performed

N—
a <+ (xk, bk)
k=0

=

Parameters
+ x — [in] Input value .
- b — [in] Vector of coefficients b.
+ N — [in] Number of power series terms to sum.

Throws ET_ARITHMETIC B
Raised if z or any element of b is infinite or NaN.

Returns
a, the sum of the first V power series terms.

float £32_normA(exponent_t *p, const float x)
Get a representation of the input z in normalized form A.

This function is used internally to transform a float value into a representation required for certain
purposes.
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In particular, this function behaves much like frexpf(), where it is guaranteed that the returned
value a is either 0 or that 0.5 < |a| < 1.0, and the output exponent p is such that x = a - 2P.

In anticipation that future work may require alternative "normalized” representations, this form is
being defined here as form A.

Parameters
- p — [in] Output exponent p
+ x — [in] Input value z

Throws ET_ARITHMETIC B
Raised if z or any element of b is infinite or NaN.

Returns
a in normalized form A.

4.6.5 32-bit Scalar Float API

group float_s32_api

Functions
float_s64_t float_s32_to_float_s64(const float_s32_t x)
Convert a float_s32_t to a float_s64._t.
Parameters
« x — [in] Input value

Returns
float_s64_t representation of x

float float_s32_to_float(const float_s32_t x)
Convert a float_s32_t to an IEEE754 float.

Parameters
« x — [in] Input value

Returns
float representation of x

double float_s32_to_double(const float_s32 t x)
Convert a float_s32_t to an IEEE754 double.

Parameters
+ x — [in] Input value

Returns
double representation of x

float_s32_t float_s32_mul(const float_s32_t x, const float_s32_t y)
Multiply two float_s32_t together.

The inputs z and y are multiplied together for a result a, which is returned.

Operation Performed

a<x-y
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Parameters
+ x = [in] Input operand «
+ y — [in] Input operand y
Returns
The product of z and y

float_s32_t float_s32_add(const float_s32_t x, const float_s32_t y)
Add two float_s32_t together.

The inputs z and y are added together for a result a, which is returned.

Operation Performed

a$—x+y

Parameters
+ x — [in] Input operand «
« y = [in] Input operand y
Returns

The sumofzandy

float_s32_t float_s32_sub(const float_s32_t x, const float_s32_t y)
Subtract one float_s32_t from another.

The input y is subtracted from the input z for a result a, which is returned.

Operation Performed
a+—zr—y

Parameters
+ x — [in] Input operand «
« y — [in] Input operand y
Returns
The difference of z and y

float_s32_t float_s32_div(const float_s32_t x, const float_s32_t y)
Divide one float_s32_t from another.

The input z is divided by the input y for a result a, which is returned.

Operation Performed

Parameters
+ x — [in] Input operand «

« y — [in] Input operand y
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Throws ET_ARITHMETIC
ifYisO

Returns
The result of z/y

float_s32_t float_s32_abs(const float_s32_t x)
Get the absolute value of a float_s32_t.

a, the absolute value of z is returned.

Operation Performed

a <+ |x|

Parameters
» x — [in] Input operand x

Returns
The absolute value of x

unsigned float_s32_gt(const float_s32_t x, const float_s32_ty)
Determine whether one float_s32_t is greater than another.
The inputs z and y are compared. The result a is true iff x is greater than y and false otherwise. a

is returned.

Operation Performed

1 z>y9
a < .
0 otherwise

Parameters
+ x — [in] Input operand =
« y — [in] Input operand y

Returns
1iff z > y; 0 otherwise

unsigned float_s32_gte(const float_s32_t x, const float_s32_t y)
Determine whether one float_s32_t is greater or equal to another.
The inputs  and y are compared. The result a is true iff = is greater than or equal to y and false

otherwise. a is returned.

Operation Performed
1 >
a $— r=y
0 otherwise

Parameters
+ x — [in] Input operand «

« y — [in] Input operand y
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Returns
1iff x > y; 0 otherwise

float_s32_t float_s32_ema(const float_s32_t x, const float_s32_t y, const ug2_30 coef)
Update an exponential moving average.

This function updates an exponential moving average by applying a single new sample. z is taken
as the previous EMA state, with y as the new sample. The EMA coefficient « is applied to the term
including z.

coef is a fixed-point value in a UQ2.30 format (i.e. has an implied exponent of —30), and should be
intherange0 < a < 1.

Operation Performed
a—a-z+(l-—a)y

Parameters

+ x — [in] Input operand «

« y = [in] Input operand y

- coef — [in] EMA coefficient a encoded in UQ2.30 format
Returns

The new EMA state

float_s32_t float_s32_sqrt(const float_s32_t x)
Get the square root of a float_s32_t.

This function computes the square root of z. The result, a is returned.

The precision with which a is computed is configurable via the XMATH_BFP_SQRT_DEPTH_S32
configuration parameter. It indicates the number of most significant bits to be calculated.

Operation Performed

a<+—+\z

See also:
XMATH_BFP_SQRT_DEPTH_S32

Warning: z must be non-negative to get a correct result.

Parameters
+ x — [in] Input operand «

Returns
The square root of
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float_s32_t float_s32_exp(const float_s32_t x)
Compute e*.

This function computes e* for real input z.

If 2 is known to be in the interval [—0.5,0.5], g30_exp_small() (which is used internally by this
function) may be used instead for a speed boost.

Operation Performed

Parameters

+ x — [in] Input
Returns

Yy

float_s32_t float_s64_to_float_s32(const float_s64_t x)
Convert a float_s64_t to a float_s32_t.

Note: This operation may result in precision loss.

Parameters
+ x — [in] Input value

Returns
float_s32_t representation of x

4.6.6 16-bit Complex Scalar Floating-Point API

group float_complex_s16_api

Functions

float_complex_s16_t float_complex_s16_mul(const float_complex_sT6_t x, const float_complex_sT6_t
Y)
Multiply two float_complex_sT6_t together.

The inputs z and y are multiplied together (using complex multiplication) for a result a, which is
returned.

Operation Performed

a—x-y

Parameters
+ x — [in] Input operand z

+ y — [in] Input operand y
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Returns
a, the complex product of z and y

float_complex_s16_t float_complex_s16_add(const float_complex_s16_t x, const float_complex_sT16_t
y)

Add two float_complex_sT6_t together.
The inputs = and y are added together for a result a, which is returned.

Operation Performed

a<—rT+y

Parameters
+ x — [in] Input operand «
+ y = [in] Input operand y

Returns
a,the sumof zand y

float_complex_s16_t float_complex_s16_sub (const float_complex_sT6_t x, const float_complex_sT6_t
y)

Subtract one float_complex_s16_t from another.
The input y is subtracted from the input z for a result a, which is returned.

Operation Performed

a+—xr—y

Parameters
+ x — [in] Input operand z
+ y — [in] Input operand y

Returns
a, the difference of z and y

4.6.7 32-bit Complex Scalar Floating-Point API

group float_complex_s32_api

Functions

float_complex_s32_t float_complex_s32_mul(const float_complex_s32_t x, const float_complex_s32_t
y)

Multiply two float_complex_s32_t together.
The inputs z and y are multiplied together (using complex multiplication) for a result a, which is

returned.
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Operation Performed

a—x-y

Parameters
+ x — [in] Input operand «
« y = [in] Input operand y

Returns
a, the complex product of z and y

float_complex_s32_t float_complex_s32_add(const float_complex_s32_t x, const float_complex_s32_t
y)

Add two float_complex_s32_t together.
The inputs z and y are added together for a result a, which is returned.

Operation Performed

a<— Tty

Parameters
» x — [in] Input operand x
« y — [in] Input operand y

Returns
a,the sum of z and y

float_complex_s32_t float_complex_s32_sub(const float_complex_s32_t x, const float_complex_s32_t
y)

Subtract one float_complex_s32_t from another.
The input y is subtracted from the input z for a result a, which is returned.

Operation Performed

a—zx—y

Parameters
+ x — [in] Input operand «
+ y — [in] Input operand y

Returns
a, the difference of z and y
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4.6.8 Miscellaneous Scalar API

group scalar_misc_api

Functions
static inline unsigned u32_ceil_log2(unsigned N)
Get the size of a 32-bit unsigned number.

This function reports the size of the number as a, the number of bits required to store unsigned
integer N. This is equivalent to ceil (logs (N)).

N is the input N.

Operation Performed

0 N=0
a <
[logs (N)] otherwise

Parameters

* N - [in] Number to get the size of
Returns

Number of bits a required to store N

iNt32_t s64_to_s32(exponent_t *a_exp, const int64_t b, const exponent_t b_exp)
Convert a 64-bit floating-point scalar to a 32-bit floating-point scalar.

Converts a 64-bit floating-point scalar, represented by the 64-bit mantissa b and exponent b_exp,
into a 32-bit floating-point scalar, represented by the 32-bit returned mantissa and output exponent

a_exp.
Parameters
+ a_exp — [out] Output exponent
* b — [in] 64-bit input mantissa
+ b_exp — [in] Input exponent
Returns

32-bit output mantissa

4.7 Vector API

4.7.1 Vector API Quick Reference

The tables below list the functions of the vector API. The "EW” column indicates whether the operation acts
element-wise.

The “Signature” column is intended as a hint which quickly conveys the kind of the conceptual inputs to and
outputs from the operation. The signatures are only intended to convey how many (conceptual) inputs and
outputs there are, and their dimensionality.
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The functions themselves will typically take more arguments than these signatures indicate. For example,
most functions take vector lengths as input, and many take shift values which are used to control growth of
element bit-depth. Check the function’s full documentation to get more detailed information.

The following symbols are used in the signatures:

Symbol Description

S A scalar input or output value.

\Y A vector-valued input or output.

M A matrix-valued input or output.

(] Placeholder indicating no input or output.

For example, the operation signature (V x V x S) — V indicates the operation takes two vector inputs and a
scalar input, and the output is a vector.

+ 32-Bit Vector Ops

+ 16-Bit Vector Ops

« 8-Bit Vector Ops

« Complex 32-Bit Vector Ops
« Complex 16-Bit Vector Ops
+ Fixed-Point Vector Ops

+ Floating-Point Vector Ops
« Other Vector Ops

+ Vector Type Conversions

32-bit Vector Ops

Function EW Signature
vect_s32_copy() V-V
vect_s32_abs() X V-V
vect_s32_abs_sum() V—S
vect_s32_add() X (VxV)->V
vect_s32_add_scalar() X (VxS)—=V
vect_s32_argmax() V—S
vect_s32_argmin() V—S
vect_s32_clip() X (VxSxS)—=V
vect_s32_dot() (VxV)—=S
vect_s32_energy() V—S
vect_s32_headroom() V—S
vect_s32_inverse() X V-V
vect_s32_max() V—S
vect_s32_max_elementwise() X (VxV)=>V
vect_s32_min() V—S
vect_s32_min_elementwise() (VxV)=>V
vect_s32_mul() (VxV)=>V

vect_s32_macc()
vect_s32_nmacc()
vect_s32_rect()
vect_s32_scale()
vect_s32_set()
vect_s32_shl()
vect_s32_shr()

X X X X X X X X X

(VxVxV)—>V
(VxVxV)—>V
V-V
(VxS)—>V
S—V
(VxS)—=V
(VxS)—=V
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Table 4.17 — continued from previous page

32-bit Vector Ops

Function EW Signature
vect_s32_sqrt() X V-V
vect_s32_sub() X (VxV)=>V
vect_s32_sum() V=S
vect_s32_zip() (VxV)=>V
vect_s32_unzip() V= (VxV)
vect_s32_convolve_valid() (VxV)—>V
vect_s32_convolve_same() (VxV)—>V
vect_s32_log_base() X (VxS)—=V
vect_s32_1og() X V-V
vect_s32_10g2() X V-V
vect_s32_10g70() X V-V
chunk_s32_dot() (VxV)—=S
chunk_s32_1og() X V-V
16-bit Vector Ops

Function EW Signature
vect_s16_abs() X V-V
vect_s16_abs_sum() V—S
vect_s16_add() X (VxV)=>V
vect_sl6_add_scalar() X (VxS)—=V
vect_s16_argmax() V—S
vect_s16_argmin() V—S
vect_s16_clip() X (VxSxS)—V
vect_s16_dot() (VxV)—=S
vect_s16_energy() V—S
vect_s16_headroom() V—S
vect_sl6_inverse() X V-V
vect_s16_max() V=S
vect_sT6_max_elementwise() X (VxV)=>V
vect_s16_min() V—S
vect_sT6_min_elementwise() X (VxV)—>V
vect_s16_mul() X (VxV)—>V
vect_sT16_macc() X (VxVxV)>V
vect_sT6_nmacc() X (VxVxV)=>V
vect_sT6_rect() X V-V
vect_sl6_scale() X (VxS)—=V
vect_s16_set() X S—V
vect_s16_shl1() X (VxS)—=V
vect_s16_shr() X (VxS)—=V
vect_sT6_sqrt() X V-V
vect_sT6_sub() X (VxV)=>V
vect_s16_sum() V—S
vect_sl6_extract_high_byte() X V-V
vect_sT6_extract_low_byte() X V-V
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8-bit Vector Ops

Function EW Signature Brief
vect_s8_is_negative() X V-V Identify negative elements
32-bit Complex Vector Ops

Function EW Signature
vect_complex_s32_add() X (VxV)—>V
vect_complex_s32_add_scalar() X (VxS)—»V
vect_complex_s32_conj_macc() X (VxVxV)>V
vect_complex_s32_conj_mul() X (VxV)—>V
vect_complex_s32_conj_nmacc() X (VxVxV)=>V
vect_complex_s32_conjugate() X V-V
vect_complex_s32_headroom() V—S
vect_complex_s32_macc() X (VxVxV)>V
vect_complex_s32_mag() X V-V
vect_complex_s32_mul() X (VxV)=>V
vect_complex_s32_nmacc() X (VxVxV)=>V
vect_complex_s32_real_mul() X (VxV)—>V
vect_complex_s32_real_scale() X (VxS)—=V
vect_complex_s32_scale() X (VxS)—=V
vect_complex_s32_set() X S—>V
vect_complex_s32_shl() X (VxS)—>V
vect_complex_s32_shr() X (VxS)—=V
vect_complex_s32_squared_mag() X V—>V
vect_complex_s32_sub() X (VxV)—>V
vect_complex_s32_sum() V=S
vect_complex_s32_tail_reverse() V-V

16-bit Complex Vector Ops

Function EW Signature
vect_complex_s16_add() X (VxV)=>V
vect_complex_s16_add_scalar() X (VxS)—=V
vect_complex_s16_conj_mul() X (VxV)—>V
vect_complex_s16_conj_macc() X (VxVxV)—>V
vect_complex_s16_conj_nmacc() X (VxVxV)>V
vect_complex_s16_headroom() V—S
vect_complex_s16_macc() X (VxVxV)=>V
vect_complex_s16_mag() X V-V
vect_complex_s16_mul() X (VxV)—>V
vect_complex_s16_nmacc() X (VxVxV)->V
vect_complex_s16_real_mul() X (VxV)=>V
vect_complex_s16_real_scale() X (VxS)—=V
vect_complex_s16_scale() X (VxS)—=V
vect_complex_s16_set() X S—V
vect_complex_s16_shl() X (VxS)—=V
vect_complex_si16_shr() X (VxS)—>V
vect_complex_s16_squared_mag() X V-V
vect_complex_s16_sub() X (VxV)=>V
vect_complex_sT16_sum() V—S
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Fixed-Point Vector Ops

Function EW Signature
vect_q30_power_series() X (VxV)=>V
vect_q30_exp_small() X V-V
chunk_q30_power_series() X (VxV)=>V
chunk_q30_exp_small() X V-V
Floating-Point Vector Ops

Function EW Signature
vect_f32_max_exponent() V—S
vect_f32_dot() (VxV)—=S
vect_f32_add() X VxV->YV
vect_float_s32_log_base() X (VxS)—»V
vect_float_s32_1og() X V-V
vect_float_s32_1og2() X V-V
vect_float_s32_1og10/() X V-V
chunk_float_s32_log() X V-V
vect_complex_f32_add() X VxV->V
vect_complex_f32_mul() X VxV->V
vect_complex_f32_conj_mul() X VxV->V
vect_complex_132_macc() X VXxVxV-=>V
vect_complex_132_conj_macc() X VXV XxV->V

Note that several of the functions below take vectors of the sp1it_acc_s32_t type. This is a 32-bit vector type
used for accumulating results of 8- or 16-bit operations in a manner optimized for the XS3 VPU.

Other Vector Ops
Function EW Signature
vect_split_acc_s32_shr() X (VxS)—=V
vect_s32_merge_accs() X V-V
vect_s32_split_accs() X V-V
chunk_s16_accumulate() X V-V
mat_mul_s8_x_s8_yield_s32() MxV)—>V
mat_mul_s8_x_s16_yield_s32() MxV)—=>V
Vector Type Conversion Ops
Function

Array Element Type

Input Output
vect_sT6_to_vect_s32() intl16_t int32_t
vect_s32_to_vect_s16() int32_t intl6_t
vect_s32_to_vect_f32() int32_t float
vect_f32_to_vect_s32() float int32_t
vect_complex_s16_to_vect_complex_s32() complex_s16_t complex_s32_t
vect_complex_s32_to_vect_complex_s16() complex_s32_t complex_si6_t
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4.7.2 8-Bit Vector API

group vect_s8_api

Functions

void vect_s8_is_negative(int8_t a[], const int8_t b], const unsigned length)
Determine whether each element of a signed 8-bit input vector are negative.

Each element a, of 8-bit output vector a is set to 1 if the corresponding element by, of 8-bit input
vector b is negative, and is set to 0 otherwise.

a[ ] represents the 8-bit output vector a, with the element a[k ] representing ay,.
b[] represents the 8-bit input vector b, with the element b[ k] representing by,.

length is the number of elementsinal] and b[].

Operation Performed

1 bp<0
a < .
0 otherwise

fork € 0... (length — 1)

Parameters

+ a — [out] Output vector a

« b - [in] Input vector b

« length — [in] Number of elements in @ and b
Throws ET_LOAD_STORE

Raised if a or b is not word-aligned (See Note: Vector Alignment)

void mat_mul_s8_x_s8_yield_s32(split_acc_s32_t accumulators(], const int8_t matrix[], const int8_t
input_vect[], const unsigned M_rows, const unsigned N_cols)

Multiply-accumulate an 8-bit matrix by an 8-bit vector into 32-bit accumulators.

This function multiplies an 8-bit M x N matrix W by an 8-bit N-element column vector v and adds
it to the 32-bit accumulator vector a.

accumulators is the output vector @ to which the product W x @ is accumulated. Note that the
accumulators are encoded in a format native to the xcore VPU. To initialize the accumulator vector
to zeros, just zero the memory.

matrix is the matrix W.
input_vect is the vector v.
matrix and input_vect must both begin at a word-aligned offsets.

M_rows and N_rows are the dimensions M and N of matrix W. M must be a multiple of 16, and N
must be a multiple of 32.

The result of this multiplication is exact, so long as saturation does not occur.
Parameters
+ accumulators — [inout] The accumulator vector a

- matrix — [in] The weight matrix W
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« input_vect - [in] The input vector ©
* M_rows — [in] The number of rows M in matrix W
* N_cols — [in] The number of columns N in matrix W

Throws ET_LOAD_STORE
Raised if matrix or input_vect is not word-aligned (See Note: Vector Alignment)

4.7.3 16-Bit Vector API

group vect_s16_api

Functions
headroom_t vect_s16_abs (int16_t af], const int16_t b[], const unsigned length)
Compute the element-wise absolute value of a 16-bit vector.

a[] and b[ ] represent the 16-bit vectors @ and b respectively. Each must begin at a word-aligned
address. This operation can be performed safely in-place on b[].

length is the number of elements in each of the vectors.

Operation Performed

ay, + satsa(|brl)
fork €0... (length — 1)

Block Floating-Point

If b are the mantissas of BFP vector b - 20-¢?P, then the output vector @ are the mantissas of
BFP vector a - 29-¢*?, where a_exp = b_exp.
Parameters

- a — [out] Output vector a

« b - [in] Input vector b

« length — [in] Number of elements in vectors @ and b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a.

int32_t vect_s16_abs_sum(const int16_t b[], const unsigned length)
Compute the sum of the absolute values of elements of a 16-bit vector.

b[ ] represents the 16-bit vector b. b[ ] must begin at a word-aligned address.

length is the number of elements in .
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Operation Performed

length—1

a <— Z |bk‘

k=0
Block Floating-Point

If b are the mantissas of BFP vector b - 20-¢2P, then the returned value a is the 32-bit mantissa
of floating-point value a - 29-¢*P, where a_exp = b_exp.
Parameters

« b - [in] Input vector b

+ length — [in] Number of elements in b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

Returns
The 32-bit suma

headroom_t vect_s16_add (int16_t afl, const int16_t b[], const int16_t c[], const unsigned length, const

right_shift_t b_shr, const right_shift_t c_shr)
Add one 16-bit BFP vector to another.

a[],b[] and c[] represent the 16-bit vectors a, b and & respectively. Each must begin at a word-
aligned address. This operation can be performed safely in-place onb[] orc[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and & respec-
tively.

Operation Performed
b;c = sath(Lbk . 2_b_5hTJ)
¢, = satyg(ex - 27 ))

ay < satig(b}, + c}.)
fork €0... (length — 1)

Block Floating-Point

If b and ¢ are the mantissas of BFP vectors b - 2-¢*P and ¢ - 2¢-¢*P, then the resulting vector a
are the mantissas of BFP vector a - 29-¢7P.

In this case, b_shr and c_shr must be chosen so that a_exp = b_exp + b_shr = c_exp +
c_shr. Adding or subtracting mantissas only makes sense if they are associated with the
same exponent.

The function vect_s16_add_prepare() can be used to obtain values for a_exp, b_shr and c_shr
based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

See also:

vect_s16_add_prepare
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Parameters
- a - [out] Output vector a
« b - [in] Input vector b
+ ¢ — [in] Input vector ¢
+ length — [in] Number of elements in vectors a, b and &
« b_shr — [in] Right-shift appled to b
- c_shr — [in] Right-shift appled to ¢

Throws ET_LOAD_STORE
Raised if a, b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a.

headroom_t vect_s16_add_scalar (int16_t a[], const int16_t b[], const int16_t ¢, const unsigned length,

const right_shift_t b_shr)
Add a scalar to a 16-bit vector.

al], b[] represent the 16-bit mantissa vectors @ and b respectively. Each must begin at a word-
aligned address. This operation can be performed safely in-place on b[].

¢ is the scalar ¢ to be added to each element of b.
length is the number of elements in each of the vectors.

b_shr is the signed arithmetic right-shifts applied to each element of b.

Operation Performed

b;c = satlﬁ(tbk . 27b’ShTJ)
ay, < sat16(b), + ¢)
fork € 0... (length — 1)

Block Floating-Point

If elements of b are the mantissas of BFP vector b-2°-¢*?, and cis the mantissa of floating-point
value c - 2¢-¢*P, then the resulting vector a are the mantissas of BFP vector a - 24-¢%P,

In this case, b_shr and c_shr must be chosen so that a_exp = b_exp + b_shr = c_exp +
c_shr. Adding or subtracting mantissas only makes sense if they are associated with the
same exponent.

The function vect_sT6_add_scalar_prepare() can be used to obtain values for a_exp, b_shr and
c_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

Note that c_shr is an output of vect_s716_add_scalar_prepare(), but is not a parameter to
this function. The c_shr produced by vect_s716_add_scalar_prepare() isto be applied by the
user, and the result passed as input c.

See also:

vect_s16_add_scalar_prepare()

Parameters

+ a — [out] Output vector a



« b - [in] Input vector b

+ ¢ — [in] Input scalar ¢

+ length — [in] Number of elements in vectors @ and b
« b_shr — [in] Right-shift appled to b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a.

unsigned vect_s16_argmax(const int16_t b], const unsigned length)
Obtain the array index of the maximum element of a 16-bit vector.

b[ ] represents the 16-bit input vector b. It must begin at a word-aligned address.

length is the number of elements in .

Operation Performed

a + argmazi{by}
fork €0... (length — 1)

Parameters
« b - [in] Input vector b
« length — [in] Number of elemetns in b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

Returns B
a, the index of the maximum element of vector b. If there is a tie for the maximum
value, the lowest tying index is returned.

unsigned vect_s16_argmin(const int16_t b[], const unsigned length)
Obtain the array index of the minimum element of a 16-bit vector.

b[ ] represents the 16-bit input vector b. It must begin at a word-aligned address.

length is the number of elements in .

Operation Performed

a < argming{by}
fork €0 ... (length — 1)

Parameters
« b - [in] Input vector b
« length — [in] Number of elemetns in b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

Returns -
a, the index of the minimum element of vector b. If there is a tie for the minimum
value, the lowest tying index is returned.
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headroom_t vect_s16_clip(int16_t a[l, const int16_t b[], const unsigned length, const int16_t
lower_bound, const int16_t upper_bound, const right_shift_t b_shr)

Clamp the elements of a 16-bit vector to a specified range.

a[] and b[] represent the 16-bit vectors @ and b respectively. Each must begin at a word-aligned
address. This operation can be performed safely in-place on b[].

length is the number of elements in each of the vectors.

lower_bound and upper_bound are the lower and upper bounds of the clipping range respectively.
These bounds are checked for each element of b only after b_shr is applied.

b_shr is the signed arithmetic right-shift applied to elements of b before being compared to the
upper and lower bounds.

If b are the mantissas for a BFP vector b - 20-¢?P, then the exponent a_exp of the output BFP vector
a - 2%-°%P js given by a_exp = b_exp + b_shr.

Operation Performed

b;(‘ — satm(Lbk . 27b75hrj)

lower_bound b}, < lower_bound
ay, <  upper_bound b, > upper_bound

by, otherwise

fork € 0... (length — 1)

Block Floating-Point

If b are the mantissas of BFP vector b - 28-¢%P, then the output vector @ are the mantissas of
BFP vector a - 29-¢*?, where a_exp = b_exp + b_shr.
Parameters

+ a — [out] Output vector a

« b - [in] Input vector b

+ length — [in] Number of elements in vectors @ and b

+ lower_bound — [in] Lower bound of clipping range

« upper_bound — [in] Upper bound of clipping range

- b_shr — [in] Arithmetic right-shift applied to elements of b prior to clipping

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a

int64_t vect_s16_dot(const int16_t b[], const int16_t c[], const unsigned length)
Compute the inner product of two 16-bit vectors.

b[] and c[] represent the 32-bit vectors a and b respectively. Each must begin at a word-aligned
address.

length is the number of elements in each of the vectors.
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Operation Performed

length—1

a < Z (bk . Ck)
k=0

Block Floating-Point

If b and & are the mantissas of the BFP vectors b - 20-¢2P and & - 2°-?P, then result a is the
mantissa of the result a - 2%-*P, where a_exp = b_exp + c_exp.

If needed, the bit-depth of a can then be reduced to 16 or 32 bits to get a new result o’ - 29-¢#'
where o/ = a - 27%-%"" and a_exp’ = a_exp + a_shr.

Notes

The sum a is accumulated simultaneously into 16 48-bit accumulators which are summed
together at the final step. So long as length is less than roughly 2 million, no overflow or
saturation of the resulting sum is possible.
Parameters

« b - [in] Input vector b

+ ¢ — [in] Input vector ¢

+ length — [in] Number of elements in vectors b and &

Throws ET_LOAD_STORE
Raised if b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns ~
a, the inner product of vectors b and .

int32_t vect_s16_energy(const int16_t b[l, const unsigned length, const right_shift_t b_shr)

Calculate the energy (sum of squares of elements) of a 16-bit vector.
b[] represents the 16-bit vector b. b[ ] must begin at a word-aligned address.
length is the number of elements in .

b_shr is the signed arithmetic right-shift applied to elements of b. b_shr should be chosen to avoid
the possibility of saturation. See the note below.

Operation Performed

b;c — satm(Lbk . 2_b‘ShTJ)
length—1

ac Y ()
k=0

Block Floating-Point

If b are the mantissas of the BFP vector b - 2°-¢*P, then floating-point result is a - 2%-¢*?, where
the 32-bit mantissa a is returned by this function, and a_exp = 2 - (b_exp + b_shr).



Additional Details

If bhas b_hr bits of headroom, then each product ()% can be a maximum of 230—2:(b-hr+b-shr)
Solong as lengthis less than 1+ 2 - (b_hr + b_shr), such errors should not be possible. Each
increase of b_shr by 1 doubles the number of elements that can be summed without risk of
overflow.

If the caller's mantissa vector is longer than that, the full result can be found by calling this
function multiple times for partial results on sub-sequences of the input, and adding the results
in user code.

In many situations the caller may have a priori knowledge that saturation is impossible (or
very nearly so), in which case this guideline may be disregarded. However, such situations are
application-specific and are well beyond the scope of this documentation, and as such are left
to the user’s discretion.
Parameters

« b - [in] Input vector b

+ length — [in] Number of elements in b

- b_shr — [in] Right-shift appled to b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

Returns -
64-bit mantissa of vector b's energy

headroom_t vect_s16_headroom(const int16_t b[], const unsigned length)
Calculate the headroom of a 16-bit vector.

The headroom of an N-bit integer is the number of bits that the integer’s value may be left-shifted
without any information being lost. Equivalently, it is one less than the number of leading sign bits.

The headroom of an int16_t array is the minimum of the headroom of each of its int16_t ele-
ments.

This function efficiently traverses the elements of b[ ] to determine its headroom.
b[] represents the 16-bit vector b. b[ ] must begin at a word-aligned address.

length is the number of elementsin b[].

Operation Performed

a < min{H Ry (v0) , HR16 (1) , ..., HR16 (Tiength—1)}

See also:

vect_s32_headroom, vect_complex_s16_headroom, vect_complex_s32_headroom

Parameters
« b - [in] Input vector b
+ length — [in] The number of elements in vector b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)
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Returns -
Headroom of vector b

void vect_s16_inverse(int16_t af], const int16_t b[], const unsigned length, const unsigned scale)
Compute the inverse of elements of a 16-bit vector.

a[] and b[] represent the 16-bit mantissa vectors a and b respectively. This operation can be
performed safely in-place on b[ ].

length is the number of elements in each of the vectors.

scale is a scaling parameter used to maximize the precision of the result.

Operation Performed

25(:(116
_
k
fork €0 ... (length — 1)

ak<—L

Block Floating-Point

If b are the mantissas of BFP vector b - 2%-°*P, then the resulting vector a are the mantissas of
BFP vector a - 29-¢*?, where a_exp = scale — b_exp.

The function vect_sTé_inverse_prepare() can be used to obtain values for a_exp and scale.

See also:

vect_sl6_inverse_prepare

Parameters

+ a — [out] Output vector a

« b — [in] Input vector b

+ length — [in] Number of elements in vectors @ and b

- scale - [in] Scale factor applied to dividend when computing inverse
Returns

Headroom of output vector a

int16_t vect_s16_max (const int16_t b[], const unsigned length)
Find the maximum value in a 16-bit vector.

b[ ] represents the 16-bit vector b. It must begin at a word-aligned address.

length is the number of elements in .

Operation Performed

ma:c{xm L1yeeny mlengthq}
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Block Floating-Point

If b are the mantissas of BFP vector b - 2-¢*7, then the returned value a is the 16-bit mantissa
of floating-point value a - 22-¢*?, where a_exp = b_exp.

Parameters
+ b - [in] Input vector b
+ length — [in] Number of elements in b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

Returns ~
Maximum value from b
headroom_t vect_s16_max_elementwise (int16_t af], const int16_t b[, const int16_t ¢[], const unsigned
length, const right_shift_t b_shr, const right_shift_t c_shr)
Get the element-wise maximum of two 16-bit vectors.

al],b[] and c[] represent the 16-bit mantissa vectors @, b and ¢ respectively. Each must begin at
a word-aligned address. This operation can be performed safely in-place on b[ ], but noton c[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and é respec-
tively.

Operation Performed

bj, < satyg(|by - 2757 ))
¢}, « satig(|cp - 270
ay, < max(by, c},)
fork € 0... (length — 1)

Block Floating-Point

If b and ¢ are the mantissas of BFP vectors b - 2-¢*P and ¢ - 2°-°*?, then the resulting vector a
are the mantissas of BFP vector a - 24-¢*?, where a_exp = b_exp + b_shr = c_exp + c_shr.

The function vect_2vec_prepare() can be used to obtain values for a_exp, b_shr and c_shr
based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

Warning: For correct operation, this function requires at least 1 bit of headroom in each man-
tissa vector after the shifts have been applied.

Parameters
+ a — [out] Output vector a
« b - [in] Input vector b
+ ¢ — [in] Input vector e
« length — [in] Number of elements in vectors a, b and &

- b_shr — [in] Right-shift appled to b



+ c_shr — [in] Right-shift appled to ¢

Throws ET_LOAD_STORE
Raised if a, b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of vector a

int16_t vect_s16_min(const int16_t b[], const unsigned length)
Find the minimum value in a 16-bit vector.

b[] represents the 16-bit vector b. It must begin at a word-aligned address.

length is the number of elements in .

Operation Performed

ma${$079€1, ~-~7xlength—1}

Block Floating-Point

If b are the mantissas of BFP vector b - 2-¢*7, then the returned value a is the 16-bit mantissa
of floating-point value a - 29-¢*?, where a_exp = b_exp.
Parameters

« b - [in] Input vector b

« length — [in] Number of elements in b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

Returns
Minimum value from b

headroom_t vect_s16_min_elementwise (int16_t af], const int16_t b[], const int16_t c[], const unsigned
length, const right_shift_t b_shr, const right_shift_t c_shr)

Get the element-wise minimum of two 16-bit vectors.

a[],b[] and c[] represent the 16-bit mantissa vectors a, b and ¢ respectively. Each must begin at
a word-aligned address. This operation can be performed safely in-place on b[ ], but not onc[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and & respec-
tively.

Operation Performed

b;c — satm(Lbk . 2_b'5h7,J)
¢}, < satig(|cp - 2750
ag < min(by, )
fork €0... (length — 1)

140 4



Block Floating-Point

If b and ¢ are the mantissas of BFP vectors b - 2%-¢*P and ¢ - 2°-°*?, then the resulting vector a
are the mantissas of BFP vector a - 24-¢*?, where a_exp = b_exp + b_shr = c_exp + c_shr.

The function vect_2vec_prepare() can be used to obtain values for a_exp, b_shr and c_shr
based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

Warning: For correct operation, this function requires at least 1 bit of headroom in each man-
tissa vector after the shifts have been applied.

Parameters
+ a — [out] Output vector a
« b - [in] Input vector b
+ ¢ — [in] Input vector e
« length — [in] Number of elements in vectors a, b and &
- b_shr — [in] Right-shift appled to b
+ c_shr — [in] Right-shift appled to ¢

Throws ET_LOAD_STORE
Raised if a, b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of vector a

headroom_t vect_s16_macc (int16_t acc(], const int16_t b[], const int16_t c[], const unsigned length,
const right_shift_t acc_shr, const right_shift_t bc_sat)

Multiply one 16-bit vector element-wise by another, and add the result to an accumulator.
acc[ ] represents the 16-bit accumulator mantissa vector a. Each ay, is acc[k].

b[] and c[] represent the 16-bit input mantissa vectors b and ¢ where each by, is b[k] and each ¢,
isc[k].

Each of the input vectors must begin at a word-aligned address.
length is the number of elements in each of the vectors.
acc_shr is the signed arithmetic right-shift applied to the accumulators a;, prior to accumulation.

bc_sat is the unsigned arithmetic right-shift applied to the product of b, and ¢, before accumula-
tion.

Operation Performed

vg,  round(satyg(by, - ¢ - 270¢59))
ay < satig(ay - 2—a00_shr)
ag < satie(Gr + vi)

fork €0 ... (length — 1)

Block Floating-Point
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If inputs b and ¢ are the mantissas of BFP vectors b - 2*-¢* and ¢ - 2°-°*P, and input a is the
accumulator BFP vector a-29-¢*?, then the output values of a have the exponent 28-¢zptacc-shr

For accumulation to make sense mathematically, bc_sat must be chosen such that a_exp +
acc_shr = b_exp + c_exp + be_sat.

The function vect_complex_s16_macc_prepare() can be used to obtain values for a_exp,
acc_shr and be_sat based on the input exponents a_exp, b_exp and c_exp and the input head-
rooms a_hr, b_hr and c_hr.

See also:

vect_s16_macc_prepare

Parameters
« acc — [inout] Accumulator a
« b — [in] Input vector b
+ ¢ — [in] Input vector ¢
+ length — [in] Number of elements in vectors a, b and ¢
+ acc_shr — [in] Signed arithmetic right-shift applied to accumulator elements.

* be_sat — [in] Unsigned arithmetic right-shift applied to the products of elements by,
and ¢

Throws ET_LOAD_STORE
Raised if acc, b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a

headroom_t vect_s16_nmacc (int16_t acc(], const int16_t b[], const int16_t c], const unsigned length,
const right_shift_t acc_shr, const right_shift_t bc_sat)

Multiply one 16-bit vector element-wise by another, and subtract the result from an accumulator.
acc|[ ] represents the 16-bit accumulator mantissa vector a. Each ay, is acc[k].

b[] and c[ ] represent the 16-bit input mantissa vectors b and ¢ where each by, is b[k] and each ¢,
isclk].

Each of the input vectors must begin at a word-aligned address.
length is the number of elements in each of the vectors.
acc_shr is the signed arithmetic right-shift applied to the accumulators ay, prior to accumulation.

bc_sat is the unsigned arithmetic right-shift applied to the product of b, and ¢, before accumula-
tion.

Operation Performed

vy, round(satig(by, - ¢ - 270))
ap Satm(ak . 2—acc_shr)
ay, + sat1g(ar — vg)

fork €0 ... (length — 1)
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Block Floating-Point

If inputs b and ¢ are the mantissas of BFP vectors b - 2*-¢*? and ¢ - 2°-¢*?, and input a is the
accumulator BFP vector a-2%-°*P, then the output values of a have the exponent 2e-¢zp+acc_shr,

For accumulation to make sense mathematically, bc_sat must be chosen such that a_exp +
acc_shr = b_exp + c_exp + be_sat.

The function vect_complex_s16_nmacc_prepare() can be used to obtain values for a_exp,
acc_shr and be_sat based on the input exponents a_exp, b_exp and c_exp and the input head-
rooms a_hr, b_hr and c_hr.

See also:

vect_s16_nmacc_prepare

Parameters
- acc — [inout] Accumulator a
« b - [in] Input vector b
+ ¢ — [in] Input vector ¢
+ length — [in] Number of elements in vectors a, b and &
+ acc_shr — [in] Signed arithmetic right-shift applied to accumulator elements.

- be_sat — [in] Unsigned arithmetic right-shift applied to the products of elements by,
and ¢

Throws ET_LOAD_STORE
Raised if acc, b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a

headroom_t vect_s16_mul(int16_t af], const int16_t b[], const int16_t c[], const unsigned length, const

right_shift_t a_shr)
Multiply two 16-bit vectors together element-wise.

al],b[] and c[] represent the 16-bit vectors a, b and ¢ respectively. Each must begin at a word-
aligned address. This operation can be performed safely in-place onb[] orc[].

length is the number of elements in each of the vectors.

a_shr is an unsigned arithmetic right-shift applied to the 32-bit accumulators holding the penulti-
mate results.

Operation Performed

a;f — bk - Ck
ay, < satig(round(aj, - 27-5""))
fork €0... (length — 1)

Block Floating-Point

If b and ¢ are the mantissas of BFP vectors b - 2-¢*P and ¢ - 2°-°*?, then the resulting vector a
are the mantissas of BFP vector a - 2%-°*P, where a_exp = b_exp + c_exp + a_shr.



The function vect_s16_mul_prepare() can be used to obtain values for a_exp and a_shr based
on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.
Parameters

- a — [out] Output vector a

« b - [in] Input vector b

+ ¢ — [in] Input vector ¢

+ length — [in] Number of elements in vectors a, b and ¢

+ a_shr — [in] Right-shift appled to 32-bit products

Throws ET_LOAD_STORE
Raised if a, b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of vector a

headroom_t vect_s16_rect(int16_t af], const int16_t b[], const unsigned length)

Rectify the elements of a 16-bit vector.
Rectification ensures that all outputs are non-negative, changing negative values to 0.

a[] and b[ ] represent the 16-bit vectors a and b respectively. Each must begin at a word-aligned
address. This operation can be performed safely in-place on b[].

length is the number of elements in each of the vectors.

Each output element a[k] is set to the value of the corresponding input element b [ k] if it is positive,
and a[k] is set to zero otherwise.

Operation Performed

0 b,<0
fork €0... (length — 1)

{b;@ b, >0
ap <

Block Floating-Point

If b are the mantissas of BFP vector b - 20-¢?P, then the output vector @ are the mantissas of
BFP vector a - 29-¢*P, where a_exp = b_exp.
Parameters

- a — [out] Output vector a

« b - [in] Input vector b

« length — [in] Number of elements in vectors @ and b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a.



headroom_t vect_s16_scale(int16_t afl, const int16_t b[], const unsigned length, const int16_t ¢, const
right_shift_t a_shr)

Multiply a 16-bit vector by a 16-bit scalar.

a[] and b[] represent the 16-bit vectors @ and b respectively. Each must begin at a word-aligned
address. This operation can be performed safely in-place on b[].

length is the number of elements in each of the vectors.
¢ is the 16-bit scalar ¢ by which elements of b are multiplied.

a_shr is an unsigned arithmetic right-shift applied to the 32-bit accumulators holding the penulti-
mate results.

Operation Performed

ay < by -c
ay, < satig(round(aj, - 27-5""))
fork e€0... (length — 1)

Block Floating-Point

If b are the mantissas of a BFP vector b - 2°-*P and ¢ is the mantissa of floating-point value
¢+ 2°-°%P then the resulting vector a are the mantissas of BFP vector a - 29-°*?, where a_exp =
b_exp + c_exp + a_shr.

The function vect_sT16_scale_prepare() can be used to obtain values for a_exp and a_shr based
on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.
Parameters

+ a — [out] Output vector a

+ b - [in] Input vector b

+ ¢ — [in] Input vector ¢

+ length — [in] Number of elements in vectors a, b and ¢

+ a_shr - [in] Right-shift appled to 32-bit products

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of vector a

void vect_s16_set(int16_t af], const int16_t b, const unsigned length)
Set all elements of a 16-bit vector to the specified value.

a[ ] represents the 16-bit vector a. It must begin at a word-aligned address.
b is the value elements of @ are set to.

length is the number of elementsin a[].
Operation Performed

ap < b
fork €0... (length — 1)
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Block Floating-Point

If bis the mantissa of floating-point value b - 2*-¢*P, then the output vector @ are the mantissas
of BFP vector a - 2%-¢*P, where a_exp = b_exp.
Parameters
+ a — [out] Output vector a
* b - [in] Input value b
+ length — [in] Number of elements in vector a
Throws ET_LOAD_STORE
Raised if a is not word-aligned (See Note: Vector Alignment)

headroom_t vect_s16_sh1(int16_t afl, const int16_t b[], const unsigned length, const left_shift_t b_shl)
Left-shift the elements of a 16-bit vector by a specified number of bits.

a[] and b[] represent the 16-bit vectors @ and b respectively. Each must begin at a word-aligned
address. This operation can be performed safely in-place on b[].

length is the number of elements in vectors @ and b.

b_sh1 is the signed arithmetic left-shift applied to each element of b.

Operation Performed

ap < Satlg(tbk . 2b’8hlj)
fork € 0... (length — 1)

Block Floating-Point

If b are the mantissas of a BFP vector b - 20-e*p then the resulting vector a are the mantissas
of BFP vector @ - 2%-°*P, where @ = b - 25" and a_exp = b_exp.
Parameters

+ a — [out] Output vector a

« b - [in] Input vector b

+ length — [in] Number of elements in vectors @ and b

- b_shl — [in] Arithmetic left-shift applied to elements of b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a

headroom_t vect_s16_shr (int16_t a[], const int16_t b[], const unsigned length, const right_shift_t
b_shr)

Right-shift the elements of a 16-bit vector by a specified number of bits.

a[] and b[ ] represent the 16-bit vectors @ and b respectively. Each must begin at a word-aligned
address. This operation can be performed safely in-place on b[].
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length is the number of elements in vectors @ and b.

b_shr is the signed arithmetic right-shift applied to each element of b.

Operation Performed

ap < satm([bk . 2_b'8hTJ)
fork €0... (length — 1)

Block Floating-Point

If b are the mantissas of a BFP vector b - 2°-*P, then the resulting vector @ are the mantissas
of BFP vector a - 2%-¢*P, where @ = b - 275" and a_exp = b_exp.
Parameters

+ a — [out] Output vector a

« b - [in] Input vector b

+ length — [in] Number of elements in vectors @ and b

- b_shr — [in] Arithmetic right-shift applied to elements of b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a

headroom_t vect_s16_sqrt (int16_t afl, const int16_t b[], const unsigned length, const right_shift_t

b_shr, const unsigned depth)
Compute the square roots of elements of a 16-bit vector.

a[] and b[] represent the 16-bit vectors a and b respectively. Each vector must begin at a word-
aligned address. This operation can be performed safely in-place on b[].

length is the number of elements in each of the vectors.
b_shr is the signed arithmetic right-shift applied to elements of b.

depth is the number of most significant bits to calculate of each a,. For example, a depth value of
8 will only compute the 8 most significant byte of the result, with the remaining byte as 0. The max-
imum value for this parameter is VECT_SQRT_S16_MAX_DEPTH (31). The time cost of this operation
is approximately proportional to the number of bits computed.

Operation Performed

b;e — satlﬁ(Lbk . Q_b‘ShrJ)
/ / _
o Vb, by >—Q
0 otherwise
fork € 0... (length — 1)
where /- computes the most significant depth bits of the square root.



Block Floating-Point

If b are the mantissas of BFP vector b - 2*-¢*P, then the resulting vector a are the mantissas of
BFP vector a - 29-¢*P, where a_exp = (b_exp + b_shr — 14)/2.

Note that because exponents must be integers, that means b_exp + b_shr must be even.

The function vect_s16_sqgrt_prepare() can be used to obtain values for a_exp and b_shr based
on the input exponent b_exp and headroom b_hr.

Notes
+ This function assumes roots are real. Negative input elements will result in corresponding
outputs of 0.
Parameters
+ a — [out] Output vector a
+ b — [in] Input vector b
+ length — [in] Number of elements in vectors @ and b
« b_shr — [in] Right-shift appled to b
- depth - [in] Number of bits of each output value to compute

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a
headroom_t vect_s16_sub(int16_t af], const int16_t b[], const int16_t c[], const unsigned length, const
right_shift_t b_shr, const right_shift_t c_shr)
Subtract one 16-bit BFP vector from another.

a[],b[]and c[] represent the 16-bit vectors @, b and & respectively. Each must begin at a word-
aligned address. This operation can be performed safely in-place onb[] orc[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and ¢ respec-
tively.
Operation Performed

b;c = sath(Lbk . 2_b‘ShTJ)
¢}, = satig(|cp - 27N )
ay < sat16(b), — c}.)
fork €0... (length — 1)

Block Floating-Point

If b and ¢ are the mantissas of BFP vectors b - 20-¢*P and ¢ - 2%-°*P, then the resulting vector a
are the mantissas of BFP vector a - 29-¢*7.
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In this case, b_shr and c_shr must be chosen so that a_exp = b_exp + b_shr = c_exp +
c_shr. Adding or subtracting mantissas only makes sense if they are associated with the

same exponent.

The function vect_s16_sub_prepare() can be used to obtain values for a_exp, b_shr and c_shr
based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

See also:

vect_sT6_sub_prepare

Parameters
+ a — [out] Output vector a
« b - [in] Input vector b
+ ¢ — [in] Input vector ¢
+ length — [in] Number of elements in vectors a, b and &
- b_shr — [in] Right-shift appled to b
- c_shr — [in] Right-shift appled to ¢

Throws ET_LOAD_STORE
Raised if a, b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a.

int32_t vect_s16_sum(const int16_t b[], const unsigned length)
Get the sum of elements of a 16-hit vector.

b[] represents the 16-bit vector b. b[ ] must begin at a word-aligned address.

length is the number of elements in b.

Operation Performed

Block Floating-Point

If b are the mantissas of BFP vector b - 20-¢7P, then the returned value a is the 32-bit mantissa
of floating-point value a - 2%-¢*?, where a_exp = b_exp.

Parameters
« b - [in] Input vector b
« length — [in] Number of elements in b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

Returns
The 32-bit suma
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unsigned chunk_s16_accumulate (sp/it_acc_s32_t *acc, const int16_t b[VPU_INT16_EPV], const

right_shift_t b_shr, const unsigned vpu_ctrl)
Accumulate a 16-bit vector chunk into a 32-bit accumulator chunk.

16-bit vector chunk b is shifted and accumulated into 32-bit accumulator vector chunk a (acc). This
function is used for efficiently accumulating multiple (possibly many) 16-bit vectors together.

The accumulator vector a stores its elements across two 16-bit vector chunks, which corresponds
to how the accumulators are stored internally across VPU registers vD and vR. See split_acc_s32_t
for details about the accumulator structure.

The signed arithmetic right-shift b_shr is applied to b prior to being accumulated into a. When b
and a, are the mantissas of block floating point vectors, using b_shr allows those vectors to have
different exponents. This is also important when this function is to be called periodically where
each b may have a different exponent.

b_shr must meet the condition -14 <= b_shr <= 14 or the behavior of this function is undefined.

Operation Performed

b
ay + ap, + floor( 27b1hr)

The input vpu_ctrl tracks the VPU's control register state during accumulation. In particular, it is
used for keeping track of the headroom of the accumulator vector a. When beginning a sequence
of accumulation calls, the value passed in should be initialized to VPU_INT16_CTRL_INIT. On com-
pletion, this function returns the updated VPU control register state, which should be passed in as
vpu_ctrl on the next accumulation call.

VPU Control Value

The idea is that each call to this function processes only a single ‘chunk’ (in 16-bit mode, a 16-
element block) at a time, but the caller usually wants to know the headroom of a whole vector,
which may comprise many such chunks. So vpu_ctrl is a value which persists through each of
these calls to track the whole vector.

Once all chunks have been accumulated, the VPU_INT16_HEADROOM_FROM_CTRL() macro can be
used to get the headroom of the accumulator vector. Note that this will produce a maximum value
of 15.

If many vector chunks b are accumulated into the same accumulators (when using block floating-
point, it may be only a few accumulations if the exponent associated with b is significantly larger
than that associated with @), saturation becomes possible.

Accumulating Many Values

When saturation is possible, the user must monitor the headroom of @ (using the returned value
and VPU_INT16_HEADROOM_FROM_CTRL ()) to detect when there is no further headroom. As long as
there is at least 1 bit of headroom, a call to this function cannot saturate.

Typically, when using block floating-point, this will be handled by:

+ Converting a to a standard vector of int32_t using vect_s32_merge_accs()
+ Right-shift the values of @ using vect_s32_shr()
+ Increment the exponent associated with a by the same amount right-shifted

+ Convert a back into the split accumulator format using vect_s32_split_accs()



When accumulating, setting b_shr to the exponent associated with b minus the exponent associ-
ated with @ will automatically adjust for the new exponent of a.

Parameters
+ acc — [inout] b
« b-[in]v
+ b_shr — [in] v
« vpu_ctrl - [in] e

Throws ET_LOAD_STORE
Raised if acc or b is not word-aligned (See Note: Vector Alignment)

Returns
Current state of VPU control register.

void vect_s16_to_vect_s32(int32_t a[], const int16_t b[], const unsigned length)
Convert a 16-bit vector to a 32-bit vector.

a[ ] represents the 32-bit output vector a.
b[] represents the 16-bit input vector b.
Each vector must begin at a word-aligned address.

length is the number of elements in each of the vectors.

Operation Performed

ap < bk . 28
fork €0... (length — 1)

Block Floating-Point

If b are the mantissas of BFP vector b-20-¢?P, then the resulting vector @ are the 32-bit mantissas
of BFP vector a - 2%-¢*P, If a_exp = b_exp — 8, then this operation has effectively not changed
the values represented.

Notes

- The multiplication by 2% is an artifact of the VPU's behavior. It turns out to be significantly
more efficient to include the factor of 28. If this is unwanted, vect_s32_shr() can be used
with a b_shr value of 8 to remove the scaling afterwards.

+ The headroom of output vector @ is not returned by this function. The headroom of the
output is always 8 bits greater than the headroom of the input.
Parameters
- a — [out] 32-bit output vector a
« b — [in] 16-bit input vector b
+ length — [in] Number of elements in vectors @ and b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)
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void vect_s16_extract_high_byte(int8_t a[], const int16_t b[], const unsigned len)
Extract an 8-bit vector containing the most significant byte of a 16-bit vector.

This is a utility function used, for example, in optimizing mixed-width products. The most signifi-
cant byte of each element is extracted (without rounding or saturation) and inserted into the output
vector.

See also:

vect_sT6_extract_low_byte

Parameters
- a — [out] 8-bit output vector a
« b — [in] 16-bit input vector b
« 1en - [in] The number of elements in @ and b
Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

void vect_s16_extract_low_byte(int8_t afl, const int16_t b[], const unsigned len)
Extract an 8-bit vector containing the least significant byte of a 16-bit vector.

This is a utility function used, for example, in optimizing mixed-width products. The least signifi-
cant byte of each element is extracted (without rounding or saturation) and inserted into the output
vector.

See also:

vect_sT6_extract_high_byte

Parameters
- a — [out] 8-bit output vector a
+ b — [in] 16-bit input vector b
+ 1en - [in] The number of elements in @ and b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

4.7.4 32-Bit Vector API

group vect_s32_api
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Defines

VECT_SQRT_S32_MAX_DEPTH
Maximum bit-depth that can be calculated by vect_s32_sqrt().

See also:

vect_s32_sqrt

Enums

enum pad_mode_e

Supported padding modes for convolutions in “same” mode.

See also:
vect_s32_convolve_same(), bfp_s32_convolve_same()

Values:

enumerator PAD_MODE_REFLECT
Vector is reflected at its boundaries, such that
T_; 1 <0
Z; TanN—2-4 =N
T; otherwise
For example, if the length NV of input vector z is 7 and the order K of the filter is 5, then
T = [xg, 21, X2, T3, Ta, T5, Te)
I = [z9, 71, %0, T1, T2, T3, T4, T, T, Ts, Ta]
Note that by convention the first element of z is considered to be at index —P, where P =

1K /2].

enumerator PAD_MODE_EXTEND
Vector is padded using the value of the bounding elements.

Zo 1 <0
iy eN-1 >N
T; otherwise
For example, if the length N of input vector z is 7 and the order K of the filter is 5, then
T = |20, T1, T2, T3, T4, T5, Tg]
= [x07 Xo,To,T1,T2,T3,T4,T5,T6, L6, ZG}
Note that by convention the first element of z is considered to be at index —P, where P =

LK /2].

enumerator PAD_MODE_ZERO
Vector is padded with zeroes.
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0 <0
;40 >N
x; otherwise
For example, if the length IV of input vector z is 7 and the order K of the filter is 5, then
T = [zo, x1, 2, X3, T4, T5, T¢)
= [0,07.'1707151, L2, X3, L4, T5, L6, 070]

Note that by convention the first element of z is considered to be at index —P, where P =
LK /2].

Functions
headroom_t vect_s32_copy (int32_t afl, const int32_t b}, const unsigned length)
Copy one 32-bit vector to another.
This function is effectively a constrained version of memcpy.
With the constraints below met, this function should be modestly faster than memcpy.
a[ ] is the output vector to which elements are copied.
b[] is the input vector from which elements are copied.
a and b each must begin at a word-aligned address.

length is the number of elements to be copied. 1ength must be a multiple of 8.

Operation Performed

ar < by
fork €0... (length — 1)

Parameters
+ a — [out] Output vector a
« b - [in] Input vector b
+ length — [in] Number of elements in @ and b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a

headroom_t vect_s32_abs (int32_t a[], const int32_t b[], const unsigned length)
Compute the element-wise absolute value of a 32-bit vector.

a[] and b[] represent the 32-bit vectors a and b respectively. Each must begin at a word-aligned
address. This operation can be performed safely in-place on b[].

length is the number of elements in each of the vectors.

Operation Performed

ay < satsa(|bg|)
fork €0... (length — 1)
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Block Floating-Point

If b are the mantissas of BFP vector b - 20-¢?P, then the output vector @ are the mantissas of
BFP vector a - 29-¢*P, where a_exp = b_exp.
Parameters

+ a — [out] Output vector a

« b - [in] Input vector b

+ length — [in] Number of elements in vectors @ and b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a.

int64_t vect_s32_abs_sum(const int32_t b], const unsigned length)
Compute the sum of the absolute values of elements of a 32-bit vector.

b[ ] represents the 32-bit mantissa vector b. b[ ] must begin at a word-aligned address.

length is the number of elements in .

Operation Performed

length—1

> satsa(|bk))

k=0
Block Floating-Point

If b are the mantissas of BFP vector b - 20-¢2P, then the returned value a is the 64-bit mantissa
of floating-point value a - 22-¢*?, where a_exp = b_exp.

Additional Details

Internally the sum accumulates into 8 separate 40-bit accumulators. These accumulators
apply symmetric 40-bit saturation logic (with bounds 4(23° — 1)) with each added element.
At the end, the 8 accumulators are summed together into the 64-bit value a which is returned
by this function. No saturation logic is applied at this final step.

Because symmetric 32-bit saturation logic is applied when computing the absolute value, in
the corner case where each element is INT32_MIN, each of the 8 accumulators can accumu-
late 256 elements before saturation is possible. Therefore, with b_hr bits of headroom, no
saturation of intermediate results is possible with fewer than 211+5-" elements in b.

If the length of b is greater than 211+8-77 the sum can be computed piece-wise in several calls
to this function, with the partial results summed in user code.
Parameters

« b - [in] Input vector b



+ length — [in] Number of elements in b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

Returns
The 64-bit sum a

headroom_t vect_s32_add(int32_t afl, const int32_t b{], const int32_t c[], const unsigned length, const
right_shift_t b_shr, const right_shift_t c_shr)

Add together two 32-bit vectors.

al],b[] and c[] represent the 32-bit mantissa vectors a, b and ¢ respectively. Each must begin at
a word-aligned address. This operation can be performed safely in-place onb[] orc[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and & respec-
tively.

Operation Performed

b;c = Sat32(\_bk . 2_b_ShTJ)
¢}, = satza(|cp - 27N )
ay < satza (b}, + c}.)
fork €0... (length — 1)

Block Floating-Point

If b and ¢ are the mantissas of BFP vectors b - 20-¢*P and ¢ - 2¢-°*?, then the resulting vector a
are the mantissas of BFP vector a - 2%-¢*P.

In this case, b_shr and c_shr must be chosen so that a_exp = b_exp + b_shr = c_exp +
c_shr. Adding or subtracting mantissas only makes sense if they are associated with the
same exponent.

The function vect_s32_add_prepare() can be used to obtain values for a_exp, b_shr and c_shr
based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

See also:

vect_s32_add_prepare()

Parameters
- a — [out] Output vector a
« b - [in] Input vector b
+ ¢ — [in] Input vector ¢
« length — [in] Number of elements in vectors a, b and &
« b_shr — [in] Right-shift appled to b
+ c_shr - [in] Right-shift appled to ¢

Throws ET_LOAD_STORE
Raised if a, b or ¢ is not word-aligned (See Note: Vector Alignment)
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Returns
Headroom of the output vector a.

headroom_t vect_s32_add_scalar (int32_t af], const int32_t b[], const int32_t ¢, const unsigned length,

const right_shift_t b_shr)
Add a scalar to a 32-bit vector.

a[], b[] represent the 32-bit mantissa vectors a and b respectively. Each must begin at a word-
aligned address. This operation can be performed safely in-place on b[ ].

c is the scalar ¢ to be added to each element of b.
length is the number of elements in each of the vectors.

b_shr is the signed arithmetic right-shift applied to each element of b.

Operation Performed

b;c = sat32(Lbk . 2_b‘ShTJ)
ay < satza(b), + ¢)
fork €0... (length — 1)

Block Floating-Point

If elements of b are the mantissas of BFP vector b-2°-¢*?, and ¢ is the mantissa of floating-point
value ¢ - 2¢-¢*P, then the resulting vector a are the mantissas of BFP vector a - 2-¢*P,

In this case, b_shr and c_shr must be chosen so that a_exp = b_exp + b_shr = c_exp +
c_shr. Adding or subtracting mantissas only makes sense if they are associated with the
same exponent.

The function vect_s32_add_scalar_prepare() can be used to obtain values for a_exp, b_shr and
c_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

Note that c_shr is an output of vect_s32_add_scalar_prepare(), but is not a parameter to
this function. The c_shr produced by vect_s32_add_scalar_prepare() is to be applied by the
user, and the result passed as input c.

See also:

vect_s32_add_scalar_prepare()

Parameters
+ a — [out] Output vector a
« b - [in] Input vector b
+ ¢ — [in] Input scalar ¢
« length — [in] Number of elements in vectors @ and b
- b_shr — [in] Right-shift appled to b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a.



unsigned vect_s32_argmax(const int32_t b[], const unsigned length)
Obtain the array index of the maximum element of a 32-bit vector.
b[] represents the 32-bit input vector b. It must begin at a word-aligned address.

length is the number of elements in b.

Operation Performed

a + argmazx,{by}
fork € 0... (length — 1)

Parameters
« b - [in] Input vector b
« length — [in] Number of elemetns in b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

Returns

a, the index of the maximum element of vector b. If there is a tie for the maximum
value, the lowest tying index is returned.

unsigned vect_s32_argmin(const int32_t b[], const unsigned length)
Obtain the array index of the minimum element of a 32-bit vector.
b[] represents the 32-bit input vector b. It must begin at a word-aligned address.
length is the number of elements in .

Operation Performed

a < argming{by}
fork €0... (length — 1)

Parameters
« b - [in] Input vector b
+ length — [in] Number of elemetns in b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

Returns

a, the index of the minimum element of vector b. If there is a tie for the minimum
value, the lowest tying index is returned.

headroom_t vect_s32_clip(int32_t af], const int32_t b[], const unsigned length, const int32_t
lower_bound, const int32_t upper_bound, const right_shift_t b_shr)
Clamp the elements of a 32-bit vector to a specified range.

a[] and b[ ] represent the 32-bit vectors a and b respectively. Each must begin at a word-aligned
address. This operation can be performed safely in-place on b[].

length is the number of elements in each of the vectors.

lower_bound and upper_bound are the lower and upper bounds of the clipping range respectively.
These bounds are checked for each element of b only after b_shr is applied.
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b_shr is the signed arithmetic right-shift applied to elements of b before being compared to the
upper and lower bounds.

If b are the mantissas for a BFP vector b - 2°-¢*?, then the exponent a_exp of the output BFP vector
a - 2°-°P js given by a_exp = b_exp + b_shr.

Operation Performed

bz — Satgz(Lbk . 27b’ShTJ)

lower_bound b, < lower_bound
ay, <  upper_bound b, > upper_bound

by, otherwise

fork €0 ... (length — 1)

Block Floating-Point

If b are the mantissas of BFP vector b - 20-¢?P, then the output vector @ are the mantissas of
BFP vector a - 29-¢*?, where a_exp = b_exp + b_shr.
Parameters

- a — [out] Output vector a

« b - [in] Input vector b

« length — [in] Number of elements in vectors @ and b

» lower_bound — [in] Lower bound of clipping range

« upper_bound - [in] Upper bound of clipping range

- b_shr - [in] Arithmetic right-shift applied to elements of b prior to clipping

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a

int64_t vect_s32_dot (const int32_t b], const int32_t c[], const unsigned length, const right_shift_t

b_shr, const right_shift_t c_shr)
Compute the inner product between two 32-bit vectors.

b[] and c[] represent the 32-bit mantissa vectors b and & respectively. Each must begin at a
word-aligned address.

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and é respec-
tively.

Operation Performed

b?c «— sat32(Lbk . 2_b_8h7-J)
¢}, < satza(|cp - 2707 ])

length—1
a< Z (round(by, - ¢, - 27°7))
k=0

where a is returned
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Block Floating-Point

If b and ¢ are the mantissas of the BFP vectors b- 2-¢*P and & - 2°-*7, then result a is the 64-bit
mantissa of the result a - 29-°*P, where a_exp = b_exp + c_exp + b_shr + c_shr + 30.

If needed, the bit-depth of a can then be reduced to 32 bits to get a new result a’ - 2¢-¢*2" where
a =a-2"%" and a_exp’ = a_exp + a_shr.

The function vect_s32_dot_prepare() can be used to obtain values for a_exp, b_shr and c_shr
based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

Additional Details

The 30-bit rounding right-shift applied to each of the 64-bit products b, - ¢ is a feature of
the hardware and cannot be avoided. As such, if the input vectors b and ¢ together have too
much headroom (i.e. b_hr + c_hr), the sum may effectively vanish. To avoid this situation,
negative values of b_shr and c_shr may be used (with the stipulation that b_shr > —b_hr and
c_shr > —c_hr if saturation of b} and ¢}, is to be avoided). The less headroom b}, and ¢}, have,
the greater the precision of the final result.

Internally, each product (¥}, -¢},-273%) accumulates into one of eight 40-bit accumulators (which
are all used simultaneously) which apply symmetric 40-bit saturation logic (with bounds =
239) with each value added. The saturating arithmetic employed is not associative and no
indication is given if saturation occurs at an intermediate step. To avoid satuation errors,
length should be no greater than 210+b-hrtehr where b_hr and c_hr are the headroom of b
and ¢ respectively.

If the caller's mantissa vectors are longer than that, the full inner product can be found by
calling this function multiple times for partial inner products on sub-sequences of the input
vectors, and adding the results in user code.

In many situations the caller may have a priori knowledge that saturation is impossible (or
very nearly so), in which case this guideline may be disregarded. However, such situations are
application-specific and are well beyond the scope of this documentation, and as such are left
to the user’s discretion.
Parameters

« b - [in] Input vector b

+ ¢ — [in] Input vector é

+ length — [in] Number of elements in vectors b and &

« b_shr — [in] Right-shift appled to b

- c_shr — [in] Right-shift appled to &

Throws ET_LOAD_STORE
Raised if b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns ~
The inner product of vectors b and ¢, scaled as indicated above.

int64_t vect_s32_energy(const int32_t b[], const unsigned length, const right_shift_t b_shr)
Calculate the energy (sum of squares of elements) of a 32-bit vector.

b[] represents the 32-bit mantissa vector b. b[ ] must begin at a word-aligned address.

length is the number of elements in b.
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b_shr is the signed arithmetic right-shift applied to elements of b.

Operation Performed

bz — Satgz(Lbk . 27b’Sh7‘J)
length—1
a <+ Z round((b},)* - 2739)
k=0

Block Floating-Point

If b are the mantissas of the BFP vector b - 2>-¢?P, then floating-point result is a - 2¢-¢*, where
the 64-bit mantissa a is returned by this function, and a_exp = 30 4+ 2 - (b_exp + b_shr).

The function vect_s32_energy_prepare() can be used to obtain values for a_exp, b_shr and
c_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

Additional Details

The 30-bit rounding right-shift applied to each element of the 64-bit products (b},)? is a feature
of the hardware and cannot be avoided. As such, if the input vector b has too much headroom
(i.e. 2-b_hr), the sum may effectively vanish. To avoid this situation, negative values of b_shr
may be used (with the stipulation that b_shr > —b_hr if satuartion of b}, is to be avoided). The
less headroom b}, has, the greater the precision of the final result.

Internally, each product (b},)% - 273% accumulates into one of eight 40-bit accumulators (which
are all used simultaneously) which apply symmetric 40-bit saturation logic (with bounds =~
239) with each value added. The saturating arithmetic employed is not associative and no
indication is given if saturation occurs at an intermediate step. To avoid saturation errors,
length should be no greater than 219+2:0-h" where b_hr is the headroom of b.

If the caller's mantissa vector is longer than that, the full result can be found by calling this
function multiple times for partial results on sub-sequences of the input, and adding the results
in user code.

In many situations the caller may have a priori knowledge that saturation is impossible (or
very nearly so), in which case this guideline may be disregarded. However, such situations are
application-specific and are well beyond the scope of this documentation, and as such are left
to the user’s discretion.
Parameters

« b - [in] Input vector b

« length — [in] Number of elements in b

« b_shr — [in] Right-shift appled to b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

Returns ~
64-bit mantissa of vector b's energy



headroom_t vect_s32_headroom(const int32_t x[], const unsigned length)
Calculate the headroom of a 32-bit vector.

The headroom of an N-bit integer is the number of bits that the integer’s value may be left-shifted
without any information being lost. Equivalently, it is one less than the number of leading sign bits.

The headroom of an int32_t array is the minimum of the headroom of each of its int32_t ele-
ments.

This function efficiently traverses the elements of a[ ] to determine its headroom.
x[ ] represents the 32-bit vector z. x[ ] must begin at a word-aligned address.

length is the number of elements in x[ ].

Operation Performed

min{ HRsa (x0) , HR32 (1) , ..., HR32 (Tiength—1) }

See also:

vect_s16_headroom, vect_complex_s16_headroom, vect_complex_s32_headroom

Parameters
+ x — [in] Input vector z
+ length — [in] The number of elements in x| ]

Throws ET_LOAD_STORE
Raised if x is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of vector z

headroom_t vect_s32_inverse (int32_t a[], const int32_t b[], const unsigned length, const unsigned
scale)

Compute the inverse of elements of a 32-bit vector.

a[] and b[ ] represent the 32-bit mantissa vectors a and b respectively. Each vector must begin at
a word-aligned address. This operation can be performed safely in-place on b[].

length is the number of elements in each of the vectors.

scale is a scaling parameter used to maximize the precision of the result.

Operation Performed
25cale
o
k
fork € 0... (length — 1)

ak(—l_

Block Floating-Point

If b are the mantissas of BFP vector b - 2°-¢*?, then the resulting vector a are the mantissas of
BFP vector a - 29-¢*?, where a_exp = scale — b_exp.

The function vect_s32_inverse_prepare() can be used to obtain values for a_ezp and scale.
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See also:

vect_s32_inverse_prepare

Parameters
+ a — [out] Output vector a
+ b — [in] Input vector b
+ length — [in] Number of elements in vectors @ and b
+ scale - [in] Scale factor applied to dividend when computing inverse

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a

int32_t vect_s32_max(const int32_t b], const unsigned length)
Find the maximum value in a 32-bit vector.

b[] represents the 32-bit vector b. It must begin at a word-aligned address.

length is the number of elements in .

Operation Performed

maa:{xo, 5 R l’length—l}

Block Floating-Point

If b are the mantissas of BFP vector b - 20-¢7P, then the returned value a is the 32-bit mantissa
of floating-point value a - 29-¢*P, where a_exp = b_exp.
Parameters

« b - [in] Input vector b

« length — [in] Number of elements in b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

Returns -
Maximum value from b
headroom_t vect_s32_max_elementwise (int32_t a[], const int32_t b[], const int32_t c[l, const unsigned
length, const right_shift_t b_shr, const right_shift_t c_shr)
Get the element-wise maximum of two 32-bit vectors.

a[],b[]andc[] represent the 32-bit mantissa vectors @, b and ¢ respectively. Each must begin at
a word-aligned address. This operation can be performed safely in-place on b[ ], but not on c[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and ¢ respec-
tively.
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Operation Performed

b;g — Satgg( |_bk . 2_b'ShTJ)
¢}, < satza(|cp - 2750
ay < max(b, c})
fork €0... (length — 1)

Block Floating-Point

If b and ¢ are the mantissas of BFP vectors b - 20-¢*P and ¢ - 2¢-°*?, then the resulting vector a
are the mantissas of BFP vector a - 22-*P, where a_exp = b_exp + b_shr = c_exp + c_shr.

The function vect_2vec_prepare() can be used to obtain values for a_exp, b_shr and c_shr
based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

Warning: For correct operation, this function requires at least 1 bit of headroom in each man-
tissa vector after the shifts have been applied.

Parameters
+ a — [out] Output vector a
+ b - [in] Input vector b
+ ¢ — [in] Input vector ¢
+ length — [in] Number of elements in vectors a, b and &
- b_shr — [in] Right-shift appled to b
+ c_shr - [in] Right-shift appled to &

Throws ET_LOAD_STORE
Raised if a, b or c is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of vector a

int32_t vect_s32_min(const int32_t b], const unsigned length)
Find the minimum value in a 32-bit vector.

b[ ] represents the 32-bit vector b. It must begin at a word-aligned address.

length is the number of elements in .

Operation Performed

mafﬁ{ﬂﬁm L1yeeey Sﬂlengthq}

Block Floating-Point

If b are the mantissas of BFP vector b - 2°-¢?P, then the returned value « is the 32-bit mantissa
of floating-point value a - 2%-¢*P, where a_exp = b_exp.

Parameters

164 4
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« b - [in] Input vector b
« length — [in] Number of elements in b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

Returns -
Minimum value from b
headroom_t vect_s32_min_elementwise(int32_t a], const int32_t b[], const int32_t c[l, const unsigned
length, const right_shift_t b_shr, const right_shift_t c_shr)
Get the element-wise minimum of two 32-bit vectors.

a[],b[]andc[] represent the 32-bit mantissa vectors @, b and ¢ respectively. Each must begin at
a word-aligned address. This operation can be performed safely in-place on b[ ], but not on c[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and ¢ respec-
tively.

Operation Performed

b}, < satso(|by - 270-507])
¢}, < satza(|cp - 2750
ag < min(by,, c)
fork €0... (length — 1)

Block Floating-Point

If b and ¢ are the mantissas of BFP vectors b - 20-¢*P and ¢ - 2°-°*P, then the resulting vector a
are the mantissas of BFP vector a - 22-¢*?, where a_exp = b_exp + b_shr = c_exp + c_shr.

The function vect_2vec_prepare() can be used to obtain values for a_exp, b_shr and c_shr
based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

Warning: For correct operation, this function requires at least 1 bit of headroom in each man-
tissa vector after the shifts have been applied.

Parameters
+ a - [out] Output vector a
+ b - [in] Input vector b
+ ¢ — [in] Input vector é
+ length — [in] Number of elements in vectors a, b and &
« b_shr — [in] Right-shift appled to b
+ c_shr — [in] Right-shift appled to &

Throws ET_LOAD_STORE
Raised if a, b or c is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of vector a
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headroom_t vect_s32_mul(int32_t a[], const int32_t b[], const int32_t c[], const unsigned length, const
right_shift_t b_shr, const right_shift_t c_shr)

Multiply one 32-bit vector element-wise by another.

al],b[] and c[] represent the 32-bit mantissa vectors a, b and ¢ respectively. Each must begin at
a word-aligned address. This operation can be performed safely in-place onb[] orc[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and é respec-
tively.

Operation Performed

bj, < satsa(|by - 2757 ))

¢}, + satsp(|cp - 27N

ay < satza(round (b}, - ¢, - 273Y))
fork € 0... (length — 1)

Block Floating-Point

If b and ¢ are the mantissas of BFP vectors b - 2°-¢*P and ¢ - 2¢-¢*?, then the resulting vector a
are the mantissas of BFP vector a - 22-¢*?, where a_exp = b_exp + c_exp + b_shr + c_shr + 30.

The function vect_s32_mul_prepare() can be used to obtain values for a_exp, b_shr and c_shr
based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.
Parameters

- a — [out] Output vector a

« b - [in] Input vector b

+ ¢ — [in] Input vector ¢

+ length — [in] Number of elements in vectors a, b and ¢

« b_shr — [in] Right-shift appled to b

+ c_shr - [in] Right-shift appled to &

Throws ET_LOAD_STORE
Raised if a, b or c is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of vector a

headroom_t vect_s32_macc (int32_t accl], const int32_t b[], const int32_t c[], const unsigned length,
const right_shift_t acc_shr, const right_shift_t b_shr, const right_shift_t
c_shr)

Multiply one 32-bit vector element-wise by another, and add the result to an accumulator.
acc|[ ] represents the 32-bit accumulator mantissa vector a. Each ay, is acc[k].

b[] and c[] represent the 32-bit input mantissa vectors b and ¢ where each by, is b[k] and each
cr isclk].

Each of the input vectors must begin at a word-aligned address.

length is the number of elements in each of the vectors.
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acc_shr, b_shr and c_shr are the signed arithmetic right-shifts applied to input elements ay, by
and ¢z

Operation Performed

Z)k + satga(by - 271)’8}”1)

Cr < satsa(cy 27C*Shr)
Qy, < satsg(ay, - 279¢C-ShTy
v < round(satsy (b - ¢, - 27°0))
ay + satsa(ag + vg)

fork € 0... (length — 1)

Block Floating-Point

If inputs b and ¢ are the mantissas of BFP vectors b - 2°-¢*P and ¢ - 2°-°*?, and input a is the
accumulator BFP vector a-2%-*P, then the output values of @ have the exponent 2¢-¢zp+ace-shr.

For accumulation to make sense mathematically, be_sat must be chosen such that a_exp +
acc_shr = b_exp + c_exp + be_sat.

The function vect_complex_s16_macc_prepare() can be used to obtain values for a_exp,
acc_shr and be_sat based on the input exponents a_exp, b_exp and c_exp and the input head-
rooms a_hr, b_hr and c_hr.

See also:

vect_s32_macc_prepare

Parameters
« acc — [inout] Accumulator @
+ b - [in] Input vector b
+ ¢ — [in] Input vector é
+ length — [in] Number of elements in vectors a, b and ¢
+ acc_shr - [in] Signed arithmetic right-shift applied to accumulator elements.
- b_shr — [in] Signed arithmetic right-shift applied to elements of b
« c_shr — [in] Signed arithmetic right-shift applied to elements of &

Throws ET_LOAD_STORE
Raised if acc, b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a

headroom_t vect_s32_nmacc (int32_t acc[], const int32_t b], const int32_t c[], const unsigned length,
const right_shift_t acc_shr, const right_shift_t b_shr, const right_shift_t
c_shr)

Multiply one 32-bit vector element-wise by another, and subtract the result from an accumulator.
acc| ] represents the 32-bit accumulator mantissa vector a. Each ay, is acc[k].

b[] and c[] represent the 32-bit input mantissa vectors b and ¢ where each by, is b[k] and each
cpisclk].



Each of the input vectors must begin at a word-aligned address.
length is the number of elements in each of the vectors.

acc_shr, b_shr and c_shr are the signed arithmetic right-shifts applied to input elements ay, bs
and cy,.

Operation Performed

[N)}C — S(ltgg(bk . 2_})‘5}”‘)

G < satzg(cy - 275hT)

Qg + satss(ay, - 2745T)
vy — ’I"O’U/nd(SGtgg(Bk -G -2730Y)
ay < satsa(ax — vi)

fork € 0... (length — 1)

Block Floating-Point

If inputs b and ¢ are the mantissas of BFP vectors b - 2*-¢*? and ¢ - 2°-¢*?, and input a is the
accumulator BFP vector a-29-¢*?, then the output values of a have the exponent 20-¢zptacc-shr

For accumulation to make sense mathematically, bc_sat must be chosen such that a_exp +
acc_shr = b_exp + c_exp + be_sat.

The function vect_complex_s16_macc_prepare() can be used to obtain values for a_exp,
acc_shr and be_sat based on the input exponents a_exp, b_exp and c_exp and the input head-
rooms a_hr, b_hr and c_hr.

See also:

vect_s32_nmacc_prepare

Parameters
« acc — [inout] Accumulator a
« b - [in] Input vector b
+ ¢ — [in] Input vector ¢
+ length — [in] Number of elements in vectors a, b and &
« acc_shr — [in] Signed arithmetic right-shift applied to accumulator elements.
- b_shr — [in] Signed arithmetic right-shift applied to elements of b
+ c_shr - [in] Signed arithmetic right-shift applied to elements of &

Throws ET_LOAD_STORE
Raised if acc, b or c is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a

headroom_t vect_s32_rect(int32_t afl, const int32_t b], const unsigned length)
Rectify the elements of a 32-bit vector.

a[] and b[] represent the 32-bit mantissa vectors a and b respectively. Each must begin at a
word-aligned address. This operation can be performed safely in-place on b[].
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length is the number of elements in each of the vectors.

Operation Performed

0 b,<0
fork € 0... (length — 1)

{bk b, > 0
ap <

Block Floating-Point

If b are the mantissas of BFP vector b - 2°-¢?P, then the output vector @ are the mantissas of
BFP vector a - 29-¢*?, where a_exp = b_exp.
Parameters

+ a — [out] Output vector a

« b - [in] Input vector b

+ length — [in] Number of elements in vectors @ and b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a
headroom_t vect_s32_scale(int32_t a[], const int32_t b[], const unsigned length, const int32_t c,
const right_shift_t b_shr, const right_shift_t c_shr)
Multiply a 32-bit vector by a scalar.

a[] and b[ Jrepresent the 32-bit mantissa vectors a and b respectively. Each must begin at a word-
aligned address. This operation can be performed safely in-place on b[].

length is the number of elements in each of the vectors.
¢ is the 32-bit scalar ¢ by which each element of b is multiplied.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and to c.

Operation Performed

bz — Satgg(tbk . 27b’ShTJ)
ay < satza(round(c - bj, - 273))
fork € 0... (length — 1)

Block Floating-Point

If b are the mantissas of a BFP vector b - 2*-¢*P and ¢ is the mantissa of floating-point value
¢+ 2°-°%P then the resulting vector a are the mantissas of BFP vector a - 29-°*P, where a_exp =
b_exp + c_exp + b_shr + c_shr + 30.

The function vect_s32_scale_prepare() can be used to obtain values for a_exp, b_shr and c_shr
based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.
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See also:

vect_s32_scale_prepare

Parameters
+ a — [out] Output vector a
+ b — [in] Input vector b
+ length — [in] Number of elements in vectors @ and b
+ ¢ — [in] Scalar to be multiplied by elements of b
« b_shr — [in] Right-shift appled to b
+ c_shr - [in] Right-shift applied to ¢

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a

void vect_s32_set (int32_t afl, const int32_t b, const unsigned length)
Set all elements of a 32-bit vector to the specified value.

a[ ] represents the 32-bit output vector a. a[ ] must begin at a word-aligned address.

b is the new value to set each element of a to.

Operation Performed

ap < b
fork €0... (length — 1)

Block Floating-Point

If bis the mantissa of floating-point value b - 2*-¢*P, then the output vector @ are the mantissas
of BFP vector a - 24-¢*P, where a_exp = b_exp.
Parameters
+ a — [out] Output vector a
+ b — [in] New value for the elements of a
+ length — [in] Number of elements in a
Throws ET_LOAD_STORE
Raised if a is not word-aligned (See Note: Vector Alignment)

headroom_t vect_s32_sh1(int32_t af], const int32_t b[], const unsigned length, const left_shift_t b_shl)
Left-shift the elements of a 32-bit vector by a specified number of bits.

a[] and b[ ] represent the 32-bit vectors a and b respectively. Each must begin at a word-aligned
address. This operation can be performed safely in-place on b[].

length is the number of elements in vectors @ and b.

b_sh1 is the signed arithmetic left-shift applied to each element of b.
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Operation Performed

ay, < satsa(|by - 2°M])
fork €0... (length — 1)

Block Floating-Point

If b are the mantissas of a BFP vector b - 2°-*P, then the resulting vector @ are the mantissas
of BFP vector a - 2%-*P, where @ = b - 2°-*"" and a_exp = b_exp.
Parameters

+ a — [out] Output vector a

« b - [in] Input vector b

+ length — [in] Number of elements in vectors @ and b

- b_shl — [in] Arithmetic left-shift applied to elements of b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a

headroom_t vect_s32_shr (int32_t a[], const int32_t b[], const unsigned length, const right_shift_t
b_shr)

Right-shift the elements of a 32-bit vector by a specified number of bits.

a[] and b[] represent the 32-bit vectors a and b respectively. Each must begin at a word-aligned
address. This operation can be performed safely in-place on b[].

length is the number of elements in vectors @ and b.

b_shr is the signed arithmetic right-shift applied to each element of .

Operation Performed

ay < satsa(|by - 2707 ))
fork €0 ... (length — 1)

Block Floating-Point

If b are the mantissas of a BFP vector b - 20-°*P, then the resulting vector a are the mantissas
of BFP vector a - 29-°*?, where a = b - 2~%-"" and a_exp = b_exp.
Parameters

+ a — [out] Output vector a

« b - [in] Input vector b

+ length — [in] Number of elements in vectors @ and b

- b_shr — [in] Arithmetic right-shift applied to elements of b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)
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Returns
Headroom of output vector a

headroom_t vect_s32_sqrt(int32_t afl, const int32_t b{], const unsigned length, const right_shift_t
b_shr, const unsigned depth)

Compute the square root of elements of a 32-bit vector.

a[] and b[ ] represent the 32-bit mantissa vectors @ and b respectively. Each vector must begin at
a word-aligned address. This operation can be performed safely in-place on b[].

length is the number of elements in each of the vectors.
b_shr is the signed arithmetic right-shift applied to elements of b.

depth is the number of most significant bits to calculate of each ay. For example, a depth value
of 8 will only compute the 8 most significant byte of the result, with the remaining 3 bytes as 0.
The maximum value for this parameter is VECT_SQRT_S32_MAX_DEPTH (31). The time cost of this
operation is approximately proportional to the number of bits computed.

Operation Performed

b% — Satgz(tbk . 2_b_5hTJ)

A < \/i
fork €0... (length — 1)
where sqrt() computes the first depth bits of the square root.

Block Floating-Point

If b are the mantissas of BFP vector b - 2°-¢*P, then the resulting vector a are the mantissas of
BFP vector a - 2%-°"P, where a_exp = (b_exp + b_shr — 30)/2.

Note that because exponents must be integers, that means b_exp + b_shr must be even.
The function vect_s32_sqrt_prepare() can be used to obtain values for a_exp and b_shr based
on the input exponent b_exp and headroom b_hr.
Parameters

+ a — [out] Output vector a

+ b - [in] Input vector b

+ length — [in] Number of elements in vectors @ and b

- b_shr — [in] Right-shift appled to b

- depth - [in] Number of bits of each output value to compute

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a

headroom_t vect_s32_sub(int32_t afl, const int32_t b{], const int32_t c[], const unsigned length, const
right_shift_t b_shr, const right_shift_t c_shr)
Subtract one 32-bit vector from another.

a[],b[]andc[] represent the 32-bit mantissa vectors @, b and ¢ respectively. Each must begin at
a word-aligned address. This operation can be performed safely in-place onb[] orc[].
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length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and ¢ respec-
tively.

Operation Performed

b;c = Satgg(tbk : 27b’8hrJ)
¢}, = satsy(|cp - 27N )
ay, < satza(b), — c)
fork € 0... (length — 1)

Block Floating-Point

If b and ¢ are the mantissas of BFP vectors b - 20-¢*P and ¢ - 2¢-°*P, then the resulting vector a
are the mantissas of BFP vector a - 29-¢*7.

In this case, b_shr and c_shr must be chosen so that a_exp = b_exp + b_shr = c_exp +
c_shr. Adding or subtracting mantissas only makes sense if they are associated with the
same exponent.

The function vect_s32_sub_prepare() can be used to obtain values for a_exp, b_shr and * c_shr
based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

See also:

vect_s32_sub_prepare

Parameters
+ a — [out] Output vector a
« b — [in] Input vector b
+ ¢ — [in] Input vector &
+ length — [in] Number of elements in vectors a, b and ¢
- b_shr — [in] Right-shift appled to b
+ c_shr - [in] Right-shift appled to &

Throws ET_LOAD_STORE
Raised if a, b or c is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a

int64_t vect_s32_sum(const int32_t b], const unsigned length)
Sum the elements of a 32-bit vector.
b[] represents the 32-bit mantissa vector b. b[ ] must begin at a word-aligned address.

length is the number of elements in .

Operation Performed

length—1

a < Z b
k=0
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Block Floating-Point

If b are the mantissas of BFP vector b - 20-2P, then the returned value a is the 64-bit mantissa
of floating-point value a - 29-¢*, where a_exp = b_exp.

Additional Details

Internally, each element accumulates into one of eight 40-bit accumulators (which are all used
simultaneously) which apply symmetric 40-bit saturation logic (with bounds ~ 239) with each
value added. The saturating arithmetic employed is not associative and no indication is given if
saturation occurs at an intermediate step. To avoid the possibility of saturation errors, 1length
should be no greater than 211+b-"" where b_hr is the headroom of b.

If the caller's mantissa vector is longer than that, the full result can be found by calling this
function multiple times for partial results on sub-sequences of the input, and adding the results
in user code.

In many situations the caller may have a priori knowledge that saturation is impossible (or
very nearly so), in which case this guideline may be disregarded. However, such situations are
application-specific and are well beyond the scope of this documentation, and as such are left
to the user’s discretion.
Parameters

« b - [in] Input vector b

+ length — [in] Number of elements in vector b

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

Returns
64-bit mantissa of the sum, a.

void vect_s32_zip(complex_s32_t a[], const int32_t b[], const int32_t c[], const unsigned length, const
right_shift_t b_shr, const right_shift_t c_shr)

Interleave the elements of two vectors into a single vector.

Elements of 32-bit input vectors b and ¢ are interleaved into 32-bit output vector a. Each element
of b has a right-shift of b_shr applied, and each element of ¢ has a right-shift of c_shr applied.

Alternatively (and equivalently), this function can be conceived of as taking two real vectors b and
¢ and forming a new complex vector a wherea = b+ - c.

If vectors b and ¢ each have N elements, then the resulting a will have either 2NV int32_t elements
or (equivalently) N complex_s32_t elements (and must have space for such).

Each element b, of b will end up as end up as element ay;, of a (with the bit-shift applied). Each
element ¢ will end up as element agy41 Of a.

a[ ] is the output vector a.

b[] and c[] are the input vectors b and & respectively.

a, b and ¢ must each begin at a double word-aligned (8 byte) address. (see DWNORD_ALIGNED).
length is the number N of int32_t elements in b and .

b_shr is the signed arithmetic right-shift applied to elements of b.

c_shr is the signed arithmetic right-shift applied to elements of .



Operation Performed

Reay, + satsa(by - 2705
Imay, < satsy(cy, - 276507
forke0...(N—-1)

Parameters

- a — [out] Output vector a

« b - [in] Input vector b

+ ¢ — [in] Input vector ¢

+ length — [in] Number of elements N in vectors @, b and @

« b_shr — [in] Signed arithmetic right-shift applied to elements of b

+ c_shr - [in] Signed arithmetic right-shift applied to elements of &
Throws ET_LOAD_STORE

Raised if a, b or c is not double word-aligned (See Note: Vector Alignment)

void vect_s32_unzip (int32_t afl, int32_t b[], const complex_s32_t cl, const unsigned length)
Deinterleave the real and imaginary parts of a complex 32-bit vector into two separate vectors.

Complex 32-bit input vector ¢ has its real and imaginary parts (which correspond to the even and
odd-indexed elements, if reinterpreted as an int32_t array) split apart to create real 32-bit output
vectors a and b, such that a = Rec and b = I'me.

a[] and b[] are the real output vectors @ and b which receive the real and imaginary parts respec-
tively of €. a and b must each begin at a word-aligned address.

c[]is the complex input vector . ¢ must begin at a double word-aligned address.

length is the number NV of int32_t elements in @ and b and the number of complex s32_tiné.

Operation Performed
ar = Re{ci}

bk = Im{c;g}
forke0..(N-1)

Parameters
+ a — [out] Output vector a
« b - [out] Output vector b
+ ¢ — [in] Input vector ¢
« length — [in] The number of elements N in vectors @, b and ¢

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Throws ET_LOAD_STORE
Raised if ¢ is not double word-aligned (See Note: Vector Alignment)



headroom_t vect_s32_convolve_valid(int32_t y[], const int32_t x[], const int32_t b_q30[], const

unsigned x_length, const unsigned b_length)
Convolve a 32-bit vector with a short kernel.

32-bit input vector z is convolved with a short fixed-point kernel b to produce 32-bit output vector
7. In other words, this function applies the Kth-order FIR filter with coefficients given by b to the
input signal z. The convolution is “valid” in the sense that no output elements are emitted where
the filter taps extend beyond the bounds of the input vector, resulting in an output vector ¢ with
fewer elements.

The maximum filter order K supported by this function is 7.

y[] is the output vector 3. If input z has N elements, and the filter has K elements, then g has
N — 2P elements, where P = | K /2].

x[ ] is the input vector z with length V.

b_qg30[ ] is the vector b of filter coefficients. The coefficients of b are encoded in a Q2.30 fixed-point
format. The effective value of the ith coefficient is then b; - 2730,

x_lengthis the length N of z in elements.

b_lengthis the length K of bin elements (i.e. the number of filter taps). b_length must be one of
{1,3,5,7}.

Operation Performed

K-1

Yk Z (@ (rgry - b1 - 27%0)
=0

forke0.. (N —2P)
where P = | K /2|

Additional Details

To avoid the possibility of saturating any output elements, b may be constrained such that
i’ bl < 2.

This operation can be applied safely in-place on x[ ].

Parameters
+ y — [out] Output vector g
+ x — [in] Input vector z
+ b_q30 - [in] Filter coefficient vector b
+ x_length — [in] The number of elements N in vector Z
+ b_length - [in] The number of elements K in b

Throws ET_LOAD_STORE
Raised if x or y or b_q30 is not word-aligned (See Note: Vector Alignment)

headroom_t vect_s32_convolve_same (int32_t y[], const int32_t x[], const int32_t b_q30[], const

unsigned x_length, const unsigned b_length, const
pad_mode_e padding_mode)



Convolve a 32-bit vector with a short kernel.

32-bit input vector z is convolved with a short fixed-point kernel b to produce 32-bit output vector
7. In other words, this function applies the Kth-order FIR filter with coefficients given by b to the
input signal z. The convolution mode is “same” in that the input vector is effectively padded such
that the input and output vectors are the same length. The padding behavior is one of those given
by pad_mode_e.

The maximum filter order K supported by this function is 7.
y[ ] and x[ ] are the output and input vectors ¢ and z respectively.

b_q30[ ] is the vector b of filter coefficients. The coefficients of b are encoded in a Q2.30 fixed-point
format. The effective value of the ith coefficient is then b; - 2730,

x_lengthis the length N of z and ¢ in elements.
b_lengthis the length K of bin elements (i.e. the number of filter taps). b_length must be one of
{1,3,5,7}.

padding_mode is one of the values from the pad_mode_e enumeration. The padding mode indi-
cates the filter input values for filter taps that have extended beyond the bounds of the input vector
Z. See pad_mode_e for a list of supported padding modes and associated behaviors.

Operation Performed

determined by padding mode i < 0
Z; = | determined by padding mode i > N
T; otherwise
K-1
Yk Z (Z(ks1—p) b - 277)
1=0
forke0...(N —2P)
where P = | K /2|

Additional Details

To avoid the possibility of saturating any output elements, b may be constrained such that
i bl < 2.

Note: Unlike vect_s32_convolve_valid(), this operation cannot be performed safely in-place on x[ ]

Parameters
+ y — [out] Output vector g
+ x — [in] Input vector z
+ b_q30 - [in] Filter coefficient vector b
+ x_length — [in] The number of elements N in vector Z
+ b_length - [in] The number of elements K in b
- padding_mode — [in] The padding mode to be applied at signal boundaries

Throws ET_LOAD_STORE
Raised if x or y or b_q30 is not word-aligned (See Note: Vector Alignment)
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void vect_s32_merge_accs(int32_t a[], const split_acc_s32_t b[], const unsigned length)
Merge a vector of split 32-bit accumulators into a vector of int32_t's.

Convert a vector of split_acc_s32_t into a vector of int32_t. This is useful when a function (e.g.
mat_mul_s8_x_s8_yield_s32) outputs a vector of accumulators in the XS3 VPU's native split 32-
bit format, which has the upper half of each accumulator in the first 32 bytes and the lower half in
the following 32 bytes.

This function is most efficient (in terms of cycles/accumulator) when length is a multiple of

a. In any case, length will be rounded up such that a multiple of 16 accumulators will always be
merged.

This function can safely merge accumulators in-place.
Parameters
+ a — [out] Output vector of int32_t
+ b — [in] Input vector of split_acc_s32_t
- length — [in] Number of accumulators to merge

Throws ET_LOAD_STORE
Raised if b or a is not word-aligned (See Note: Vector Alignment)

void vect_s32_split_accs(split_acc_s32_t a], const int32_t b[], const unsigned length)
Split a vector of int32_t's into a vector of split_acc_s32_t.

Convert a vector of int32_t into a vector of split_acc_s32_t, the native format for the XS3 VPU's
32-bit accumulators. This is useful when a function (e.g. mat_mul_s8_x_s8_yield_s32) takesin a
vector of accumulators in that native format.

This function is most efficient (in terms of cycles/accumulator) when length is a multiple of

a. In any case, length will be rounded up such that a multiple of 16 accumulators will always be
split.

This function can safely split accumulators in-place.
Parameters
- a — [out] Output vector of split_acc_s32_t
+ b — [in] Input vector of int32_t
+ length — [in] Number of accumulators to split

Throws ET_LOAD_STORE
Raised if b or a is not word-aligned (See Note: Vector Alignment)

void vect_split_acc_s32_shr(split_acc_s32_t al, const unsigned length, const right_shift_t shr)
Apply a right-shift to the elements of a 32-bit split accumulator vector.

This function may be used in conjunction with chunk_s716_accumulate() or bfp_s16_accumulate()
to avoid saturation of accumulators.

This function updates a in-place.
Parameters
« a — [inout] Accumulator vector a
+ length — [in] Number of elements of a
+ shr - [in] Number of bits to right-shift the elements of &

Throws ET_LOAD_STORE
Raised if a is not double-word-aligned (See Note: Vector Alignment)
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void vect_q30_power_series(int32_t af], const g2_30 b, const int32_t c[], const unsigned term_count,

const unsigned length)
Compute a power series sum on a vector of Q2.30 values.

This function is used to compute a power series summation on a vector b. bcontains Q2.30 values.
¢ is a vector containing coefficients to be multiplied by powers of b, and may have any associated
exponent. The output is vector a and has the same exponent as ¢.

c[] is an array with shape (term_count, VPU_INT32_EPV), where the second axis contains the
same value replicated across all VPU_INT32_EPV elements. Thatis, c[k][i] = c[k][j] foriand j
in@..(VPU_INT32_EPV-1). This is for performance reasons. (For the purpose of this explanation,
¢ is considered to be single-dimensional, without redundancy.)

Operation Performed

bk,O — 230

bri—1-b
b,i = round <l€2310k>
fori € 1..(N —1)

N-l be - c:
aj Z round( k’2130 Z)

i=0
fork € 0..1ength — 1

Parameters
+ a - [out] Output vector a
« b - [in] Input vector b
« ¢ — [in] Coefficient vector ¢
+ term_count — [in] Number of power series terms, N

+ length — [in] Number of elements in vectors @ and b

void vect_float_s32_log_base (g8 24 al], const float_s32_t b[], const g2_30 inv_In_base_q30, const

unsigned length)
Compute the logarithm (in the specified base) of a vector of float_s32_t.

This function computes the logarithm of a vector b of f1oat_s32_t values. The base of the com-
puted logarithm is given by parameter inv_1n_base_q30. The result is written to output @, a vector
of Q8.24 values.

If the desired baseis D, then inv_1n_base_q30, represented here by R, should be Q30 (ﬁ) That

is: the inverse of the natural logarithm of the desired base, expressed as a Q2.30 value. Typically
the desired base is known at compile time, so this value will usually be a precomputed constant.

The resulting ay, for b, < 0is undefined.

Operation Performed

ay < lOgD (bk)
fork € 0..1ength — 1
Parameters
+ a — [out] Output Q8.24 vector a

« b - [in] Input vector b



- inv_1n_base_q30 — [in] Coefficient R converting from natural log to desired base
D

+ length — [in] Number of elements in vectors @ and b
Throws ET_LOAD_STORE
Raised if b or a is not double word-aligned (See Note: Vector Alignment)

void vect_float_s32_log((8_ 24 all, const float_s32_t b[], const unsigned length)
Compute the natural logarithm of a vector of float_s32_t.

This function computes the natural logarithm of a vector b of float_s32_t values. The result is
written to output a, a vector of Q8.24 values.

The resulting ay, for b, < 0is undefined.

Operation Performed

fork € 0..1ength — 1

Parameters
+ a — [out] Output Q8.24 vector a
« b - [in] Input vector b
+ length — [in] Number of elements in vectors @ and b
Throws ET_LOAD_STORE
Raised if b or a is not double word-aligned (See Note: Vector Alignment)

void vect_float_s32_log2(q8_24 al], const float_s32_t b[], const unsigned length)
Compute the base 2 logarithm of a vector of float_s32_t.

This function computes the base 2 logarithm of a vector b of float_s32_t values. The result is
written to output a, a vector of Q8.24 values.

The resulting ay, for b, < 0is undefined.

Operation Performed

ay + logs (by)
fork € 0..1ength — 1

Parameters
- a — [out] Output Q8.24 vector a
« b - [in] Input vector b
+ length — [in] Number of elements in vectors @ and b
Throws ET_LOAD_STORE
Raised if b or a is not double word-aligned (See Note: Vector Alignment)

void vect_float_s32_log10(g8_24 a[], const float_s32_t b[], const unsigned length)
Compute the base 10 logarithm of a vector of float_s32_t.

This function computes the base 10 logarithm of a vector b of float_s32_t values. The result is
written to output a, a vector of Q8.24 values.

The resulting ay, for b, < 0is undefined.
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Operation Performed

ay < logio (bg)
fork € 0..1ength — 1

Parameters
+ a — [out] Output Q8.24 vector a
+ b - [in] Input vector b
+ length — [in] Number of elements in vectors @ and b

Throws ET_LOAD_STORE
Raised if b or a is not double word-aligned (See Note: Vector Alignment)

void vect_s32_log_base((8_24 al], const int32_t b[], const exponent_t b_exp, const g2_30

inv_In_base_g30, const unsigned length)
Compute the logarithm (in the specified base) of a block floating-point vector.

This function computes the logarithm of the block floating-point vector b - 2°-¢*7 The base of the
computed logarithm is given by parameter inv_1n_base_g30. The result is written to output @, a
vector of Q8.24 values.

If the desired baseis D, then inv_1n_base_q30, represented here by R, should be Q36 (ﬁ) That

is: the inverse of the natural logarithm of the desired base, expressed as a Q2.30 value. Typically
the desired base is known at compile time, so this value will usually be a precomputed constant.

The resulting ay, for b, < 0 is undefined.

Operation Performed

ajp < logD (bk . Qb‘ezp)
fork € 0..1ength — 1

Parameters
+ a — [out] Output Q8.24 vector a
« b - [in] Input mantissa vector b
- b_exp — [in] Exponent associated with b

- inv_1ln_base_q30 — [in] Coefficient R converting from natural log to desired base
D

+ length — [in] Number of elements in vectors @ and b

Throws ET_LOAD_STORE
Raised if b or a is not double word-aligned (See Note: Vector Alignment)

void vect_s32_log(q8_24 all, const int32_t b{], const exponent_t b_exp, const unsigned length)

Compute the natural logarithm of a block floating-point vector.

This function computes the natural logarithm of the block floating-point vector b-2%-¢#P_ The result
is written to output @, a vector of Q8.24 values.

The resulting a;, for by, < 0is undefined.



Operation Performed

ap < In (bk . 2b_exp)
fork € 0..1ength — 1

Parameters

- a — [out] Output Q8.24 vector a

« b - [in] Input mantissa vector b

- b_exp — [in] Exponent associated with b

+ length — [in] Number of elements in vectors @ and b
Throws ET_LOAD_STORE

Raised if b or a is not double word-aligned (See Note: Vector Alignment)

void vect_s32_log2 (g8 24 af], const int32_t b[], const exponent_t b_exp, const unsigned length)
Compute the base 2 logarithm of a block floating-point vector.

This function computes the base 2 logarithm of the block floating-point vector b - 20-¢*P. The result
is written to output @, a vector of Q8.24 values.

The resulting ay, for b, < 0 is undefined.

Operation Performed

ag < logsy (bk ~2b-e’”p)
fork € 0..1ength — 1

Parameters
+ a — [out] Output Q8.24 vector a
« b - [in] Input mantissa vector b
- b_exp — [in] Exponent associated with b
+ length — [in] Number of elements in vectors @ and b
Throws ET_LOAD_STORE
Raised if b or a is not double word-aligned (See Note: Vector Alignment)

void vect_s32_log10(g8_24 a[], const int32_t b[l, const exponent_t b_exp, const unsigned length)
Compute the base 10 logarithm of a block floating-point vector.

This function computes the base 10 logarithm of the block floating-point vector b-20-¢*P_ The result
is written to output @, a vector of Q8.24 values.

The resulting ay, for b, < 0 is undefined.

Operation Performed

ar < logig (bk . 2’“'”’)
fork € 0..1ength — 1

Parameters
+ a — [out] Output Q8.24 vector a

« b - [in] Input mantissa vector b
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- b_exp — [in] Exponent associated with b
+ length — [in] Number of elements in vectors @ and b
Throws ET_LOAD_STORE
Raised if b or a is not double word-aligned (See Note: Vector Alignment)

void vect_q30_exp_small (g2 30 a[], const g2_30 b[], const unsigned length)
Compute e* for Q2.30 value near 0.

This function computes eb+*2~ " for each by, in input vector b. The results are placed in output vector
a as Q2.30 values.

This function is meant to compute e* for values of z in the interval [—0.5,0.5]. The error grows
quickly outside of this range.

Operation Performed

ebk'2_30
ap < 7230

for k € 0..(length — 1)

Parameters
- a — [out] Output vector a
+ b — [in] Input vector b
+ length — [in] Number of elements in vectors @ and b

void vect_s32_to_vect_s16(int16_t af], const int32_t b[], const unsigned length, const right_shift_t
b_shr)

Convert a 32-bit vector to a 16-bit vector.

This function converts a 32-bit mantissa vector b into a 16-bit mantissa vector a. Conceptually, the
output BFP vector a - 29-¢*P represents the same values as the input BFP vector b - 2°-¢2P, only with
a reduced bit-depth.

In most cases b_shr should be 16 — b_hr, where b_hr is the headroom of the 32-bit input mantissa
vector b.

The output exponent a_exp will be given by

a_exp = b_exp + b_shr
Parameter Details

a[ ] represents the 16-bit output mantissa vector a.

b[ ] represents the 32-bit input mantissa vector b.

a[] and b[] must each begin at a word-aligned address.
length is the number of elements in each of the vectors.

b_shr is the signed arithmetic right-shift applied to elements of b.
Operation Performed

ay, < satyg(|by - 270-5"7])
fork €0... (length — 1)
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Block Floating-Point

If b are the 32-bit mantissas of a BFP vector b - 2°-*P, then the resulting vector a are the 16-bit
mantissas of BFP vector a - 29-¢*?, where a_exp = b_exp + b_shr.

See also:

vect_s16_to_vect_s32

Parameters
+ a — [out] Output vector a
« b - [in] Input vector b
+ length — [in] Number of elements in vectors @ and b
« b_shr — [in] Right-shift appled to b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

4.7.5 32-Bit IEEE 754 Float API

group vect_f32_api

Functions

complex_float_t *fft_f32_forward(float x[], const unsigned fft_length)
Perform forward FFT on a vector of IEEE754 floats.

This function takes real input vector z and performs a forward FFT on the signal in-place to get
output vector X = FFTz. This implementation is accelerated by converting the IEEE754 float
vector into a block floating-point representation to compute the FFT. The resulting BFP spectrum
is then converted back to IEEE754 single-precision floats. The operation is performed in-place on
x[].

See bfp_fft_forward_mono( ) for the details of the FFT.

Whereas the input x[ ] is an array of fft_length float elements, the output (placed in x[]) is an
array of fft_length/2 complex_float_t elements, so the input should be cast after calling this.

const unsigned FFT_N = 512

float time_series[FFT_N] = { ... };

fft_f32_forward(time_series, FFT_N);

complex_float_t* freq_spectrum = (complex_float_t*) &time_series[0@];
const unsigned FREQ_BINS = FFT_N/2;

// e.g. freq_spectrum[FREQ_BINS-1].re

x[ ] must begin at a double-word-aligned address.
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Operation Performed

X « FFTz

Parameters
+ x — [inout] Input vector z
- fft_length — [in] The length of z

Throws ET_LOAD_STORE
Raised if x is not double-word-aligned (See Note: Vector Alignment)

Returns
Pointer to frequency-domain spectrum (i.e. ((complex_float_t*) &x[8]))

float *fft_f32_inverse (complex_float_t X[], const unsigned fft_length)

Perform inverse FFT on a vector of complex_float_t.

This function takes complex input vector X and performs an inverse real FFT on the spectrum
in-place to get output vector z = IFFTX. This implementation is accelerated by converting the
IEEE754 float vector into a block floating-point representation to compute the IFFT. The resulting
BFP signal is then converted back to IEEE754 single-precision floats. The operation is performed
in-place on X[ ].

See bfp_fft_inverse_mono( ) for the details of the IFFT.

Input X[ ] is an array of fft_length/2 complex_float_t elements. The output (placedin X[])is an
array of fft_length float elements.

const unsigned FFT_N = 512
complex_float_t freq_spectrum[FFT_N/2] = { ... };
fft_f32_inverse(freq_spectrum, FFT_N);
float* time_series = (float*) &freq_spectrum[0];
X[ ] must begin at a double-word-aligned address.
Parameters
« X — [inout] Input vector X
- fft_length — [in] The FFT length. Twice the element count of X

Throws ET_LOAD_STORE
Raised if X is not double-word-aligned (See Note: Vector Alignment)

Returns
Pointer to time-domain signal (i.e. ((float*) &x[0]))

exponent_t vect_f32_max_exponent (const float b[], const unsigned length)

Get the maximum (32-bit BFP) exponent from a vector of IEEE754 floats.

This function is used to determine the BFP exponent to use when converting a vector of IEEE754
single-precision floats into a 32-bit BFP vector.

The exponent returned, if used with vect_f32_to_vect_s32(), is the one which will result in no
headroom in the BFP vector &#8212; that is, the minimum permissible exponent for the BFP vector.
The minimum permissible exponent is derived from the maximum exponent found in the float
elements themselves.

More specifically, the FSEXP instruction is used on each element to determine its exponent. The
value returned is the maximum exponent given by the FSEXP instruction plus 30.

b[ ] must begin at a double-word-aligned address.



See also:
vect_f32_to_vect_s32
See also:

vect_s32_to_vect 32

Note: If required, when converting to a 32-bit BFP vector, additional headroom can be included
by adding the amount of required headroom to the exponent returned by this function.

Parameters
- b - [in] Input vector of IEEE754 single-precision floats b
+ length — [in] Number of elements in b

Throws ET_LOAD_STORE
Raised ifb is not double-word-aligned (See Note: Vector Alignment)

Throws ET_ARITHMETIC
Raised if Any element of b is infinite or not-a-number.

Returns
Exponent used for converting to 32-bit BFP vector.

void vect_f32_to_vect_s32(int32_t a[], const float b[], const unsigned length, const exponent _t
a_exp)

Convert a vector of IEEE754 single-precision floats into a 32-bit BFP vector.
This function converts a vector of IEEE754 single-precision floats b into the mantissa vector a of a

32-bit BFP vector, given BFP vector exponent a_exp. Conceptually, the elements of output vector
a - 2%-°P represent the same values as those of the input vector.

Because the output exponent a_exp is shared by all elements of the output vector, even though the
output vector has 32-bit mantissas, precision may be lost on some elements if the exponents of
the input elements by, span a wide range.

The function vect_f32_max_exponent() can be used to determine the value for a_exp which mini-
mizes headroom of the output vector.

Operation Performed

by
9b_exp )

fork €0... (length — 1)

ay, + round(

Parameter Details

a[ ] represents the 32-bit output mantissa vector a.

b[ ] represents the IEEE754 float input vector b.

a[] and b[] must each begin at a double-word-aligned address.
b[ ] can be safely updated in-place.

length is the number of elements in each of the vectors.

a_exp is the exponent associated with the output vector a.

186 p,



See also:
vect_f32_max_exponent
See also:
vect_s32_to_vect_f32

Parameters
- a — [out] Output vector a
- b - [in] Input vector b
« length — [in] Number of elements in vectors @ and b
+ a_exp — [in] Exponent a_exp of output vector a

Throws ET_LOAD_STORE
Raised if a or b is not double-word-aligned (See Note: Vector Alignment)

Throws ET_ARITHMETIC
Raised if Any element of b is infinite or not-a-number.

float vect_f32_dot (const float b[], const float c[], const unsigned length)
Compute the inner product of two IEEE754 float vectors.

This function takes two vectors of IEEE754 single-precision floats and computes their inner prod-
uct &#8212; the sum of the elementwise products. The FMACC instruction is used, granting full
precision in the addition.

The inner product a is returned.

Operation Performed

length—1

at Y ()
k=0

Parameters

« b - [in] Input vector b

+ ¢ — [in] Input vector ¢

+ length — [in] Number of elements in vectors b and &
Returns

The inner product

void vect_f32_add(float a[], const float b[], const float c[], const unsigned length)
Adds together two IEEE754 float vectors.

This function takes two vectors of IEEE754 single-precision floats and computes the element-wise
sum of the two vectors.

a[ ] is the output vector a into which results are placed.
b[] and c[] are the input vectors b and & respectively.
a, b and ¢ each must begin at a double-word-aligned address.

This operation can be performed safely in-place on b[] orc[].
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Operation Performed

ar — br + ¢
fork €0... (length — 1)

Parameters
+ a — [out] Output vector a
« b - [in] Input vector b
+ ¢ — [in] Input vector ¢
+ length — [in] Number of elements in vectors a, b and &
Throws ET_LOAD_STORE
Raised if a, b or c is not double-word-aligned (See Note: Vector Alignment)

void vect_complex_f32_add(complex_float_t a[], const complex_float_t b[], const complex_float_t cf],
const unsigned length)

Adds together two complex IEEE754 float vectors.

This function takes two vectors b and & of complex IEEE754 single-precision floats and computes
the element-wise sum of the two vectors.

a[ ] is the output vector a into which results are placed.
b[] and c[] are the complex input vectors b and ¢ respectively.
a, b and ¢ each must begin at a double-word-aligned address.

This operation can be performed safely in-place onb[] orc[].

Operation Performed

ag < b + ¢
fork €0 ... (length — 1)

Parameters
- a — [out] Output vector a
« b — [in] Input vector b
+ ¢ — [in] Input vector ¢
+ length — [in] Number of elements in vectors a, b and ¢
Throws ET_LOAD_STORE
Raised if a, b or ¢ is not double-word-aligned (See Note: Vector Alignment)

void vect_complex_f32_mul(complex_float_t af], const complex_float_t b[], const complex_float_t cf],
const unsigned length)

Multiplies together two complex IEEE754 float vectors.

This function takes two complex float vectors b and ¢ as inputs. Each output element ay, is com-
puted as b;, multiplied by ¢, (using complex multiplication).

a[ ] is the output vector a into which results are placed.
b[] and c[] are the complex input vectors b and ¢ respectively.
a, b and ¢ each must begin at a double-word-aligned address.

This operation can be performed safely in-place onb[] orc[].
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Operation Performed

ap < bk + Ck
fork € 0... (length — 1)

Parameters
- a — [out] Output vector a
« b - [in] Input vector b
+ ¢ — [in] Input vector ¢
+ length — [in] Number of elements in vectors a, b and ¢
Throws ET_LOAD_STORE
Raised if a, b or c is not double-word-aligned (See Note: Vector Alignment)

void vect_complex_f32_conj_mul(complex_float_t a[l, const complex_float_t b, const
complex_float_t ¢[], const unsigned length)

Conjugate multiplies together two complex IEEE754 float vectors.

This function takes two complex float vectors b and ¢ as inputs. Each output element ay, is com-
puted as b, multiplied by the complex conjugate of ¢, (using complex multiplication).

a[ ] is the output vector a into which results are placed.
b[] and c[] are the complex input vectors b and ¢ respectively.
a, b and ¢ each must begin at a double-word-aligned address.

This operation can be performed safely in-place onb[] orc[].

Operation Performed

ag < by - (CZ)
fork €0... (length — 1)

Parameters
+ a — [out] Output vector a
+ b — [in] Input vector b
« ¢ — [in] Input vector é
+ length — [in] Number of elements in vectors a, b and &
Throws ET_LOAD_STORE
Raised if a, b or ¢ is not double-word-aligned (See Note: Vector Alignment)

void vect_complex_f32_macc (complex_float_t a[], const complex_float_t b[], const complex_float_t cf],
const unsigned length)

Adds the product of two complex IEEE754 float vectors to a third float vector.

This function takes three complex float vectors a, b and ¢ as inputs. Each output element a;, is
computed as input ay, plus b, multiplied by cy.

a[ ] is accumulator vector a, serving as both input and output.
b[] and c[] are the complex input vectors b and ¢ respectively.

a, b and ¢ each must begin at a double-word-aligned address.
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Operation Performed

ar < ap + by - ¢,
fork €0... (length — 1)

Parameters
+ a - [inout] Input/Output accumulator vector a
« b - [in] Input vector b
+ ¢ — [in] Input vector ¢
+ length — [in] Number of elements in vectors a, b and &
Throws ET_LOAD_STORE
Raised if a, b or c is not double-word-aligned (See Note: Vector Alignment)

void vect_complex_f32_conj_macc(complex_float_t afl, const complex_float_t b[], const
complex_float_t c[], const unsigned length)

Adds the product of two complex IEEE754 float vectors to a third float vector.

This function takes three complex float vectors a, b and ¢ as inputs. Each output element ay, is
computed as input ay, plus b, multiplied by the complex conjugate of ¢y.

a[ ] is accumulator vector a, serving as both input and output.
b[] and c[] are the complex input vectors b and é respectively.

a, b and ¢ each must begin at a double-word-aligned address.

Operation Performed

ap < a + by - (CZ)
fork €0... (length — 1)

Parameters

+ a — [inout] Input/Output accumulator vector a

« b - [in] Input vector b

+ ¢ — [in] Input vector é

+ length — [in] Number of elements in vectors a, b and &
Throws ET_LOAD_STORE

Raised if a, b or ¢ is not double-word-aligned (See Note: Vector Alignment)

void vect_s32_to_vect_f32(float a[], const int32_t b[], const unsigned length, const exponent_t
b_exp)

Convert a 32-bit BFP vector into a vector of IEEE754 single-precision floats.

This function converts a 32-bit mantissa vector and exponent b - 2%-°*? into a vector of 32-bit
IEEE754 single-precision floating-point elements a. Conceptually, the elements of output vector
a represent the same values as those of the input vector.

Because IEEE754 single-precision floats hold fewer mantissa bits, this operation may result in a
loss of precision for some elements.

Operation Performed

ap < by - gb-exp
fork €0... (length — 1)
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Parameter Details

a[ ] represents the output IEEE754 float vector a.

b[ ] represents the 32-bit input mantissa vector b.

a[] and b[] must each begin at a double-word-aligned address.
b[] can be safely updated in-place.

length is the number of elements in each of the vectors.

b_exp is the exponent associated with the input vector b.

See also:
vect_f32_to_vect_s32

Parameters
+ a — [out] Output vector a
« b - [in] Input vector b
+ length — [in] Number of elements in vectors @ and b
- b_exp — [in] Exponent b_exp of input vector b

Throws ET_LOAD_STORE
Raised if a or b is not double-word-aligned (See Note: Vector Alignment)

4.7.6 Complex 16-Bit Vector API

group vect_complex_s16_api

Functions

headroom_t vect_complex_s16_add(int16_t a_real[], int16_t a_imag|], const int16_t b_real], const
int16_t b_imagl], const int16_t c_real[], const int16_t c_imag[],
const unsigned length, const right_shift_t b_shr, const
right_shift_t c_shr)

Add one complex 16-bit vector to another.

a_real[] and a_imag[] together represent the complex 16-bit output mantissa vector a. Each
Re{ay} is a_reallk], and each Im{ay} is a_imag[k].

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector 5. Each
Re{bi}isb_real[k], and each Im{bs} is b_imag[k].

c_reall] and c_imag[] together represent the complex 16-bit input mantissa vector ¢ Each
Re{ci}is c_reallk], and each Im{cy} is c_imag[k].

Each of the input vectors must begin at a word-aligned address. This operation can be performed
safely in-place on inputs b_real[], b_imag[], c_real[] and c_imag[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and & respec-
tively.
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Operation Performed

bj, < satig(|by - 27057 ])

¢}, < satig(|cp - 2750

Re{ay} + Re{b)} + Re{c}}

Im{ar} < Im{b}} + Im{c,}
fork €0... (length — 1)

Block Floating-Point

If b and ¢ are the complex 16-bit mantissas of BFP vectors b - 2-¢*P and ¢ - 2°-°*P, then the
resulting vector a are the complex 16-bit mantissas of BFP vector a - 2%-¢*P,

In this case, b_shr and c_shr must be chosen so that a_exp = b_exp + b_shr = c_exp +
c_shr. Adding or subtracting mantissas only makes sense if they are associated with the
same exponent.

The function vect_complex_sT6_add_prepare() can be used to obtain values for a_exp, b_shr
and c_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr and
c_hr.

See also:

vect_complex_sT16_add_prepare

Parameters
- a_real - [out] Real part of complex output vector a
- a_imag — [out] Imaginary aprt of complex output vector a
- b_real — [in] Real part of complex input vector b
- b_imag — [in] Imaginary part of complex input vector b
+ c_real - [in] Real part of complex input vector &
- c_imag — [in] Imaginary part of complex input vector ¢
+ length — [in] Number of elements in vectors a, b and ¢
- b_shr — [in] Right-shift applied to b
+ c_shr - [in] Right-shift applied to &

Throws ET_LOAD_STORE
Raised if a_real, a_imag, b_real, b_imag, c_real or c_imag is not word-aligned (See
Note: Vector Alignment)

Returns
Headroom of output vector a.

headroom_t vect_complex_s16_add_scalar (int16_t a_real[], int16_t a_imag|], const int16_t b_real[],
const int16_t b_imag|], const complex_s76_t ¢, const
unsigned length, const right_shift_t b_shr)

Add a scalar to a complex 16-bit vector.

a[] and b[ Jrepresent the complex 16-bit mantissa vectors @ and b respectively. Each must begin
at a word-aligned address. This operation can be performed safely in-place on b[ ].
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c is the complex scalar cto be added to each element of b.
length is the number of elements in each of the vectors.

b_shr is the signed arithmetic right-shift applied to each element of b.

Operation Performed

bj, < satig(|by - 270-5"7])

Re{ay} + Re{b)} + Re{c}

Im{ag} < Im{bL.} + Im{c}
fork €0 ... (length — 1)

Block Floating-Point

If elements of b are the complex mantissas of BFP vector b - 2°-¢*P, and ¢ is the mantissa

of floating-point value ¢ - 2¢-¢P, then the resulting vector a are the mantissas of BFP vector
a - 20-cop,

In this case, b_shr and c_shr must be chosen so that a_exp = b_exp + b_shr = c_exp +
c_shr. Adding or subtracting mantissas only makes sense if they are associated with the
same exponent.

The function vect_complex_si6_add_scalar_prepare() can be used to obtain values for a_exp,
b_shr and c_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr
and c_hr.

Note that c_shr is an output of vect_complex_si16_add_scalar_prepare(),butis notaparam-
eter to this function. The c_shr produced by vect_complex_si6_add_scalar_prepare() isto
be applied by the user, and the result passed as input c.

See also:

vect_complex_s16_add_scalar_prepare

Parameters
- a_real — [out] Real part of complex output vector a
- a_imag — [out] Imaginary aprt of complex output vector a
+ b_real — [in] Real part of complex input vector b
- b_imag — [in] Imaginary part of complex input vector b
+ ¢ — [in] Complex input scalar ¢
+ length — [in] Number of elements in vectors @ and b
« b_shr — [in] Right-shift applied to b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a.

headroom_t vect_complex_s16_conj_mul(int16_t a_real[], int16_t a_imag]], const int16_t b_real], const
int16_t b_imagll, const int16_t c_real[], const int16_t
c_imag|l], const unsigned length, const right_shift_t a_shr)



Multiply one complex 16-bit vector element-wise by the complex conjugate of another.

a_real[] and a_imag[] together represent the complex 16-bit output mantissa vector a. Each
Re{ay}isa_reallk],and each Im{ax} is a_imag[k].

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector b. Each
Re{by}is b_reallk], and each Im{by} is b_imag[k].

c_reall] and c_imag[] together represent the complex 16-bit input mantissa vector ¢. Each
Re{ck}is c_reallk],and each Im{ck} is c_imag[k].

Each of the input vectors must begin at a word-aligned address. This operation can be performed
safely in-place on inputs b_real[], b_imag[], c_real[] and c_imag[].

length is the number of elements in each of the vectors.

a_shr is the unsigned arithmetic right-shift applied to the 32-bit accumulators holding the penulti-
mate results.

Operation Performed
vy =< Re{br} - Re{ck} + Im{by} - Im{cy}
sp =< Im{by} - Re{cr} — Re{bx} - Im{ck}
Ref{ay} < round(satig(vy, - 27%°""))

Im{ag} + round(satig(sy - 279-°""))
fork €0 ... (length — 1)

Block Floating-Point

If b are the complex 16-bit mantissas of a BFP vector b - 2°-¢*P and c is the complex 16-bit
mantissa of floating-point value ¢ - 2¢-¢*?, then the resulting vector a are the mantissas of BFP
vector a - 29-¢*?, where a_exp = b_exp + c_exp + a_shr.

The function vect_complex_s16_mul_prepare() can be used to obtain values for a_exp and
a_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

See also:

vect_complex_s16_mul_prepare

Parameters
- a_real — [out] Real part of complex output vector a
- a_imag - [out] Imaginary aprt of complex output vector a
« b_real — [in] Real part of complex input vector b
- b_imag — [in] Imaginary part of complex input vector b
+ c_real - [in] Real part of complex input vector &
+ c_imag — [in] Imaginary part of complex input vector ¢
+ length — [in] Number of elements in vectors a, b and &
- a_shr - [in] Right-shift applied to 32-bit intermediate results.

Throws ET_LOAD_STORE
Raised if a_real, a_imag, b_real, b_imag, c_real or c_imag is not word-aligned (See
Note: Vector Alignment)
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Returns
Headroom of the output vector a

headroom_t vect_complex_s16_headroom(const int16_t b_real[], const int16_t b_imag|], const

unsigned length)
Calculate the headroom of a complex 16-bit array.

The headroom of an N-bit integer is the number of bits that the integer's value may be left-shifted
without any information being lost. Equivalently, it is one less than the number of leading sign bits.

The headroom of a complex_s16_t struct is the minimum of the headroom of each of its 16-bit
fields, re and im.

The headroom of a complex_si6_t array is the minimum of the headroom of each of its
complex_s16_t elements.

This function efficiently traverses the elements of z to determine its headroom.
b_real[] and b_imag[ ] together represent the complex 16-bit input mantissa vector b.

length is the number of elements in b_real[] and b_imag[ ].

Operation Performed

min{HRig (x0) , HR16 (1) , ..., HR16 (Tiength—1) }

See also:

vect_s16_headroom, vect_s32_headroom, vect_complex_s32_headroom

Parameters
+ b_real — [in] Real part of complex input vector b
- b_imag — [in] Imaginary part of complex input vector b
+ length — [in] Number of elements in z

Returns
Headroom of vector z

headroom_t vect_complex_s16_mag(int16_t a[], const int16_t b_real[], const int16_t b_imag][], const

unsigned length, const right_shift_t b_shr, const int16_t
*rot_table, const unsigned table_rows)

Compute the magnitude of each element of a complex 16-bit vector.
a[ ] represents the real 16-bit output mantissa vector a.

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector b. Each
Re{by} is b_reallk], and each I'm{by} is b_imag[k].

Each of the input vectors must begin at a word-aligned address. This operation can be performed
safely in-place oninputs b_real[] or b_imag[].

length is the number of elements in each of the vectors.
b_shr is the signed arithmetic right-shift applied to elements of b.

rot_table must point to a pre-computed table of complex vectors used in calculating the mag-
nitudes. table_rows is the number of rows in the table. This library is distributed with a default
version of the required rotation table. The following symbols can be used to refer to it in user code:
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const extern unsigned rot_tablel6_rows;
const extern complex_s16_t rot_tablel6[30][4];

Faster computation (with reduced precision) can be achieved by generating a smaller version of
the table. A python script is provided to generate this table.

Operation Performed
v < by - 27b’8hr

ar — \/(Befur})? + (Imfu,})?
fork €0... (length — 1)

Block Floating-Point

If b are the complex 16-bit mantissas of a BFP vector b - 20-°7?, then the resulting vector a are
the real 16-bit mantissas of BFP vector a - 2%-¢*?, where a_exp = b_exp + b_shr.

The function vect_complex_s16_mag_prepare() can be used to obtain values for a_exp and
b_shr based on the input exponent b_exp and headroom b_hr.

See also:

vect_complex_s16_mag_prepare

Parameters
- a — [out] Real output vector a
+ b_real — [in] Real part of complex input vector b
- b_imag — [in] Imag part of complex input vector b
+ length — [in] Number of elements in vectors @ and b
« b_shr — [in] Right-shift appled to b
. rot_table - [in] Pre-computed rotation table required for calculating magnitudes
« table_rows — [in] Number of rows in rot_table

Throws ET_LOAD_STORE
Raised if a, b_real or b_imag is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a.

headroom_t vect_complex_s16_macc (int16_t acc_real[], int16_t acc_imag[], const int16_t b_real[], const

int16_t b_imag]], const int16_t c_real[], const int16_t c_imag][],
const unsigned length, const right_shift_t acc_shr, const
right_shift_t bc_sat)

Multiply one complex 16-bit vector element-wise by another, and add the result to an accumulator.

acc_real[] and acc_imag[ ] together represent the complex 16-bit accumulator mantissa vector
a. Each Re{ay} is acc_real[k], and each Im{ay} is acc_imag[k].

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector 5. Each
Re{by}is b_reallk], and each Im{by} is b_imag[k].



c_reall] and c_imag[] together represent the complex 16-bit input mantissa vector ¢ Each
Re{ci}is c_reallk], and each Im{cy} is c_imag[k].

Each of the input vectors must begin at a word-aligned address.
length is the number of elements in each of the vectors.
acc_shr is the signed arithmetic right-shift applied to the accumulators ay,.

bc_sat is the unsigned arithmetic right-shift applied to the product of b, and ¢, before being added
to the accumulator.

Operation Performed
vg < Re{br} - Re{cr} — Im{br} - Im{ck}
sk < Im{by} - Re{ck} + Re{by} - Im{cy}
ay <+ satyg(ay - 2745T)
Re{ar} + satig(Re{ar} + round(satig(vg - 27176*5‘”)))

Im{ax} + satig(Im{ag} + round(satig(sy, - 27°°)))
fork € 0... (length — 1)

Block Floating-Point

If inputs b and ¢ are the mantissas of BFP vectors b - 2*-¢* and ¢ - 2°-¢*?, and input a is the
accumulator BFP vector a-29-¢*?, then the output values of a have the exponent 20-¢zp+acc-shr

For accumulation to make sense mathematically, bc_sat must be chosen such that a_exp +
acc_shr = b_exp + c_exp + be_sat.

The function vect_complex_s16_macc_prepare() can be used to obtain values for a_exp,
acc_shr and be_sat based on the input exponents a_exp, b_exp and c_exp and the input head-
rooms a_hr, b_hr and c_hr.

See also:

vect_complex_s16_macc_prepare

Parameters
- acc_real — [inout] Real part of complex accumulator a
- acc_imag — [inout] Imaginary aprt of complex accumulator a
« b_real — [in] Real part of complex input vector b
- b_imag — [in] Imaginary part of complex input vector b
+ c_real — [in] Real part of complex input vector &
+ c_imag - [in] Imaginary part of complex input vector &
+ length — [in] Number of elements in vectors a, b and &
+ acc_shr — [in] Signed arithmetic right-shift applied to accumulator elements.

* be_sat — [in] Unsigned arithmetic right-shift applied to the products of elements by,
and ¢

Throws ET_LOAD_STORE
Raised if acc_real, acc_imag, b_real, b_imag, c_real or c_imag is not word-aligned
(See Note: Vector Alignment)
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Returns
Headroom of the output vector a

headroom_t vect_complex_s16_nmacc (int16_t acc_real[], int16_t acc_imag]], const int16_t b_real],

const int16_t b_imag]], const int16_t c_real[], const int16_t
c_imagll, const unsigned length, const right_shift_t acc_shr,
const right_shift_t bc_sat)

Multiply one complex 16-bit vector element-wise by another, and subtract the result from an accu-
mulator.

acc_real[] and acc_imag[ ] together represent the complex 16-bit accumulator mantissa vector
a. Each Re{a} is acc_reallk], and each I'm{ay} is acc_imag[k].

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector 5. Each
Re{by}is b_reallk], and each Im{by} is b_imag[k].

c_real[] and c_imag[] together represent the complex 16-bit input mantissa vector ¢. Each
Re{cy}is c_reallk], and each Im{cy} is c_imag[k].

Each of the input vectors must begin at a word-aligned address.
length is the number of elements in each of the vectors.
acc_shr is the signed arithmetic right-shift applied to the accumulators ay,.

bc_sat is the unsigned arithmetic right-shift applied to the product of by, and ¢ before being sub-
tracted from the accumulator.

Operation Performed

vg < Re{bg} - Re{cr} — Im{br} - Im{ck}

sk < Im{by} - Re{ci} + Re{by} - Im{cy}

ay < satyg(ay - 2795T)

Re{ay}  satis(Re{ay} — round(satyg(vy, - 27°-59%)))

Im{ax} + satig(Im{ax} — round(satig(sy, - 27°°)))
fork €0 ... (length — 1)

Block Floating-Point

If inputs b and ¢ are the mantissas of BFP vectors b - 2*-¢* and ¢ - 2°-°*?, and input a is the
accumulator BFP vector a-29-¢*?, then the output values of a have the exponent 20-¢zptacc-shr

For accumulation to make sense mathematically, bc_sat must be chosen such that a_exp +
acc_shr = b_exp + c_exp + be_sat.

The function vect_complex_s16_nmacc_prepare() can be used to obtain values for a_exp,
acc_shr and be_sat based on the input exponents a_exp, b_exp and c_exp and the input head-
rooms a_hr, b_hr and c_hr.

See also:

vect_complex_s16_nmacc_prepare

Parameters
- acc_real - [inout] Real part of complex accumulator a

- acc_imag - [inout] Imaginary aprt of complex accumulator a



« b_real — [in] Real part of complex input vector b

- b_imag — [in] Imaginary part of complex input vector b

« c_real — [in] Real part of complex input vector &

- c_imag — [in] Imaginary part of complex input vector ¢

+ length — [in] Number of elements in vectors a, b and &

+ acc_shr - [in] Signed arithmetic right-shift applied to accumulator elements.

- be_sat — [in] Unsigned arithmetic right-shift applied to the products of elements by,
and ¢

Throws ET_LOAD_STORE
Raised if acc_real, acc_imag, b_real, b_imag, c_real or c_imag is not word-aligned
(See Note: Vector Alignment)

Returns
Headroom of the output vector a

headroom_t vect_complex_s16_conj_macc (int16_t acc_real[], int16_t acc_imag]], const int16_t b_real]],
const int16_t b_imag][], const int16_t c_real[], const int16_t
c_imagl[l, const unsigned length, const right_shift_t
acc_shr, const right_shift_t bc_sat)

Multiply one complex 16-bit vector element-wise by the complex conjugate of another, and add the
result to an accumulator.

acc_real[] and acc_imag[ ] together represent the complex 16-bit accumulator mantissa vector
a. Each Re{ay} is acc_reallk], and each Im{ay} is acc_imag[k].

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector b. Each
Re{bi}isb_real[k], and each Im{bs} is b_imag[k].

c_reall] and c_imag[] together represent the complex 16-bit input mantissa vector ¢ Each
Re{ci}is c_reallk], and each Im{cy} is c_imag[k].

Each of the input vectors must begin at a word-aligned address.
length is the number of elements in each of the vectors.
acc_shr is the signed arithmetic right-shift applied to the accumulators ay,.

bc_sat is the unsigned arithmetic right-shift applied to the product of b, and ¢, before being added
to the accumulator.

Operation Performed
vg < Re{br} - Re{ck} + Im{bi} - Im{cy}
sk« Im{bg} - Re{ci} — Re{by} - Im{cy}
ay +— satyg(ay - 274=5T)
Re{ay} < satig(Re{ag} + round(satig(vg - 270591)))

Im{ag} + satig(Im{ax} + round(satig(sy - 27°-%%)))
fork €0 ... (length — 1)

Block Floating-Point

If inputs b and ¢ are the mantissas of BFP vectors b - 2*-¢* and ¢ - 2°-¢*?, and input a is the
accumulator BFP vector a-29-¢*?, then the output values of a have the exponent 20-¢zp+acc-shr
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For accumulation to make sense mathematically, bc_sat must be chosen such that a_exp +
acc_shr = b_exp + c_exp + be_sat.

The function vect_complex_s16_macc_prepare() can be used to obtain values for a_exp,
acc_shr and be_sat based on the input exponents a_exp, b_exp and c_exp and the input head-
rooms a_hr, b_hr and c_hr.

See also:

vect_complex_s16_conj_macc_prepare

Parameters
- acc_real - [inout] Real part of complex accumulator a
+ acc_imag — [inout] Imaginary aprt of complex accumulator a
« b_real — [in] Real part of complex input vector b
- b_imag — [in] Imaginary part of complex input vector b
+ c_real — [in] Real part of complex input vector &
- c_imag — [in] Imaginary part of complex input vector ¢
+ length — [in] Number of elements in vectors a, b and &
+ acc_shr - [in] Signed arithmetic right-shift applied to accumulator elements.

* be_sat — [in] Unsigned arithmetic right-shift applied to the products of elements by,
and ¢}

Throws ET_LOAD_STORE
Raised if acc_real, acc_imag, b_real, b_imag, c_real or c_imag is not word-aligned
(See Note: Vector Alignment)

Returns
Headroom of the output vector a

headroom_t vect_complex_s16_conj_nmacc (int16_t acc_real[], int16_t acc_imag|], const int16_t

b_real[], const int16_t b_imag]], const int16_t c_reall],
const int16_t c_imag|], const unsigned length, const
right_shift_t acc_shr, const right_shift_t bc_sat)

Multiply one complex 16-bit vector element-wise by the complex conjugate of another, and subtract
the result from an accumulator.

acc_real[] and acc_imag[ ] together represent the complex 16-bit accumulator mantissa vector
a. Each Re{ay} is acc_reallk], and each Im{ay} is acc_imag[k].

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector b. Each
Re{by} is b_reallk], and each I'm{by} is b_imag[k].

c_reall] and c_imag[] together represent the complex 16-bit input mantissa vector ¢. Each
Re{ci}is c_reallk], and each Im{cy} is c_imag[k].

Each of the input vectors must begin at a word-aligned address.
length is the number of elements in each of the vectors.
acc_shr is the signed arithmetic right-shift applied to the accumulators ay,.

bc_sat is the unsigned arithmetic right-shift applied to the product of b, and ¢;, before being sub-
tracted from the accumulator.



Operation Performed

v + Re{by} - Re{ck} + Im{by} - Im{cy}
sk < Im{bg} - Re{ci} — Re{by} - Im{cy}
ar, « satigay, - 272=hr)

Re{ay} + satig(Re{ay} — round(satig(vy - 27°1))
Im{ay} < satig(Im{ay} — round(satyg(sy - 27°-°)))

fork e€0... (length — 1)

Block Floating-Point

If inputs b and ¢ are the mantissas of BFP vectors b - 2*-¢* and ¢ - 2°-¢*?, and input a is the
accumulator BFP vector a-29-¢*?, then the output values of a have the exponent 20-¢zp+acc-shr

For accumulation to make sense mathematically, bc_sat must be chosen such that a_exp +
acc_shr = b_exp + c_exp + be_sat.

The function vect_complex_s16_macc_prepare() can be used to obtain values for a_exp,
acc_shr and be_sat based on the input exponents a_exp, b_exp and c_exp and the input head-
rooms a_hr, b_hr and c_hr.

See also:

vect_complex_s16_conj_nmacc_prepare

Parameters
+ acc_real — [inout] Real part of complex accumulator @
- acc_imag — [inout] Imaginary aprt of complex accumulator a
+ b_real — [in] Real part of complex input vector b
- b_imag — [in] Imaginary part of complex input vector b
+ c_real - [in] Real part of complex input vector &
- c_imag - [in] Imaginary part of complex input vector &
+ length — [in] Number of elements in vectors a, b and &
+ acc_shr — [in] Signed arithmetic right-shift applied to accumulator elements.

- be_sat — [in] Unsigned arithmetic right-shift applied to the products of elements by,
and ¢,

Throws ET_LOAD_STORE
Raised if acc_real, acc_imag, b_real, b_imag, c_real or c_imag is not word-aligned
(See Note: Vector Alignment)

Returns
Headroom of the output vector a

headroom_t vect_complex_s16_mul(int16_t a_real[], int16_t a_imag|], const int16_t b_real], const
int16_t b_imag]l, const int16_t c_real[], const int16_t c_imag[],
const unsigned length, const right_shift_t a_shr)

Multiply one complex 16-bit vector element-wise by another.

a_reall] and a_imag[] together represent the complex 16-bit output mantissa vector a. Each
Re{ay}is a_reallk], and each Im{ay} is a_imag[k].
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b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector b. Each
Re{by} is b_reallk], and each Im{by} is b_imag[k].

c_reall] and c_imag[] together represent the complex 16-bit input mantissa vector ¢. Each
Re{ck}is c_reallk],and each Im{ck} is c_imag[k].

Each of the input vectors must begin at a word-aligned address. This operation can be performed
safely in-place on inputs b_real[], b_imag[], c_real[] and c_imag[ ].

length is the number of elements in each of the vectors.

a_shr is the unsigned arithmetic right-shift applied to the 32-bit accumulators holding intermediate
results.

Operation Performed
vy =< Re{br} - Re{ck} — Im{by} - Im{cy}
S =< Im{bk} . RG{Ck} + Re{bk} . Im{ck}
Ref{ay} < round(satig(vy, - 27%""))

Im{ay} < round(satyg(sy - 27°°""))
fork € 0... (length — 1)

Block Floating-Point

If b are the complex 16-bit mantissas of a BFP vector b - 2°-*P and c is the complex 16-bit
mantissa of floating-point value ¢ - 2¢-¢*P, then the resulting vector a are the mantissas of BFP
vector a - 29-¢*?, where a_exp = b_exp + c_exp + a_shr.

The function vect_complex_s16_mul_prepare() can be used to obtain values for a_exp and
a_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

See also:

vect_complex_s16_mul_prepare

Parameters
- a_real — [out] Real part of complex output vector a
- a_imag — [out] Imaginary aprt of complex output vector a
« b_real — [in] Real part of complex input vector b
- b_imag — [in] Imaginary part of complex input vector b
+ c_real - [in] Real part of complex input vector &
+ c_imag - [in] Imaginary part of complex input vector &
+ length — [in] Number of elements in vectors a, b and &
- a_shr - [in] Right-shift applied to 32-bit intermediate results.

Throws ET_LOAD_STORE
Raised if a_real, a_imag, b_real, b_imag, c_real or c_imag is not word-aligned (See
Note: Vector Alignment)

Returns
Headroom of the output vector a
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headroom_t vect_complex_s16_real_mul(int16_t a_real[], int16_t a_imag]], const int16_t b_real[], const

int16_t b_imagl], const int16_t c_real[], const unsigned
length, const right_shift_t a_shr)

Multiply a complex 16-bit vector element-wise by a real 16-bit vector.

a_real[] and a_imag[] together represent the complex 16-bit output mantissa vector a. Each
Re{ay} is a_reallk], and each Im{ay} is a_imag[k].

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector 4. Each
Re{bi}isb_real[k], and each Im{bs} is b_imag[k].

c_real[ ] represents the real 16-bit input mantissa vector ¢.

Each of the input vectors must begin at a word-aligned address. This operation can be performed
safely in-place on inputs b_real[], b_imag[] and c_real[].

length is the number of elements in each of the vectors.

a_shr is the unsigned arithmetic right-shift applied to the 32-bit accumulators holding the penulti-
mate results.

Operation Performed
V =< Re{bk} - Ck
s = Im{bi} - c
Re{ag} + round(satig(vg - 2*a,shr))

Im{ay} + round(satys(sy - 27-""))
fork €0 ... (length — 1)

Block Floating-Point

If b are the complex 16-bit mantissas of a BFP vector b - 2°-*P and ¢ is the complex 16-bit
mantissa of floating-point value ¢ - 2¢-¢*?, then the resulting vector a are the mantissas of BFP
vector a - 29-¢*P, where a_exp = b_exp + c_exp + a_shr.

The function vect_s16_real_mul_prepare() can be used to obtain values for a_exp and a_shr
based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

See also:

vect_complex_s16_real_mul_prepare

Parameters
- a_real - [out] Real part of complex output vector a
- a_imag — [out] Imaginary aprt of complex output vector a
« b_real — [in] Real part of complex input vector b
- b_imag — [in] Imaginary part of complex input vector b
+ c_real — [in] Real part of complex input vector &
+ length — [in] Number of elements in vectors a, b and ¢
+ a_shr - [in] Right-shift applied to 32-bit intermediate results.

Throws ET_LOAD_STORE
Raised if a_real, a_imag, b_real, b_imag or c_real is not word-aligned (See Note:
Vector Alignment)
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Returns
Headroom of the output vector a.

headroom_t vect_complex_s16_real_scale(int16_t a_real[], int16_t a_imag|], const int16_t b_real[],
const int16_t b_imag[], const int16_t ¢, const unsigned
length, const right_shift_t a_shr)

Multiply a complex 16-bit vector by a real scalar.

a_reall] and a_imag[] together represent the complex 16-bit output mantissa vector a. Each

Re{ay}is a_reallk], and each Im{ay} is a_imag[k].

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector b. Each

Re{bi}isb_real[k], and each Im{bs} is b_imag[k].

Each of the input vectors must begin at a word-aligned address. This operation can be performed

safely in-place on inputs b_real[] and b_imag[ ].
c is the real 16-bit input mantissa c.

length is the number of elements in each of the vectors.

a_shr is an unsigned arithmetic right-shift applied to the 32-bit accumulators holding the penulti-

mate results.

Operation Performed

v =+ Re{b} - c

s =< Im{by} - ¢

Re{ay} + round(satyg(vy, - 27-"))

Im{ay} « round(satyg(sy - 27°°""))
fork €0 ... (length — 1)

Block Floating-Point

If b are the complex 16-bit mantissas of a BFP vector b - 2°-*P and ¢ is the complex 16-bit
mantissa of floating-point value ¢ - 2¢-¢*?, then the resulting vector a are the mantissas of BFP

vector a - 29-¢*?, where a_exp = b_exp + c_exp + a_shr.

The function vect_complex_s16_real_scale_prepare() can be used to obtain values for a_exp
and a_shr based on the input exponents b_exzp and c_exp and the input headrooms b_hr and

c_hr.

Parameters
- a_real — [out] Real part of complex output vector a
- a_imag — [out] Imaginary aprt of complex output vector a
+ b_real — [in] Real part of complex input vector b
- b_imag — [in] Imaginary part of complex input vector b
+ ¢ — [in] Real input scalar ¢
« length — [in] Number of elements in vectors @ and b
- a_shr — [in] Right-shift applied to 32-bit intermediate results.

Throws ET_LOAD_STORE
Raised if a_real, a_imag, b_real, b_imag or ¢ is not word-aligned (See Note: Vector
Alignment)



Returns
Headroom of the output vector a.

headroom_t vect_complex_s16_scale(int16_t a_real[], int16_t a_imag|], const int16_t b_real[], const
int16_t b_imag[l, const int16_t c_real, const int16_t c_imag,
const unsigned length, const right_shift_t a_shr)

Multiply a complex 16-bit vector by a complex 16-bit scalar.

a_reall] and a_imag[] together represent the complex 16-bit output mantissa vector a. Each
Re{ay}is a_reallk], and each Im{ay} is a_imag[k].

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector b. Each
Re{by} is b_reallk], and each I'm{by} is b_imag[k].

Each of the input vectors must begin at a word-aligned address. This operation can be performed
safely in-place on inputs b_real[] and b_imag][ ].

c_real and c_imag are the real and imaginary parts of the complex 16-bit input mantissa c.
length is the number of elements in each of the vectors.

a_shr is the unsigned arithmetic right-shift applied to the 32-bit accumulators holding the penulti-
mate results.

Operation Performed
vg =+ Re{bi} - Re{c} — Im{by} - Im{c}
s =< Im{by} - Re{c} + Re{by} - Im{c}
Re{ay} < round(satis(vg - 2_“-3'”))

Im{ay} < round(satig(sy, - 27%°""))
fork €0... (length — 1)

Block Floating-Point

If b are the complex 16-bit mantissas of a BFP vector b - 2°-*P and ¢ is the complex 16-bit
mantissa of floating-point value ¢ - 2¢-¢*?, then the resulting vector a are the mantissas of BFP
vector a - 29-¢*P, where a_exp = b_exp + c_exp + a_shr.

The function vect_complex_s16_scale_prepare() can be used to obtain values for a_exp and
a_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.
Parameters

- a_real - [out] Real part of complex output vector a

- a_imag — [out] Imaginary aprt of complex output vector a

- b_real — [in] Real part of complex input vector b

- b_imag — [in] Imaginary part of complex input vector b

+ c_real - [in] Real part of complex input scalar ¢

+ c_imag — [in] Imaginary part of complex input scalar ¢

+ length — [in] Number of elements in vectors @ and b

- a_shr - [in] Right-shift applied to 32-bit intermediate results

Throws ET_LOAD_STORE
Raised if a_real, a_imag, b_real, b_imag, c_real or c_imag is not word-aligned (See
Note: Vector Alignment)
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Returns
Headroom of the output vector a.

void vect_complex_s16_set (int16_t a_real[], int16_t a_imag[l, const int16_t b_real, const int16_t

b_imag, const unsigned length)
Set each element of a complex 16-bit vector to a specified value.

a_reall[] and a_imag[] together represent the complex 16-bit output mantissa vector a. Each
Re{ay}isa_reallk],and each Im{ax} isa_imag[k]. Each must begin at a word-aligned address.

b_real and b_imag are the real and imaginary parts of the complex 16-bit input mantissa b. Each
a_real[k] will be setto b_real. Each a_imag[k] will be set to b_imag.

length is the number of elements in a_real[] and a_imag[ ].

Operation Performed
Re{ay} + Re{b}

Im{ag} + Im{b}
fork € 0... (length — 1)

Block Floating-Point

If bis the mantissa of floating-point value b - 2*-¢*P, then the output vector @ are the mantissas
of BFP vector a - 24-¢*P, where a_exp = b_exp.
Parameters

- a_real - [out] Real part of complex output vector a

- a_imag — [out] Imaginary aprt of complex output vector a

* b_real - [in] Real part of complex input scalar b

+ b_imag - [in] Imaginary part of complex input scalar b

« length — [in] Number of elements in vectors @ and b

Throws ET_LOAD_STORE
Raised if a_real or a_imag is not word-aligned (See Note: Vector Alignment)

headroom_t vect_complex_s16_sh1(int16_t a_real[], int16_t a_imag]], const int16_t b_real[], const

int16_t b_imag]l, const unsigned length, const left_shift_t b_shl)
Left-shift each element of a complex 16-bit vector by a specified number of bits.

a_real[] and a_imag[] together represent the complex 16-bit output mantissa vector a. Each
Re{ay}is a_real[k], and each Im{ax} is a_imag[k].

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector 5. Each
Re{by}is b_reallk], and each Im{by} is b_imag[k].

Each of the input vectors must begin at a word-aligned address. This operation can be performed
safely in-place on inputs b_real[] and b_imag[ ].

length is the number of elements in @ and b.

b_sh1 is the signed arithmetic left-shift applied to each element of b.
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Operation Performed

Re{ay} < satig(|Re{by} - 20511 ))
Im{ay} < sati6(|Im{by} - 20-°"1))
fork e€0... (length — 1)

Block Floating-Point

If b are the complex 16-bit mantissas of a BFP vector b - 2*-¢*P, then the resulting vector a are
the complex 16-bit mantissas of BFP vector a - 2¢-°*?, where @ = b - 2°-5" and a_exp = b_exp.
Parameters

- a_real - [out] Real part of complex output vector a

- a_imag — [out] Imaginary aprt of complex output vector a

- b_real — [in] Real part of complex input vector b

- b_imag — [in] Imaginary part of complex input vector b

+ length — [in] Number of elements in vectors @ and b

+ b_shl — [in] Left-shift applied to b

Throws ET_LOAD_STORE
Raisedif a_real,a_imag, b_real or b_imag is not word-aligned (See Note: Vector Align-
ment)

Returns
Headroom of the output vector a

headroom_t vect_complex_s16_shr(int16_t a_real[], int16_t a_imag]], const int16_t b_real[], const
int16_t b_imagl], const unsigned length, const right_shift_t b_shr)

Right-shift each element of a complex 16-bit vector by a specified number of bits.

a_real[] and a_imag[] together represent the complex 16-bit output mantissa vector a. Each
Re{ay} is a_reallk], and each Im{ay} is a_imag[k].

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector b. Each
Re{bi}isb_real[k], and each Im{bs} is b_imag[k].

Each of the input vectors must begin at a word-aligned address. This operation can be performed
safely in-place on inputs b_real[] and b_imag[ ].

length is the number of elements in @ and b.

b_shr is the signed arithmetic right-shift applied to each element of .
Operation Performed
Re{ay} < satis(|Re{by} - 275" ))

Im{ak} <— Sath(LIm{bk} . Q*b,shrJ)
fork € 0... (length — 1)

Block Floating-Point

If b are the complex 16-bit mantissas of a BFP vector b - 2b-¢2?, then the resulting vector a are
the complex 16-bit mantissas of BFP vector a-2%-°*P, where @ = b-27%-"" and a_exp = b_exp.
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Parameters
- a_real - [out] Real part of complex output vector a
- a_imag — [out] Imaginary aprt of complex output vector a
« b_real — [in] Real part of complex input vector b
- b_imag — [in] Imaginary part of complex input vector b
« length — [in] Number of elements in vectors @ and b
- b_shr — [in] Right-shift applied to b

Throws ET_LOAD_STORE
Raisedif a_real,a_imag, b_real or b_imag is not word-aligned (See Note: Vector Align-
ment)

Returns
Headroom of the output vector a

headroom_t vect_complex_s16_squared_mag(int16_t a[], const int16_t b_real[], const int16_t b_imag][],
const unsigned length, const right_shift_t a_shr)

Get the squared magnitudes of elements of a complex 16-bit vector.
a[ ] represents the real 16-bit output mantissa vector a.

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector b. Each
Re{bi}isb_real[k], and each Im{bs} is b_imag[k].

Each of the input vectors must begin at a word-aligned address.
length is the number of elements in each of the vectors.

a_shr is the unsigned arithmetic right-shift applied to the 32-bit accumulators holding the penulti-
mate results.

Operation Performed

ar < (Re{b})* + (Im{bj})?) - 27"
fork € 0... (length — 1)

Block Floating-Point

If b are the complex 16-bit mantissas of a BFP vector b - 2*-¢*P, then the resulting vector a are
the real 16-bit mantissas of BFP vector a - 24-¢*P, where a_exp = 2 - b_exp + a_shr.

The function vect_complex_s16_squared_mag_prepare() can be used to obtain values for a_exp
and a_shr based on the input exponent b_exp and headroom b_hr.

See also:

vect_complex_s16_squared_mag_prepare

Parameters
- a — [out] Real output vector a
+ b_real — [in] Real part of complex input vector b
- b_imag — [in] Imaginary part of complex input vector b

« length — [in] Number of elements in vectors @ and b

208 p,



209

« a_shr - [in] Right-shift appled to 32-bit intermediate results

Throws ET_LOAD_STORE
Raised if a, b_real or b_imag is not word-aligned (See Note: Vector Alignment)

headroom_t vect_complex_s16_sub(int16_t a_real[], int16_t a_imag]], const int16_t b_real[], const

int16_t b_imagl], const int16_t c_real[], const int16_t c_imag[],
const unsigned length, const right_shift_t b_shr, const
right_shift_t c_shr)

Subtract one complex 16-bit vector from another.

a_real[] and a_imag[] together represent the complex 16-bit output mantissa vector a. Each
Re{ay} is a_reallk], and each Im{ay} is a_imag[k].

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector 5. Each
Re{by}is b_reallk], and each Im{by} is b_imag[k].

c_reall] and c_imag[] together represent the complex 16-bit input mantissa vector ¢. Each
Re{cy}is c_reallk], and each Im{cy} is c_imag[k].

Each of the input vectors must begin at a word-aligned address. This operation can be performed
safely in-place on inputs b_real[], b_imag[], c_real[] and c_imag[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and ¢ respec-
tively.

Operation Performed

bj, < satig(|by - 270-5"7])

¢}, < satig(|cp - 2750

Re{ay} + Re{b},} — Re{c)}

Im{ay} < Im{b,,} — Im{c,}
fork €0 ... (length — 1)

Block Floating-Point

If b and ¢ are the complex 16-bit mantissas of BFP vectors b - 2-¢P and ¢ - 2°-°*P, then the
resulting vector a are the complex 16-bit mantissas of BFP vector a - 2%-¢*P,

In this case, b_shr and c_shr must be chosen so that a_exp = b_exp + b_shr = c_exp +
c_shr. Adding or subtracting mantissas only makes sense if they are associated with the
same exponent.

The function vect_complex_si6_sub_prepare() can be used to obtain values for a_exp, b_shr
and c_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr and
c_hr.

See also:

vect_complex_s16_sub_prepare

Parameters
- a_real — [out] Real part of complex output vector a

- a_imag — [out] Imaginary aprt of complex output vector a



« b_real — [in] Real part of complex input vector b

- b_imag — [in] Imaginary part of complex input vector b
« c_real — [in] Real part of complex input vector &

- c_imag — [in] Imaginary part of complex input vector ¢
+ length — [in] Number of elements in vectors a, b and &
« b_shr — [in] Right-shift applied to b

- c_shr — [in] Right-shift applied to ¢

Throws ET_LOAD_STORE

Raised if a_real, a_imag, b_real, b_imag, c_real or c_imag is not word-aligned (See
Note: Vector Alignment)

Returns
Headroom of output vector a.

complex_s32_t vect_complex_s16_sum(const int16_t b_real[], const int16_t b_imag]], const unsigned

length)
Get the sum of elements of a complex 16-bit vector.

b_real[] and b_imag[ ] together represent the complex 16-bit input mantissa vector b, and must
both begin at a word-aligned address. Each Re{by} is b_reallk], and each Im{b;} is b_imag[k].

length is the number of elements in .

Operation Performed

length—1

Re{a} + Z (Re{bi})
k=0
length—1

Im{a} + Z (Im{by})

k=0
Block Floating-Point

If b are the mantissas of BFP vector b - 2%-°#P, then the returned value a is the complex 32-bit
mantissa of floating-point value a - 2%-¢*?, where a_exp = b_exp.
Parameters

« b_real — [in] Real part of complex input vector b

- b_imag — [in] Imaginary part of complex input vector b

+ length — [in] Number of elements in vector b.

Throws ET_LOAD_STORE
Raised if b_real or b_imag is not word-aligned (See Note: Vector Alignment)

Returns -
a, the 32-bit complex sum of elements in b.

void vect_complex_s16_to_vect_complex_s32(complex_s32_t a[], const int16_t b_reall], const int16_t
b_imagll, const unsigned length)
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Convert a complex 16-bit vector into a complex 32-bit vector.

al ] represents the complex 32-bit output vector a. It must begin at a double word (8-byte) aligned
address.

b_real[] and b_imag[] together represent the complex 16-bit input mantissa vector b. Each
Re{by} is b_reallk], and each Im{by} is b_imag[k].

The parameter length is the number of elements in each of the vectors.

length is the number of elements in each of the vectors.

Operation Performed

Re{ay} < Re{by}
Im{ap} <+ Im{by}
fork € 0... (length — 1)

Block Floating-Point

If b are the complex 16-bit mantissas of a BFP vector b - 2°-°*?, then the resulting vector a are
the complex 32-bit mantissas of BFP vector a - 2%-¢*P, where a_exp = b_exp.

Notes
+ The headroom of output vector a is not returned by this function. The headroom of the
output is always 16 bits greater than the headroom of the input.
Parameters
- a — [out] Complex output vector a.
« b_real — [in] Real part of complex input vector b.
+ b_imag — [in] Imaginary part of complex input vector b.
+ length — [in] Number of elements in vectors @ and b

Throws ET_LOAD_STORE
Raised if a is not double-word-aligned (See Note: Vector Alignment)

4.7.7 Complex 32-Bit Vector API

group vect_complex_s32_api
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Functions

headroom_t vect_complex_s32_add(complex_s32_t a[l, const complex_s32_t b[], const complex_s32_t
c[l, const unsigned length, const right_shift_t b_shr, const
right_shift_t c_shr)

Add one complex 32-bit vector to another.

a[],b[] and c[] represent the complex 32-bit mantissa vectors a, b and & respectively. Each must
begin at a word-aligned address. This operation can be performed safely in-place onb[] orc[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and ¢ respec-
tively.

Operation Performed

bj, < satsa(|by - 277 ))

¢}, < satza(|cp - 2750 )

Re{ay} + Re{b)} + Re{c}}

Im{ag} < Im{b,} + Im{c,}
fork €0... (length — 1)

Block Floating-Point

If b and ¢ are the complex 32-bit mantissas of BFP vectors b - 20-¢*P and ¢ - 2°-¢*P, then the
resulting vector a are the complex 32-bit mantissas of BFP vector a - 22-¢7,

In this case, b_shr and c_shr must be chosen so that a_exp = b_exp + b_shr = c_exp +
c_shr. Adding or subtracting mantissas only makes sense if they are associated with the
same exponent.

The function vect_complex_s32_add_prepare() can be used to obtain values for a_exp, b_shr
and c_shr based on the input exponents b_exp and c_exzp and the input headrooms b_hr and
c_hr.

See also:

vect_complex_s32_add_prepare

Parameters
- a — [out] Complex output vector a
- b — [in] Complex input vector b
+ ¢ — [in] Complex input vector &
« length — [in] Number of elements in vectors a, b and &
- b_shr — [in] Right-shift applied to b
+ c_shr — [in] Right-shift applied to &

Throws ET_LOAD_STORE
Raised if a, b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a.
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headroom_t vect_complex_s32_add_scalar (complex_s32_t a[], const complex_s32_t b[], const
complex_s32_t ¢, const unsigned length, const
right_shift_t b_shr)

Add a scalar to a complex 32-bit vector.

a[] and b[ Jrepresent the complex 32-bit mantissa vectors a and b respectively. Each must begin

at a word-aligned address. This operation can be performed safely in-place on b[ ].
c is the complex scalar cto be added to each element of b.
length is the number of elements in each of the vectors.

b_shr is the signed arithmetic right-shift applied to each element of b.

Operation Performed
b;c < Sat32( Lbk . 27b’ShTJ)
Re{ay} + Re{bl} + Re{c}
Im{ay} < Im{b,.} + Im{c}
fork €0... (length — 1)

Block Floating-Point

If elements of b are the complex mantissas of BFP vector b - 2-¢*P, and ¢ is the mantissa
of floating-point value ¢ - 2¢-¢*?, then the resulting vector a are the mantissas of BFP vector

q - 29-exp

In this case, b_shr and c_shr must be chosen so that a_exp = b_exp + b_shr = c_exp +
c_shr. Adding or subtracting mantissas only makes sense if they are associated with the

same exponent.

The function vect_complex_s32_add_scalar_prepare() can be used to obtain values for a_exp,
b_shr and c_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr

and c_hr.

Note that c_shr is an output of vect_complex_s32_add_scalar_prepare(),butis not a param-
eter to this function. The c_shr produced by vect_complex_s32_add_scalar_prepare() is to

be applied by the user, and the result passed as input c.

See also:

vect_complex_s32_add_scalar_prepare

Parameters
- a — [out] Complex output vector a
- b — [in] Complex input vector b
+ ¢ — [in] Complex input scalar ¢
+ length — [in] Number of elements in vectors @ and b
- b_shr — [in] Right-shift applied to b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a.
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headroom_t vect_complex_s32_conj_mul(complex_s32_t a[], const complex_s32_t b[], const
complex_s32_t c[], const unsigned length, const
right_shift_t b_shr, const right_shift_t c_shr)

Multiply one complex 32-bit vector element-wise by the complex conjugate of another.

al],b[] and c[] represent the 32-bit mantissa vectors a, b and ¢ respectively. Each must begin at
a word-aligned address. This operation can be performed safely in-place onb[] orc[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and & respec-
tively.

Operation Performed

bj, < satsa(|by - 270-507])

¢}, < satsa(|cp - 2750 )

Re{ay} < (Re{b}} - Re{c}.} + Im{b}} - Im{c}}) - 273"

Im{ay} + (Im{b,} - Re{c}} — Re{b,} - Im{c}})-27%°
fork €0... (length — 1)

Block Floating-Point

If b are the complex 32-bit mantissas of a BFP vector b - 2*-¢*P and ¢ is the complex 32-bit
mantissa of floating-point value ¢ - 2¢-¢*P, then the resulting vector a are the mantissas of BFP
vector a - 29-¢*?, where a_exp = b_exp + c_exp + a_shr.

The function vect_complex_s32_conj_mul_prepare() can be used to obtain values for a_exp
and a_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr and
c_hr.

See also:

vect_complex_s32_conj_mul_prepare

Parameters
- a — [out] Complex output vector a
- b — [in] Complex input vector b
+ ¢ - [in] Complex input vector &
+ length — [in] Number of elements in vectors a, b and ¢
« b_shr — [in] Right-shift applied to elements of b.
+ c_shr - [in] Right-shift applied to elements of .

Throws ET_LOAD_STORE
Raised if a, b or c is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a



headroom_t vect_complex_s32_headroom(const complex_s32_t x[], const unsigned length)
Calculate the headroom of a complex 32-bit array.

The headroom of an N-bit integer is the number of bits that the integer’s value may be left-shifted
without any information being lost. Equivalently, it is one less than the number of leading sign bits.

The headroom of a complex_s32_t struct is the minimum of the headroom of each of its 32-bit
flelds, re and im.

The headroom of a complex_s32_t array is the minimum of the headroom of each of its
complex_s32_t elements.

This function efficiently traverses the elements of z to determine its headroom.
x[ ] represents the complex 32-bit vector z. x[ ] must begin at a word-aligned address.

length is the number of elements in x[ ].

Operation Performed

min{ H Raa (x0) , HR32 (x1) , ..., H R32 (Tiength—1) }

See also:

vect_sT16_headroom, vect_s32_headroom, vect_complex_s16_headroom

Parameters
+ x — [in] Complex input vector z
+ length — [in] Number of elements in z

Throws ET_LOAD_STORE
Raised if x is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of vector z

headroom_t vect_complex_s32_macc (complex_s32_t acc[], const complex_s32_t b], const
complex_s32_t c[l, const unsigned length, const right_shift_t
acc_shr, const right_shift_t b_shr, const right_shift_t c_shr)

Multiply one complex 32-bit vector element-wise by another, and add the result to an accumulator.
acc|[ ] represents the complex 32-bit accumulator mantissa vector a. Each ay, is acc[k].

b[] and c[] represent the complex 32-bit input mantissa vectors b and ¢, where each by, is b[k]
and each ¢ is c[k].

Each of the input vectors must begin at a word-aligned address.
length is the number of elements in each of the vectors.

acc_shr, b_shr and c_shr are the signed arithmetic right-shifts applied to input elements ay, by
and ¢z

215 4



Operation Performed

l;k < satss (bk . 271)’8}”)

G < satsg(cy - 27hT)
Elk < satszo (ak . 2_acc‘5h7')
v,  round(satsa((Re{bp} - Re{ép} — Im{by} - Im{&}) - 2739))
sk < round(satsy((Im{by} - Re{é} + Re{b} - Im{e}) - 27°°))
Re{ay} < satsa(Re{ar} + vk)
Im{ap} < satsa(Im{ar} + si)

fork € 0... (length — 1)

Block Floating-Point

If inputs b and ¢ are the mantissas of BFP vectors b - 2*-¢*P and ¢ - 2°-¢*P, and input a is the
accumulator BFP vector a-29-¢*?, then the output values of a have the exponent 20-¢zptacc-shr

For accumulation to make sense mathematically, bc_sat must be chosen such that a_exp +
acc_shr = b_exp + c_exp + b_shr + c_shr.

The function vect_complex_s32_macc_prepare() can be used to obtain values for a_exp,
acc_shr, b_shr and c_shr based on the input exponents a_exp, b_exp and c_exp and the input
headrooms a_hr, b_hr and c_hr.

See also:

vect_complex_s32_macc_prepare

Parameters
+ acc — [inout] Complex accumulator @
« b — [in] Complex input vector b
+ ¢ — [in] Complex input vector &
+ length — [in] Number of elements in vectors a, b and ¢
+ acc_shr — [in] Signed arithmetic right-shift applied to accumulator elements.
- b_shr — [in] Signed arithmetic right-shift applied to elements of b
+ c_shr - [in] Signed arithmetic right-shift applied to elements of &

Throws ET_LOAD_STORE
Raised if acc, b or c is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a

headroom_t vect_complex_s32_nmacc (complex_s32_t acc[], const complex_s32_t b, const
complex_s32_t c[], const unsigned length, const right_shift_t
acc_shr, const right_shift_t b_shr, const right_shift_t c_shr)

Multiply one complex 32-bit vector element-wise by another, and subtract the result from an ac-
cumulator.

acc| ] represents the complex 32-bit accumulator mantissa vector a. Each ay, is acc[k].

b[] and c[] represent the complex 32-bit input mantissa vectors b and ¢, where each by, is b[k]
and each ¢ is c[k].
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Each of the input vectors must begin at a word-aligned address.
length is the number of elements in each of the vectors.

acc_shr, b_shr and c_shr are the signed arithmetic right-shifts applied to input elements ay, bs
and cy,.

Operation Performed

[N)k — S(ltgg(bk . 2_b'5hr)

G < satzg(cy - 275hT)

ay <+ satsa(ay, - 274=5T)
v round(satsy((Re{b} - Re{ér} — Im{by} - Im{&}) - 273Y))
s« round(satsa((Im{by} - Re{éx} + Re{by} - Im{c}) - 2730))
Re{ay} < satsa(Re{ar} — vg)
Im{ay} + satsa(Im{ar} — si)

fork € 0... (length — 1)

Block Floating-Point

If inputs b and ¢ are the mantissas of BFP vectors b - 2°-¢*P and ¢ - 2°-°*?, and input a is the
accumulator BFP vector a-2%-°*P, then the output values of a have the exponent 2¢-¢@p+accshr,

For accumulation to make sense mathematically, be_sat must be chosen such that a_exp +
acc_shr = b_exp + c_exp + b_shr + c_shr.

The function vect_complex_s32_macc_prepare() can be used to obtain values for a_exp,
acc_shr, b_shr and c_shr based on the input exponents a_exp, b_exp and c_exp and the input
headrooms a_hr, b_hr and c_hr.

See also:

vect_complex_s32_nmacc_prepare

Parameters
+ acc — [inout] Complex accumulator @
- b — [in] Complex input vector b
+ ¢ — [in] Complex input vector &
+ length — [in] Number of elements in vectors a, b and &
+ acc_shr - [in] Signed arithmetic right-shift applied to accumulator elements.
- b_shr - [in] Signed arithmetic right-shift applied to elements of b
- c_shr — [in] Signed arithmetic right-shift applied to elements of &

Throws ET_LOAD_STORE
Raised if acc, b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a
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headroom_t vect_complex_s32_conj_macc (complex_s32_t accll, const complex_s32_t b[], const
complex_s32_t cf], const unsigned length, const
right_shift_t acc_shr, const right_shift_t b_shr, const
right_shift_t c_shr)

Multiply one complex 32-bit vector element-wise by the complex conjugate of another, and add
the result to an accumulator.

acc|[ ] represents the complex 32-bit accumulator mantissa vector a. Each ay, is acc[k].

b[] and c[] represent the complex 32-bit input mantissa vectors b and ¢, where each by, is b[k]
and each ¢ is c[k].

Each of the input vectors must begin at a word-aligned address.
length is the number of elements in each of the vectors.

acc_shr, b_shr and c_shr are the signed arithmetic right-shifts applied to input elements ay, by
and ¢z

Operation Performed

Bk + satga(by - 27b’5hr)

Gr  satga(cy - 275T)
ay < satsa(ay, - 2*’1“*5’”)
vg < round(satsy((Re{br} - Re{cx} + Im{by} - Im{é}) - 27°°))
s« round(satsa((Im{by} - Re{éx} — Re{by} - Im{é}) -2730))
Re{ay} < satsa(Ref{ax} + vi)
Im{ay} < satso(Im{ag} + si)

fork e€0... (length — 1)

Block Floating-Point

If inputs b and ¢ are the mantissas of BFP vectors b - 2°-¢* and ¢ - 2°-¢*?, and input a is the
accumulator BFP vector a-29-¢?, then the output values of a have the exponent 20-¢zp+acc-shr

For accumulation to make sense mathematically, bc_sat must be chosen such that a_exp +
acc_shr = b_exp + c_exp + b_shr + c_shr.

The function vect_complex_s32_conj_macc_prepare() can be used to obtain values for a_exp,
acc_shr, b_shr and c_shr based on the input exponents a_exp, b_exp and c_exp and the input
headrooms a_hr, b_hr and c_hr.

See also:

vect_complex_s32_conj_macc_prepare

Parameters
+ acc — [inout] Complex accumulator @
- b — [in] Complex input vector b
+ ¢ — [in] Complex input vector &
« length — [in] Number of elements in vectors a, b and &

- acc_shr - [in] Signed arithmetic right-shift applied to accumulator elements.

218 p,



- b_shr — [in] Signed arithmetic right-shift applied to elements of b
« c_shr - [in] Signed arithmetic right-shift applied to elements of &

Throws ET_LOAD_STORE
Raised if acc, b or c is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a

headroom_t vect_complex_s32_conj_nmacc (complex_s32_t accl], const complex_s32_t b[], const
complex_s32_t c[], const unsigned length, const
right_shift_t acc_shr, const right_shift_t b_shr, const
right_shift_t c_shr)

Multiply one complex 32-bit vector element-wise by the complex conjugate of another, and sub-
tract the result from an accumulator.

acc| ] represents the complex 32-bit accumulator mantissa vector a. Each ay, is acc[k].

b[] and c[] represent the complex 32-bit input mantissa vectors b and ¢, where each by, is b[k]
and each ¢ is c[k].

Each of the input vectors must begin at a word-aligned address.
length is the number of elements in each of the vectors.

acc_shr, b_shr and c_shr are the signed arithmetic right-shifts applied to input elements ay, bs
and c¢y,.

Operation Performed

i)k — S(ltgg(bk . 2_b'5hr)

¢ satsa(ck - 2_0-8}“”)

ay, < satsg(ay, - 279CC-5hT)
vg < round(satsy((Re{by} - Re{ér} + Im{by} - Im{&}) - 27%°))
s« round(satsa((Im{by} - Re{ér} — Re{by} - Im{cy}) - 2730))
Re{ay} < satsa(Re{ar} — vg)
Im{ay} + satsa(Im{ar} — si)

fork € 0... (length — 1)

Block Floating-Point

If inputs b and ¢ are the mantissas of BFP vectors b - 2°-¢*P and ¢ - 2°-°*?, and input a is the
accumulator BFP vector a-2%-*P, then the output values of @ have the exponent 2¢-¢zp+ace-shr.

For accumulation to make sense mathematically, be_sat must be chosen such that a_exp +
acc_shr = b_exp + c_exp + b_shr + c_shr.

The function vect_complex_s32_conj_nmacc_prepare() can be used to obtain values for a_exp,
acc_shr, b_shr and c_shr based on the input exponents a_exp, b_exp and c_exp and the input
headrooms a_hr, b_hr and c_hr.

See also:

vect_complex_s32_conj_nmacc_prepare

Parameters
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+ acc — [inout] Complex accumulator @

- b — [in] Complex input vector b

+ ¢ — [in] Complex input vector &

+ length — [in] Number of elements in vectors a, b and &

+ acc_shr - [in] Signed arithmetic right-shift applied to accumulator elements.
- b_shr — [in] Signed arithmetic right-shift applied to elements of b

» c_shr — [in] Signed arithmetic right-shift applied to elements of ¢

Throws ET_LOAD_STORE
Raised if acc, b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a

headroom_t vect_complex_s32_mag(int32_t a[], const complex_s32_t b[], const unsigned length, const

right_shift_t b_shr, const complex_s32_t *rot_table, const
unsigned table_rows)

Compute the magnitude of each element of a complex 32-bit vector.
a[ ] represents the real 32-bit output mantissa vector a.

b[] represents the complex 32-bit input mantissa vector b.

al] and b[] must each begin at a word-aligned address.

length is the number of elements in each of the vectors.

b_shr is the signed arithmetic right-shift applied to elements of b.

rot_table must point to a pre-computed table of complex vectors used in calculating the mag-
nitudes. table_rows is the number of rows in the table. This library is distributed with a default
version of the required rotation table. The following symbols can be used to refer to it in user code:

const extern unsigned rot_table32_rows;
const extern complex_s32_t rot_table32[30][4];

Faster computation (with reduced precision) can be achieved by generating a smaller version of
the table. A python script is provided to generate this table.

Todo:
Point to documentation page on generating this table.

Operation Performed

vk < by - 9~ b-shr

ar — \/(Befur}) + (Imfu})?
fork € 0... (length — 1)

Block Floating-Point

If b are the complex 32-bit mantissas of a BFP vector b - 2°-¢*P, then the resulting vector a are
the real 32-bit mantissas of BFP vector a - 2%-¢*P, where a_exp = b_exp + b_shr.

The function vect_complex_s32_mag_prepare() can be used to obtain values for a_exp and
b_shr based on the input exponent b_exzp and headroom b_hr.
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See also:

vect_complex_s32_mag_prepare

Parameters
- a — [out] Real output vector a
- b — [in] Complex input vector b
+ length — [in] Number of elements in vectors @ and b
- b_shr — [in] Right-shift appled to b
. rot_table — [in] Pre-computed rotation table required for calculating magnitudes
« table_rows — [in] Number of rows in rot_table

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a.

headroom_t vect_complex_s32_mul(complex_s32_t a[l, const complex_s32_t b[], const complex_s32_t

c[l, const unsigned length, const right_shift_t b_shr, const
right_shift_t c_shr)

Multiply one complex 32-bit vector element-wise by another.

al],b[] and c[] represent the 32-bit mantissa vectors a, b and ¢ respectively. Each must begin at
a word-aligned address. This operation can be performed safely in-place onb[] orc[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and & respec-
tively.

Operation Performed

bj, < satsa(|by - 270-507])

¢}, « satsa(|cp - 2750 )

Re{ay} + (Re{b}} - Re{c}} — Im{b}} - Im{c,})-273°

Im{ay} + (Im{b},} - Re{c},} + Re{b,} - Im{c},}) -2~
fork €0... (length — 1)

Block Floating-Point

If b are the complex 32-bit mantissas of a BFP vector b - 2%-¢*P and ¢ is the complex 32-bit
mantissa of floating-point value ¢ - 2¢-¢*P, then the resulting vector a are the mantissas of BFP
vector a - 2%-¢*P, where a_exp = b_exp + c_exp + b_shr + c_shr.

The function vect_complex_s32_mul_prepare() can be used to obtain values for a_exp, b_shr
and c_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr and
c_hr.

See also:

vect_complex_s32_mul_prepare



Parameters
- a — [out] Complex output vector a
- b - [in] Complex input vector b
+ ¢ — [in] Complex input vector &
« length - [in] Number of elements in vectors a, b, and &
« b_shr — [in] Right-shift appled to b
- c_shr — [in] Right-shift appled to ¢

Throws ET_LOAD_STORE
Raised if a, b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a

headroom_t vect_complex_s32_real_mul(complex_s32_t a[], const complex_s32_t b[], const int32_t
c[l, const unsigned length, const right_shift_t b_shr, const
right_shift_t c_shr)

Multiply a complex 32-bit vector element-wise by a real 32-bit vector.
a[] and b[] represent the complex 32-bit mantissa vectors a and b respectively.
c[ ] represents the real 32-bit mantissa vector c.

al[], b[], and c[] each must begin at a word-aligned address. This operation can be performed
safely in-place onb[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and ¢ respec-
tively.

Operation Performed

b}, < satzo(|by - 270-507])

¢}, < satza(|cp - 27507

Re{ay} < (Re{b}}-c},)-273°

Im{ay} + (Im{b}} - ¢,) -2~
fork €0... (length — 1)

Block Floating-Point

If b are the complex 32-bit mantissas of a BFP vector b - 2%-¢*P and ¢ is the complex 32-bit
mantissa of floating-point value ¢ - 25-¢*P, then the resulting vector a are the mantissas of BFP
vector a - 29-¢*P, where a_exp = b_exp + c_exp + b_shr + c_shr.

The function vect_complex_s32_real_mul_prepare() can be used to obtain values for a_exp,
b_shr and c_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr
and c_hr.

See also:

vect_complex_s32_real_mul_prepare

Parameters
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- a — [out] Complex output vector a.

« b — [in] Complex input vector b.

+ ¢ — [in] Real input vector é.

+ length — [in] Number of elements in vectors a, b, and .
- b_shr — [in] Right-shift appled to b.

+ c_shr - [in] Right-shift appled to .

Throws ET_LOAD_STORE
Raised if a, b or c is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a.

headroom_t vect_complex_s32_real_scale(complex_s32_t a[], const complex_s32_t b[], const int32_t

¢, const unsigned length, const right_shift_t b_shr, const
right_shift_t c_shr)

Multiply a complex 32-bit vector by a real scalar.
al] and b[ ] represent the complex 32-bit mantissa vectors a and b respectively.
c represents the real 32-bit scale factor c.

a[] and b[] each must begin at a word-aligned address. This operation can be performed safely
in-placeonb[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shift applied to each element of b and to c.

Operation Performed
b;c — Satgg( |_bk . 2_b'8hTJ)
Re{ar} + Re{bl} ¢
Im{ag} < Im{b,}-c
fork € 0... (length — 1)

Block Floating-Point

If b are the complex 16-bit mantissas of a BFP vector b - 2°-*P and ¢ is the complex 16-bit
mantissa of floating-point value ¢ - 2¢-¢*?, then the resulting vector a are the mantissas of BFP
vector a - 29-¢*P, where a_exp = b_exp + c_exp + b_shr + c_shr.

The function vect_complex_s32_real_scale_prepare() can be used to obtain values for a_exp,
b_shr and c_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr
and c_hr.
Parameters

- a — [out] Complex output vector a

- b - [in] Complex input vector b

+ ¢ — [in] Complex input vector &

+ length — [in] Number of elements in vectors a, b, and &

« b_shr — [in] Right-shift applied to b

» c_shr — [in] Right-shift applied to ¢



Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a.

headroom_t vect_complex_s32_scale(complex_s32_t a[l, const complex_s32_t b[], const int32_t
c_real, const int32_t c_imag, const unsigned length, const
right_shift_t b_shr, const right_shift_t c_shr)

Multiply a complex 32-bit vector by a complex 32-bit scalar.
a[] and b[] represent the complex 32-bit mantissa vectors a and b respectively.
c represents the complex 32-bit scale factor c.

a[] and b[] each must begin at a word-aligned address. This operation can be performed safely
in-place onb[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and to c.

Operation Performed

b}, < satza(|by - 270-507])

Re{ay} < (Re{vy} - Re{c} — Im{vy} - Im{c}) - 273

Im{ay} < (Re{vr} - Im{c} + Im{vy,} - Re{c})-273°
fork €0 ... (length — 1)

Block Floating-Point

If b are the complex 32-bit mantissas of a BFP vector b - 2°-¢*P and ¢ is the complex 32-bit
mantissa of floating-point value ¢ - 2¢-¢*P, then the resulting vector a are the mantissas of BFP
vector a - 29-¢*?, where a_exp = b_exp + c_exp + b_shr + c_shr.

The function vect_complex_s32_mul_prepare() can be used to obtain values for a_exp, b_shr
and c_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr and
c_hr.
Parameters

- a — [out] Complex output vector a.

« b — [in] Complex input vector b.

+ c_real — [in] Real part of ¢

+ c_imag - [in] Imaginary part of ¢

+ length — [in] Number of elements in vectors @ and b.

- b_shr — [in] Right-shift appled to b.

- c_shr — [in] Right-shift applied to c.

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a.
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void vect_complex_s32_set(complex_s32_t afl, const int32_t b_real, const int32_t b_imag, const
unsigned length)

Set each element of a complex 32-bit vector to a specified value.
a[ ] represents a complex 32-bit vector a. a[ ] must begin at a word-aligned address.
b_real and b_imag are the real and imaginary parts to which each element will be set.

length is the number of elementsin a[ ].

Operation Performed

ag < b_real + j - b_imag
fork €0... (length — 1)
where j2 = —1

Block Floating-Point

If bis the mantissa of floating-point value b - 2*-¢*P, then the output vector @ are the mantissas
of BFP vector a - 24-¢*P, where a_exp = b_exp.
Parameters
- a — [out] Complex output vector a
* b_real — [in] Value to set real part of elements of a to
- b_imag — [in] Value to set imaginary part of elements of a to
+ length — [in] Number of elements in a
Throws ET_LOAD_STORE

Raised if a is not word-aligned (See Note: Vector Alignment)

headroom_t vect_complex_s32_shl(complex_s32_t all, const complex_s32_t b[], const unsigned
length, const left_shift_t b_shl)

Left-shift each element of a complex 32-bit vector by a specified number of bits.

al] and b[ ] represent the complex 32-bit mantissa vectors a and b respectively. Each must begin
at a word-aligned address. This operation can be performed safely in-place on b[ ].

length is the number of elements in @ and b.

b_sh1 is the signed arithmetic left-shift applied to each element of b.

Operation Performed

R@{ak} — Sat32(|_Re{bk} . 2b_shlJ)
Im{ay} < satso(|Im{by} - 20-°"))
fork €0 ... (length — 1)

Block Floating-Point

If b are the complex 32-bit mantissas of a BFP vector b - 2°-¢7P, then the resulting vector a are
the complex 32-bit mantissas of BFP vector a@ - 2%-°*?, where @ = b - 2°-°™ and a_exp = b_exp.
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Parameters
- a — [out] Complex output vector a
- b - [in] Complex input vector b
+ length — [in] Number of elements in vector b
« b_shl — [in] Left-shift applied to b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a

headroom_t vect_complex_s32_shr(complex_s32_t a[], const complex_s32_t b[l, const unsigned
length, const right_shift_t b_shr)

Right-shift each element of a complex 32-bit vector by a specified number of bits.

a[] and b[] represent the complex 32-bit mantissa vectors @ and b respectively. Each must begin
at a word-aligned address. This operation can be performed safely in-place on b[].

length is the number of elements in @ and b.

b_shr is the signed arithmetic right-shift applied to each element of b.

Operation Performed

Re{ak} — Sat32(|_Re{bk} . Q—b_shrJ)
Im{ak;} — Sat32(|_lm{bk} . 2—b_sh7'J)
fork €0 ... (length — 1)

Block Floating-Point

If b are the complex 32-bit mantissas of a BFP vector b - 2°-¢*P, then the resulting vector a are
the complex 32-bit mantissas of BFP vector a-2%-¢*?, where a = b-27%-*"" and a_exp = b_exp.
Parameters

- a — [out] Complex output vector @

- b — [in] Complex input vector b

+ length — [in] Number of elements in vector b

- b_shr — [in] Right-shift applied to b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a

headroom_t vect_complex_s32_squared_mag(int32_t a[], const complex_s32_t b], const unsigned
length, const right_shift_t b_shr)

Computes the squared magnitudes of elements of a complex 32-bit vector.

a[ ] represents the complex 32-bit mantissa vector a. b[] represents the real 32-bit mantissa
vector b. Each must begin at a word-aligned address.

length is the number of elements in each of the vectors.
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b_shr is the signed arithmetic right-shift appled to each element of b.

Operation Performed

b;c — Satgg(tbk . 27b’ShTJ)
ag  (Re{t}})* + (Im{b})*) - 27
fork € 0... (length — 1)

Block Floating-Point

If b are the complex 32-bit mantissas of a BFP vector b - 2°-¢*, then the resulting vector a are
the real 32-bit mantissas of BFP vector a - 2%-°*P, where a_exp = 2 - (b_exp + b_shr).

The function vect_complex_s32_squared_mag_prepare() can be used to obtain values for
a_exp and b_shr based on the input exponent b_exp and headroom b_hr.

See also:

vect_complex_s32_squared_mag_prepare

Parameters
- a — [out] Complex output vector a
- b - [in] Complex input vector b
+ length — [in] Number of elements in vectors @ and b
« b_shr — [in] Right-shift appled to b

Throws ET_LOAD_STORE
Raised if a is not double word-aligned or b is not word-aligned (See Note: Vector Align-
ment)

headroom_t vect_complex_s32_sub(complex_s32_t a[], const complex_s32_t b[l, const complex_s32_t
cfl, const unsigned length, const right_shift_t b_shr, const
right_shift_t c_shr)

Subtract one complex 32-bit vector from another.

a[],b[] and c[] represent the complex 32-bit mantissa vectors a, b and é respectively. Each must
begin at a word-aligned address. This operation can be performed safely in-place onb[] orc[].

length is the number of elements in each of the vectors.

b_shr and c_shr are the signed arithmetic right-shifts applied to each element of b and ¢ respec-
tively.

Operation Performed

b;c — sat32( |_bk . 2_b‘ShTJ)

¢}, < satza(|cp - 2750

Re{ay} < Re{b},} — Re{c)}

Im{ay} < Im{b},} — Im{c,}
fork €0... (length — 1)
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Block Floating-Point

If b and ¢ are the complex 32-bit mantissas of BFP vectors b - 20-¢*P and ¢ - 2¢-¢*P, then the
resulting vector a are the complex 32-bit mantissas of BFP vector a - 22-¢7,

In this case, b_shr and c_shr must be chosen so that a_exp = b_exp + b_shr = c_exp +
c_shr. Adding or subtracting mantissas only makes sense if they are associated with the
same exponent.

The function vect_complex_s32_sub_prepare() can be used to obtain values for a_exp, b_shr
and c_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr and
c_hr.

See also:

vect_complex_s32_sub_prepare

Parameters
- a — [out] Complex output vector a
- b — [in] Complex input vector b
+ ¢ — [in] Complex input vector &
« length — [in] Number of elements in vectors a, b and &
- b_shr — [in] Right-shift applied to b
+ c_shr — [in] Right-shift applied to ¢

Throws ET_LOAD_STORE
Raised if a, b or ¢ is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of output vector a.

void vect_complex_s32_sum(complex_s64_t *a, const complex_s32_t b[l, const unsigned length, const
right_shift_t b_shr)

Compute the sum of elements of a complex 32-bit vector.

a is the complex 64-bit mantissa of the resulting sum.

b[ ] represents the complex 32-bit mantissa vector b. b[ ] must begin at a word-aligned address.
length is the number of elements in .

b_shr is the unsigned arithmetic right-shift appled to each element of b. b_shr cannot be negative.

Operation Performed

by, < by, - 27050
length—1

Re{a} + Z (Re{b}})
k=0
length—1

Im{a} + Z (Im{b.})

k=0
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Block Floating-Point

If b are the mantissas of BFP vector b-2°-°*?, then a is the complex 64-bit mantissa of floating-
point value a - 2%-¢*?, where a_exp = b_exp + b_shr.

The function vect_complex_s32_sum_prepare() can be used to obtain values for a_exp and
b_shr based on the input exponents b_exp and c_exp and the input headrooms b_hr and c_hr.

Additional Details

Internally the sum accumulates into four separate complex 40-bit accumulators. These ac-
cumulators apply symmetric 40-bit saturation logic (with bounds +23? — 1) with each added
element. At the end, the 4 accumulators are summed together into the 64-bit fields of a. No
saturation logic is applied at this final step.

Inthe most extreme case, each b, may be —231. 256 of these added into the same accumulator
is —239 which would saturate to —23° + 1, introducing 1 LSb of error (which may or may not
be acceptable given a particular circumstance). The final result for each part then may be as
large as 4 - (—23 + 1) = —2%! 4 4, each fitting into a 42-bit signed integer.

See also:

vect_complex_s32_sum_prepare

Parameters
+ a - [out] Complex sum a
« b - [in] Complex input vector b.
+ length — [in] Number of elements in vector b.
- b_shr — [in] Right-shift appled to b.

Throws ET_LOAD_STORE
Raised if b is not word-aligned (See Note: Vector Alignment)

void vect_complex_s32_tail_reverse(complex_s32_t x[], const unsigned length)
Reverses the order of the tail of a complex 32-bit vector.

Reverses the order of elements in the tail of the complex 32-bit vector z. The tail of z, in this
context, is all elements of z except for xq. In other words, the first element g remains where it is,
and the remaining length — 1 elements are rearranged to have their order reversed.

This function is used when performing a forward or inverse FFT on a single sequence of real values
(i.e. the mono FFT), and operates in-place on x[ ].

Parameter Details

x[ ] represents the complex 32-bit vector z, which is both an input to and an output of this
function. x[ ] must begin at a word-aligned address.

length is the number of elements in z.



Operation Performed

To < X9
T < Tlength—k
fork el.. (length — 1)

See also:

bfp_fft_forward_mono, bfp_fft_inverse_mono

Parameters
- x — [inout] Complex vector to have its tail reversed.
+ length — [in] Number of elements in z
Throws ET_LOAD_STORE
Raised if x is not word-aligned (See Note: Vector Alignment)

headroom_t vect_complex_s32_conjugate(complex_s32_t a[], const complex_s32_t b[], const
unsigned length)

Get the complex conjugate of a complex 32-bit vector.

The complex conjugate of a complex scalar z = x +yi is z* =  — yi. This function computes the
complex conjugate of each element of b (negates the imaginary part of each element) and places
the result in a.

a[ ] is the complex 32-bit output vector a.
b[] is the complex 32-bit input vector b.
Both a and b must point to word-aligned addresses.

length is the number of elements in @ and b.

Operation Performed
Re{ay} + Re{by}

Im{ag} < —Im{b}
fork e l.. (length — 1)

Parameters
- a — [out] Complex 32-bit output vector a
« b — [in] Complex 32-bit input vector b
+ length — [in] Number of elements in vectors @ and b

Throws ET_LOAD_STORE
Raised if a or b is not word-aligned (See Note: Vector Alignment)

Returns
Headroom of the output vector a.

void vect_complex_s32_to_vect_complex_s16(int16_t a_reall], int16_t a_imag[], const complex_s32_t
b[l, const unsigned length, const right_shift_t b_shr)
Convert a complex 32-bit vector into a complex 16-bit vector.

This function converts a complex 32-bit mantissa vector b into a complex 16-bit mantissa vector
a. Conceptually, the output BFP vector a - 29-°*? represents the same value as the input BFP vector
b - 20-¢zr only with a reduced bit-depth.
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In most cases b_shr should be 16 — b_hr, where b_hr is the headroom of the 32-bit input mantissa
vector b. The output exponent a_exp will then be given by

a_exp = b_exp + b_shr
Parameter Details

a_reall[] and a_imag[ ] together represent the complex 16-bit output mantissa vector a, with
the real part of each a, going in a_real[] and the imaginary part going in a_imag[ ].

b[ ] represents the complex 32-bit mantissa vector b.
a_reall],a_imag[] and b[] must each begin at a word-aligned address.
length is the number of elements in each of the vectors.

b_shr is the signed arithmetic right-shift applied to elements of b.

Operation Performed

by, < sati(|by - 27057 ])
Re{ay} + Re{b}}
Im{ay} < Im{b}}

fork €0... (length — 1)

Block Floating-Point

If b are the complex 32-bit mantissas of a BFP vector b - 2°-¢*P, then the resulting vector a are
the complex 16-bit mantissas of BFP vector a - 2%-¢*P, where a_exp = b_exp + b_shr.

See also:

vect_s32_to_vect_s16, vect_complex_s16_to_vect_complex_s32

Parameters
- a_real — [out] Real part of complex output vector a.
- a_imag — [out] Imaginary part of complex output vector a.
« b — [in] Complex input vector b.
+ length — [in] Number of elements in vectors @ and b
« b_shr — [in] Right-shift appled to b.

Throws ET_LOAD_STORE
Raised if a_real, a_imag or b are not word-aligned (See Note: Vector Alignment)
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4.7.8 Mixed-Precision Vector API

group vect_mixed_api

232

Functions

void mat_mul_s8_x_s16_yield_s32(int32_t output[], const int8_t matrix[], const int16_t input_vect(],

const unsigned M_rows, const unsigned N_cols, int8_t scratch[])
Multiply an 8-bit matrix by a 16-bit vetor for a 32-bit result vector.

This function multiplies an 8-bit M x N matrix W by a 16-bit N-element column vector & and
returns the result as a 32-bit M-element vector a.

output is the output vector a.

matrix is the matrix W.

input_vect is the vector v.

matrix and input_vect must both begin at a word-aligned offsets.

M_rows and N_rows are the dimensions M and N of matrix W. M must be a multiple of 16, and N
must be a multiple of 32.

scratch is a pointer to a word-aligned buffer that this function may use to store intermediate re-
sults. This buffer must be at least NV bytes long.

The result of this multiplication is exact, so long as saturation does not occur.
Parameters
+ output — [inout] The output vector a
- matrix — [in] The weight matrix W
« input_vect — [in] The input vector &
+ M_rows — [in] The number of rows M in matrix W
* N_cols — [in] The number of columns N in matrix W
+ scratch — [in] Scratch buffer required by this function.

Throws ET_LOAD_STORE
Raised if matrix or input_vect is not word-aligned (See Note: Vector Alignment)

unsigned vect_sXX_add_scalar (int32_t a[], const int32_t b[], const unsigned length_bytes, const

int32_t ¢, const int32_t d, const right_shift_t b_shr, const unsigned
mode_bits)

Add a scalar to a vector.
Add a scalar to a vector. This works for 8, 16 or 32 bits, real or complex.

length_bytes is the total number of bytes to be output. So, for 16-bit vectors, length_bytes is
twice the number of elements, whereas for complex 32-bit vectors, length_bytes is 8 times the
number of elements.

c and d are the values that populate the internal buffer to be added to the input vector as follows:
Internally an 8 word (32 byte) buffer is allocated (on the stack). Even-indexed words are populated
with ¢ and odd-indexed words are populated with d. For real vectors, ¢ and d should be the same
value &#8212; the reason for d is to allow this same function to work for complex 32-bit vectors.
This also means that for 16-bit vectors, the value to be added needs to be duplicated in both the
higher 2 bytes and lower 2 bytes of the word.

mode_bits should be 9x0000 for 32-bit mode, 9x0100 for 16-bit mode or 8x08200 for 8-bit mode.



4.7.9 16-Bit Vector Prepare Functions

group vect_s16_prepare_api

233

Defines

vect_s16_add_prepare

Obtain the output exponent and shifts required for a call to vect_s76_add( ).

The logic for computing the shifts and exponents of vect_si6_add() is identical to that for
vect_s32_add().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_s32_add_prepare()

vect_s16_add_scalar_prepare

Obtain the output exponent and shifts required for a call to vect_s16_add_scalar().

The logic for computing the shifts and exponents of vect_s16_add_scalar() is identical to that
for vect_s32_add().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_s32_add_prepare()

vect_s16_nmacc_prepare

Obtain the output exponent and shifts required for a call to vect_s76_nmacc().

The logic for computing the shifts and exponents of vect_s76_nmacc() is identical to that for
vect_sT6_macc_prepare().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_s16_macc_prepare(), vect_s16_nmacc()

vect_s16_sub_prepare

Obtain the output exponent and shifts required for a call to vect_s16_sub().

The logic for computing the shifts and exponents of vect_s76_sub() is identical to that for
vect_s32_add().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_s32_add_prepare()



Functions

void vect_s16_clip_prepare(exponent_t *a_exp, right_shift_t *b_shr, int16_t *lower_bound, int16_t
*upper_bound, const exponent_t b_exp, const exponent_t bound_exp,
const headroom_t b_hr)

Obtain the output exponent, input shift and modified bounds used by vect_s76_clip().

This function is used in conjunction with vect_s76_clip() to bound the elements of a 32-bit BFP
vector to a specified range.

This function computes a_exp, b_shr, lower_bound and upper_bound
a_exp is the exponent associated with the 16-bit mantissa vector a computed by vect_s32_clip().
b_shr is the shift parameter required by vect_s76_clip() to achieve the output exponent a_exp.

lower_bound and upper_bound are the 16-bit mantissas which indicate the lower and upper clipping
bounds respectively. The values are modified by this function, and the resulting values should be
passed along to vect_s16_clip().

b_exp is the exponent associated with the input mantissa vector b.

bound_exp is the exponent associated with the bound mantissas lower_bound and upper_bound
respectively.

b_hr is the headroom of b. If unknown, it can be obtained using vect_s16_headroom(). Alternatively,
the value @ can always be safely used (but may result in reduced precision).

See also:

vect_s16_clip

Parameters
- a_exp — [out] Exponent associated with output mantissa vector a
- b_shr — [out] Signed arithmetic right-shift for b used by vect s32_clip()
+ lower_bound — [inout] Lower bound of clipping range
+ upper_bound — [inout] Upper bound of clipping range
- b_exp — [in] Exponent associated with input mantissa vector b

- bound_exp — [in] Exponent associated with clipping bounds lower_bound and
upper_bound

« b_hr — [in] Headroom of input mantissa vector b

void vect_s16_inverse_prepare(exponent_t *a_exp, unsigned *scale, const int16_t b, const
exponent_t b_exp, const unsigned length)

Obtain the output exponent and scaling parameter used by vect_s76_inverse().

This function is used in conjunction with vect_s76_inverse() to compute the inverse of elements of
a 16-bit BFP vector.

This function computes a_exp and scale.

a_exp is the exponent associated with output mantissa vector a, and must be chosen to avoid
overflow in the smallest element of the input vector, which when inverted becomes the largest
output element. To maximize precision, this function chooses a_exp to be the smallest exponent
known to avoid saturation. The a_exp chosen by this function is derived from the exponent and
smallest element of the input vector.

scale is a scaling parameter used by vect_sT6_inverse() to achieve the chosen output exponent.

b[] is the input mantissa vector b.
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b_exp is the exponent associated with the input mantissa vector b.

length is the number of elements in b.

See also:

vect_sT6_inverse

Parameters
- a_exp — [out] Exponent of output vector a
- scale - [out] Scale factor to be applied when computing inverse
« b — [in] Input vector b
- b_exp — [in] Exponent of b

+ length — [in] Number of elements in vector b

void vect_s16_macc_prepare(exponent_t *new_acc_exp, right_shift_t *acc_shr, right_shift_t *bc_sat,

const exponent_t acc_exp, const exponent_t b_exp, const exponent_t
c_exp, const headroom_t acc_hr, const headroom_t b_hr, const
headroom_t c_hr)

Obtain the output exponent and shifts needed by vect_s76_macc().

This function is used in conjunction with vect_s76_macc() to perform an element-wise multiply-
accumlate of 16-bit BFP vectors.

This function computes new_acc_exp and acc_shr and bc_sat, which are selected to maximize
precision in the resulting accumulator vector without causing saturation of final or intermediate val-
ues. Normally the caller will pass these outputs to their corresponding inputs of vect_s76_macc().

acc_exp is the exponent associated with the accumulator mantissa vector a prior to the operation,
whereas new_acc_exp is the exponent corresponding to the updated accumulator vector.

b_exp and c_exp are the exponents associated with the complex input mantissa vectors b and &
respectively.

acc_hr,b_hr and c_hr are the headrooms of @, b and érespectively. If the headroom of any of these
vectors is unknown, it can be obtained by calling vect_s16_headroom(). Alternatively, the value o
can always be safely used (but may result in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the acc_shr and be_sat produced by this function can be adjusted according
to the following:

// Presumed to be set somewhere
exponent_t acc_exp, b_exp, c_exp;
headroom_t acc_hr, b_hr, c_hr;
exponent_t desired_exp;

// Call prepare
right_shift_t acc_shr, bc_sat;
vect_s16_macc_prepare(&acc_exp, &acc_shr, &bc_sat,
(continues on next page)
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(continued from previous page)

acc_exp, b_exp, c_exp,
acc_hr, b_hr, c_hr);

// Modify results

right_shift_t mant_shr = desired_exp - acc_exp;
acc_exp += mant_shr;

acc_shr += mant_shr;

bc_sat += mant_shr;

// acc_shr and bc_sat may now be used in a call to vect_sT6_macc()

When applying the above adjustment, the following conditions should be maintained:
* bc_sat >= 0 (bc_sat is an unsigned right-shift)
+ acc_shr > -acc_hr (Shifting any further left may cause saturation)

It is up to the user to ensure any such modification does not result in saturation or unaccept-
able loss of precision.

See also:

vect_sT6_macc

Parameters

- new_acc_exp — [out] Exponent associated with output mantissa vector a (after
macc)

- acc_shr — [out] Signed arithmetic right-shift used for a in vect_s76_macc()

- be_sat — [out] Unsigned arithmetic right-shift applied to the product of elements by,
and ¢ in vect_s716_macc()

- acc_exp — [in] Exponent associated with input mantissa vector a (before macc)
- b_exp — [in] Exponent associated with input mantissa vector b

- c_exp — [in] Exponent associated with input mantissa vector &

« acc_hr - [in] Headroom of input mantissa vector a (before macc)

« b_hr — [in] Headroom of input mantissa vector b

+ c_hr — [in] Headroom of input mantissa vector &

void vect_s16_mul_prepare(exponent_t *a_exp, right_shift_t *a_shr, const exponent_t b_exp, const
exponent_t c_exp, const headroom_t b_hr, const headroom_t c_hr)

Obtain the output exponent and output shift used by vect_s76_mul().

This function is used in conjunction with vect_s76_mul() to perform an element-wise multiplication
of two 16-bit BFP vectors.

This function computes a_exp and a_shr.

a_exp is the exponent associated with mantissa vector a, and must be chosen to be large enough
to avoid overflow when elements of @ are computed. To maximize precision, this function chooses
a_exp to be the smallest exponent known to avoid saturation (see exception below). The a_exp
chosen by this function is derived from the exponents and headrooms of associated with the input
vectors.

a_shr is an arithmetic right-shift applied by vect_complex_s16_mul() to the 32-bit products of input
elements to achieve the chosen output exponent a_exp.

b_exp and c_exp are the exponents associated with the input mantissa vectors b and ¢ respectively.



237

b_hr and c_hr are the headroom of b and & respectively. If the headroom of b or & is unknown, they
can be obtained by calling vect_s16_headroom(). Alternatively, the value @ can always be safely
used (but may result in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the a_shr produced by this function can be adjusted according to the fol-
lowing:

exponent_t a_exp;

right_shift_t a_shr;

vect_s16_mul_prepare(&a_exp, &a_shr, b_exp, c_exp, b_hr, c_hr);

exponent_t desired_exp = ...; // Value known a priori

a_shr = a_shr + (desired_exp - a_exp);

a_exp = desired_exp;

When applying the above adjustment, the following conditions should be maintained:
* a_shr >=0

Be aware that using a smaller value than strictly necessary for a_shr can result in saturation,
and using larger values may result in unnecessary underflows or loss of precision.

Notes

- Using the outputs of this function, an output mantissa which would otherwise be
INT16_MIN will instead saturate to -INT16_MAX. This is due to the symmetric saturation
logic employed by the VPU and is a hardware feature. This is a corner case which is usu-
ally unlikely and results in 1 LSb of error when it occurs.

See also:

vect_s16_mul

Parameters
- a_exp — [out] Exponent of output elements of vect_s76_mul()
- a_shr — [out] Right-shift supplied to vect_s76_mul()
- b_exp — [in] Exponent associated with b
+ c_exp — [in] Exponent associated with &
* b_hr - [in] Headroom of b
+ ¢_hr — [in] Headroom of &

void vect_s16_scale_prepare(exponent_t *a_exp, right_shift_t *a_shr, const exponent_t b_exp, const
exponent_t c_exp, const headroom_t b_hr, const headroom_t c_hr)

Obtain the output exponent and output shift used by vect_s76_scale().

This function is used in conjunction with vect_s76_scale() to perform multiplication of a 16-bit BFP
vector b - 2%-°*P by a 16-bit scalar ¢ - 2¢-¢*P_ The result is another 16-bit BFP vector a - 22-¢%P.

This function computes a_exp and a_shr.
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a_exp is the exponent associated with mantissa vector @, and must be chosen to be large enough
to avoid overflow when elements of @ are computed. To maximize precision, this function chooses
a_exp to be the smallest exponent known to avoid saturation (see exception below). The a_exp
chosen by this function is derived from the exponents and headrooms of associated with the in-
puts.

a_shr is an arithmetic right-shift applied by vect_complex_si6_scale() to the 32-bit products of
input elements to achieve the chosen output exponent a_exp.

b_exp and c_exp are the exponents associated with b and ¢ respectively.

b_hr and c_hr are the headroom of b and ¢ respectively. If the headroom of b or ¢ are unknown,
they can be obtained by calling vect_s76_headroom(). Alternatively, the value @ can always be safely
used (but may result in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the a_shr produced by this function can be adjusted according to the fol-
lowing:

exponent_t a_exp;

right_shift_t a_shr;

vect_s16_scale_prepare(&a_exp, &a_shr, b_exp, c_exp, b_hr, c_hr);

exponent_t desired_exp = ...; // Value known a priori

a_shr = a_shr + (desired_exp - a_exp);

a_exp = desired_exp;

When applying the above adjustment, the following conditions should be maintained:
* a_shr >= 0

Be aware that using a smaller value than strictly necessary for a_shr can result in saturation,
and using larger values may result in unnecessary underflows or loss of precision.

Notes

- Using the outputs of this function, an output mantissa which would otherwise be
INT16_MIN will instead saturate to -INT16_MAX. This is due to the symmetric saturation
logic employed by the VPU and is a hardware feature. This is a corner case which is usu-
ally unlikely and results in 1 LSb of error when it occurs.

See also:

vect_s16_scale

Parameters
- a_exp — [out] Exponent of output elements of vect s76_scale()
- a_shr — [out] Right-shift supplied to vect_s76_scale()
- b_exp — [in] Exponent associated with b
+ c_exp — [in] Exponent associated with &

* b_hr - [in] Headroom of b



+ ¢_hr — [in] Headroom of &

void vect_s16_sqrt_prepare(exponent_t *a_exp, right_shift_t *b_shr, const exponent_t b_exp, const
right_shift_t b_hr)

Obtain the output exponent and shift parameter used by vect s76_sqrt().

This function is used in conjunction withx vect_s76_sqgrt() to compute the square root of elements
of a 16-bit BFP vector.

This function computes a_exp and b_shr.

a_exp is the exponent associated with output mantissa vector a, and should be chosen to max-
imize the precision of the results. To that end, this function chooses a_exp to be the smallest
exponent known to avoid saturation of the resulting mantissa vector a. It is derived from the ex-
ponent and headroom of the input BFP vector.

b_shr is the shift parameter required by vect s76_sqrt() to achieve the chosen output exponent
a_exp.

b_exp is the exponent associated with the input mantissa vector b.

b_hr is the headroom of b. If it is unknown, it can be obtained using vect_s16_headroom(). Alter-
natively, the value @ can always be safely used (but may result in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the b_shr produced by this function can be adjusted according to the fol-
lowing:

exponent_t a_exp;

right_shift_t b_shr;

vect_s16_mul_prepare(&a_exp, &b_shr, b_exp, c_exp, b_hr, c_hr);

exponent_t desired_exp = ...; // Value known a priori

b_shr = b_shr + (desired_exp - a_exp);

a_exp = desired_exp;

When applying the above adjustment, the following condition should be maintained:
* b_hr + b_shr >=0

Be aware that using smaller values than strictly necessary for b_shr can result in saturation,
and using larger values may result in unnecessary underflows or loss of precision.

Also, if alarger exponent is used than necessary, a larger depth parameter (see vect_s16_sqrt())
will be required to achieve the same precision, as the results are computed bit by bit, starting
with the most significant bit.

See also:

vect_s16_sqrt

Parameters
- a_exp — [out] Exponent of outputs of vect_s76_sqgrt()
- b_shr — [out] Right-shift to be applied to elements of b
» b_exp — [in] Exponent of vector{b}

* b_hr — [in] Headroom of vector{b}
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Defines

vect_s32_add_scalar_prepare

Obtain the output exponent and shifts required for a call to vect_s32_add_scalar().

The logic for computing the shifts and exponents of vect_s32_add_scalar() is identical to that
for vect_s32_add().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_s32_add_prepare()

vect_s32_nmacc_prepare

Obtain the output exponent and shifts required for a call to vect_s32_nmacc().

The logic for computing the shifts and exponents of vect_s32_nmacc() is identical to that for
vect_s32_macc_prepare().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_s32_macc_prepare(), vect_s32_nmacc()

vect_s32_scale_prepare

Obtain the output exponent and shifts required for a call to vect_s32_scale().

The logic for computing the shifts and exponents of vect_s32_scale() is identical to that for
vect_s32_mul().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_s32_mul_prepare()

vect_s32_sub_prepare

Obtain the output exponent and shifts required for a call to vect_s32_sub().

The logic for computing the shifts and exponents of vect_s32_sub() is identical to that for
vect_s32_add().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_s32_add_prepare()



Functions

void vect_s32_add_prepare(exponent_t *a_exp, right_shift_t *b_shr, right_shift_t *c_shr, const
exponent_t b_exp, const exponent_t c_exp, const headroom_t b_hr, const
headroom_t c_hr)

Obtain the output exponent and input shifts to add or subtract two 16- or 32-bit BFP vectors.

The block floating-point functions in this library which add or subtract vectors are of the general
form:

a - 20-erp — 6 . 2b_ezp 4+ ¢ . 9c-exp }

b and ¢ are the input mantissa vectors with exponents b_exp and c_exp, which are shared by each
element of their respective vectors. a is the output mantissa vector with exponent a_exp. Two ad-
ditional properties, b_hr and c_hr, which are the headroom of mantissa vectors b and é respectively,
are required by this function.

In order to avoid any overflows in the output mantissas, the output exponent a_exp must be chosen
such that the largest (in the sense of absolute value) possible output mantissa will fit into the
allotted space (e.g. 32 bits for vect_s32_add()). Once a_ezp is chosen, the input bit-shifts b_shr
and c_shr are calculated to achieve that resulting exponent.

This function chooses a_exp to be the minimum exponent known to avoid overflows, given the
input exponents ( b_exp and c_exp) and input headroom ( b_hr and c_hr).

This function is used calculate the output exponent and input bit-shifts for each of the following
functions:

+ vect_sT16_add()
+ vect_s32_add()
« vect_sT16_sub()
+ vect_s32_sub()
+ vect_.complex_s16_add()
- vect_complex_s32_add()
+ vect_.complex_s16_sub()

+ vect_.complex_s32_sub()
Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the b_shr and c_shr produced by this function can be adjusted according
to the following:

exponent_t desired_exp = ...; // Value known a priori

right_shift_t new_b_shr = b_shr + (desired_exp - a_exp);

right_shift_t new_c_shr = c_shr + (desired_exp - a_exp);

When applying the above adjustment, the following conditions should be maintained:
* b_hr + b_shr >= 0
* c_hr + c_shr >= 0

Be aware that using smaller values than strictly necessary for b_shr and c_shr can result in
saturation, and using larger values may result in unnecessary underflows or loss of precision.
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Notes

« If b_hr or c_hr are unknown, they can be calculated using the appropriate headroom func-
tion (e.g. vect_complex_s16_headroom() for complex 16-bit vectors) or the value @ can
always be safely used (but may result in reduced precision).

See also:
vect_sT6_add, vect_s32_add, vect_s16_sub, vect_s32_sub, vect_complex_sT16_add,
vect_complex_s32_add, vect_complex_s16_sub, vect_complex_s32_sub
Parameters
- a_exp — [out] Output exponent associated with output mantissa vector a

- b_shr — [out] Signed arithmetic right-shift to be applied to elements of b. Used by
the function which computes the output mantissas a

- c_shr — [out] Signed arithmetic right-shift to be applied to elements of ¢. Used by
the function which computes the output mantissas a

- b_exp — [in] Exponent of BFP vector b
+ c_exp — [in] Exponent of BFP vector ¢
* b_hr — [in] Headroom of BFP vector b

+ c_hr - [in] Headroom of BFP vector &

void vect_s32_clip_prepare(exponent_t *a_exp, right_shift_t *b_shr, int32_t *lower_bound, int32_t

*upper_bound, const exponent_t b_exp, const exponent_t bound_exp,
const headroom_t b_hr)

Obtain the output exponent, input shift and modified bounds used by vect_s32_clip().

This function is used in conjunction with vect_s32_clip() to bound the elements of a 32-bit BFP
vector to a specified range.

This function computes a_exp, b_shr, lower_bound and upper_bound.
a_exp is the exponent associated with the 32-bit mantissa vector a computed by vect_s32_clip().
b_shr is the shift parameter required by vect_s32_clip() to achieve the output exponent a_exp.

lower _bound and upper_bound are the 32-bit mantissas which indicate the lower and upper clip-
ping bounds respectively. The values are modified by this function, and the resulting values should
be passed along to vect_s32_clip().

b_exp is the exponent associated with the input mantissa vector b.

bound_exp is the exponent associated with the bound mantissas lower_bound and upper_bound
respectively.

b_hr is the headroom of b. If unknown, it can be obtained using vect_s32_headroom(). Alternatively,
the value @ can always be safely used (but may result in reduced precision).

See also:

vect_s32_clip

Parameters

- a_exp — [out] Exponent associated with output mantissa vector a



- b_shr — [out] Signed arithmetic right-shift for b used by vect s32_clip()
+ lower_bound - [inout] Lower bound of clipping range

+ upper_bound — [inout] Upper bound of clipping range

- b_exp — [in] Exponent associated with input mantissa vector b

* bound_exp — [in] Exponent associated with clipping bounds lower_bound and
upper_bound

« b_hr — [in] Headroom of input mantissa vector b
void vect_s32_dot_prepare(exponent_t *a_exp, right_shift_t *b_shr, right_shift_t *c_shr, const

exponent_t b_exp, const exponent_t c_exp, const headroom_t b_hr, const
headroom_t c_hr, const unsigned length)

Obtain the output exponent and input shift used by vect_s32_dot().

This function is used in conjunction with vect_s32_dot() to compute the inner product of two 32-bit
BFP vectors.

This function computes a_exp, b_shr and c_shr.

a_exp is the exponent associated with the 64-bit mantissa a returned by vect_s32_dot(), and must
be chosen to be large enough to avoid saturation when a is computed. To maximize precision, this
function chooses a_exp to be the smallest exponent known to avoid saturation (see exception be-
low). The a_exp chosen by this function is derived from the exponents and headrooms associated
with the input vectors.

b_shr and c_shr are the shift parameters required by vect_s32_dot() to achieve the chosen output
exponent a_exp.

b_exp and c_exp are the exponents associated with the input mantissa vectors b and ¢ respectively.

b_hr and c_hr are the headroom of b and @ respectively. If either is unknown, they can be obtained
using vect_s32_headroom(). Alternatively, the value @ can always be safely used (but may result in
reduced precision).

length is the number of elements in the input mantissa vectors b and .
Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the b_shr and c_shr produced by this function can be adjusted according
to the following:

exponent_t desired_exp = ...; // Value known a priori

right_shift_t new_b_shr = b_shr + (desired_exp - a_exp);

right_shift_t new_c_shr = c_shr + (desired_exp - a_exp);

When applying the above adjustment, the following conditions should be maintained:
* b_hr + b_shr >=0

* c_hr + c_shr >= 0

Be aware that using smaller values than strictly necessary for b_shr or c_shr can result in
saturation, and using larger values may result in unnecessary underflows or loss of precision.

See also:

vect_s32_dot
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Parameters
- a_exp — [out] Exponent associated with output mantissa a
- b_shr — [out] Signed arithmetic right-shift for b used by vect s32_dot()
- c_shr — [out] Signed arithmetic right-shift for ¢ used by vect_s32_dot()
- b_exp — [in] Exponent associated with input mantissa vector b
- c_exp — [in] Exponent associated with input mantissa vector b
« b_hr — [in] Headroom of input mantissa vector b
« c_hr — [in] Headroom of input mantissa vector b

+ length — [in] Number of elements in vectors b and &

void vect_s32_energy_prepare(exponent_t *a_exp, right_shift_t *b_shr, const unsigned length, const

exponent_t b_exp, const headroom_t b_hr)
Obtain the output exponent and input shift used by vect_s32_energy().

This functionis used in conjunction with vect_s32_energy() to compute the inner product of a 32-bit
BFP vector with itself.

This function computes a_exp and b_shr.

a_exp is the exponent associated with the 64-bit mantissa a returned by vect_s32_energy(), and
must be chosen to be large enough to avoid saturation when a is computed. To maximize pre-
cision, this function chooses a_exp to be the smallest exponent known to avoid saturation (see
exception below). The a_exp chosen by this function is derived from the exponent and headroom
associated with the input vector.

b_shr is the shift parameter required by vect_s32_energy() to achieve the chosen output exponent
a_exp.

b_exp is the exponent associated with the input mantissa vector b.

b_hr is the headroom of b. If it is unknown, it can be obtained using vect_s32_headroom(). Alter-
natively, the value @ can always be safely used (but may result in reduced precision).

length is the number of elements in the input mantissa vector b.

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the b_shr produced by this function can be adjusted according to the fol-
lowing:

exponent_t desired_exp = ...; // Value known a priori
right_shift_t new_b_shr = b_shr + (desired_exp - a_exp);

When applying the above adjustment, the following condition should be maintained:
* b_hr + b_shr >= 0

Be aware that using smaller values than strictly necessary for b_shr can result in saturation,
and using larger values may result in unnecessary underflows or loss of precision.

See also:

vect_s32_energy

Parameters



- a_exp — [out] Exponent of outputs of vect_s32_energy()
- b_shr — [out] Right-shift to be applied to elements of b
+ length — [in] Number of elements in vector b

» b_exp — [in] Exponent of vector{b}

* b_hr - [in] Headroom of vector{b}

void vect_s32_inverse_prepare(exponent_t *a_exp, unsigned *scale, const int32_t b[], const
exponent_t b_exp, const unsigned length)

Obtain the output exponent and scale used by vect s32_inverse().

This function is used in conjunction with vect_s32_inverse() to compute the inverse of elements of
a 32-bit BFP vector.

This function computes a_exp and scale.

a_exp is the exponent associated with output mantissa vector a, and must be chosen to avoid
overflow in the smallest element of the input vector, which when inverted becomes the largest
output element. To maximize precision, this function chooses a_exp to be the smallest exponent
known to avoid saturation. The a_exp chosen by this function is derived from the exponent and
smallest element of the input vector.

scale is a scaling parameter used by vect_s32_inverse() to achieve the chosen output exponent.
b[] is the input mantissa vector b.
b_exp is the exponent associated with the input mantissa vector b.

length is the number of elements in b.

See also:

vect_s32_inverse

Parameters
- a_exp — [out] Exponent of output vector a
- scale — [out] Scale factor to be applied when computing inverse
« b - [in] Input vector b
- b_exp — [in] Exponent of b
+ length — [in] Number of elements in vector b
void vect_s32_macc_prepare(exponent_t *new_acc_exp, right_shift_t *acc_shr, right_shift_t *b_shr,
right_shift_t *c_shr, const exponent_t acc_exp, const exponent_t b_exp,

const exponent_t c_exp, const headroom_t acc_hr, const headroom_t
b_hr, const headroom_t c_hr)

Obtain the output exponent and shifts needed by vect_s32_macc().

This function is used in conjunction with vect_s32_macc() to perform an element-wise multiply-
accumlate of 32-bit BFP vectors.

This function computes new_acc_exp, acc_shr, b_shr and c_shr, which are selected to maximize
precision in the resulting accumulator vector without causing saturation of final or intermediate val-
ues. Normally the caller will pass these outputs to their corresponding inputs of vect_s32_macc().

acc_exp is the exponent associated with the accumulator mantissa vector a prior to the operation,
whereas new_acc_exp is the exponent corresponding to the updated accumulator vector.

b_exp and c_exp are the exponents associated with the complex input mantissa vectors b and &
respectively.

245 Y 4



acc_hr,b_hrand c_hr are the headrooms of @, b and ¢ respectively. If the headroom of any of these
vectors is unknown, it can be obtained by calling vect_s32_headroom(). Alternatively, the value @
can always be safely used (but may result in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the acc_shr and bc_sat produced by this function can be adjusted according
to the following:

// Presumed to be set somewhere
exponent_t acc_exp, b_exp, c_exp;
headroom_t acc_hr, b_hr, c_hr;
exponent_t desired_exp;

// Call prepare
right_shift_t acc_shr, b_shr, c_shr;
vect_s32_macc_prepare(&acc_exp, &acc_shr, &b_shr, &c_shr
acc_exp, b_exp, c_exp,
acc_hr, b_hr, c_hr);

// Modify results

right_shift_t mant_shr = desired_exp - acc_exp;
acc_exp += mant_shr;

acc_shr += mant_shr;

b_shr += mant_shr;

c_shr += mant_shr;

// acc_shr, b_shr and c_shr may now be used in a call to vect_s32_macc()

When applying the above adjustment, the following conditions should be maintained:
+ acc_shr > -acc_hr (Shifting any further left may cause saturation)
« b_shr => -b_hr (Shifting any further left may cause saturation)
+ c_shr => -c_hr (Shifting any further left may cause saturation)

It is up to the user to ensure any such modification does not result in saturation or unaccept-
able loss of precision.

See also:

vect_s32_macc

Parameters

- new_acc_exp — [out] Exponent associated with output mantissa vector a (after
macc)

+ acc_shr — [out] Signed arithmetic right-shift used for @ in vect_s32_macc()

« b_shr — [out] Signed arithmetic right-shift used for b in vect_s32_macc()

+ c_shr - [out] Signed arithmetic right-shift used for éin vect_s32_macc()

- acc_exp — [in] Exponent associated with input mantissa vector a (before macc)

- b_exp — [in] Exponent associated with input mantissa vector b
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+ c_exp — [in] Exponent associated with input mantissa vector &
+ acc_hr - [in] Headroom of input mantissa vector a (before macc)
« b_hr — [in] Headroom of input mantissa vector b
+ ¢_hr - [in] Headroom of input mantissa vector &
void vect_s32_mul_prepare(exponent_t *a_exp, right_shift_t *b_shr, right_shift_t *c_shr, const

exponent_t b_exp, const exponent_t c_exp, const headroom_t b_hr, const
headroom_t c_hr)

Obtain the output exponent and input shifts used by vect_s32_mul().

This function is used in conjunction with vect_s32_mul() to perform an element-wise multiplication
of two 32-bit BFP vectors.

This function computes a_exp, b_shr, c_shr.

a_exp is the exponent associated with mantissa vector a, and must be chosen to be large enough
to avoid overflow when elements of @ are computed. To maximize precision, this function chooses
a_exp to be the smallest exponent known to avoid saturation (see exception below). The a_exp
chosen by this function is derived from the exponents and headrooms of associated with the input
vectors.

b_shr and c_shr are the shift parameters required by vect_complex_s32_mul() to achieve the cho-
sen output exponent a_exp.

b_exp and c_exp are the exponents associated with the input mantissa vectors b and ¢ respectively.

b_hr and c_hr are the headroom of b and & respectively. If the headroom of b or & is unknown, they
can be obtained by calling vect_s32_headroom(). Alternatively, the value @ can always be safely
used (but may result in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the b_shr and c_shr produced by this function can be adjusted according
to the following:

exponent_t desired_exp = ...; // Value known a priori

right_shift_t new_b_shr = b_shr + (desired_exp - a_exp);

right_shift_t new_c_shr = c_shr + (desired_exp - a_exp);

When applying the above adjustment, the following conditions should be maintained:
* b_hr + b_shr >=0
* c_hr + c_shr >= 0

Be aware that using smaller values than strictly necessary for b_shr and c_shr can result in
saturation, and using larger values may result in unnecessary underflows or loss of precision.

Notes

-+ Using the outputs of this function, an output mantissa which would otherwise be
INT32_MIN will instead saturate to -INT32_MAX. This is due to the symmetric saturation
logic employed by the VPU and is a hardware feature. This is a corner case which is usu-
ally unlikely and results in 1 LSb of error when it occurs.
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See also:

vect_s32_mul

Parameters
- a_exp — [out] Exponent of output elements of vect_s32_mul()
- b_shr — [out] Right-shift to be applied to elements of b
+ c_shr — [out] Right-shift to be applied to elemetns of &
- b_exp — [in] Exponent of b
+ c_exp — [in] Exponent of &
+ b_hr - [in] Headroom of b

+ c_hr — [in] Headroom of &

void vect_s32_sqrt_prepare(exponent_t *a_exp, right_shift_t *b_shr, const exponent_t b_exp, const

right_shift_t b_hr)
Obtain the output exponent and shift parameter used by vect _s32_sqrt().

This function is used in conjunction withx vect_s32_sqrt() to compute the square root of elements
of a 32-bit BFP vector.

This function computes a_exp and b_shr.

a_exp is the exponent associated with output mantissa vector @, and should be chosen to max-
imize the precision of the results. To that end, this function chooses a_exp to be the smallest
exponent known to avoid saturation of the resulting mantissa vector a. It is derived from the ex-
ponent and headroom of the input BFP vector.

b_shr is the shift parameter required by vect_s32_sqrt() to achieve the chosen output exponent
a_exp.

b_exp is the exponent associated with the input mantissa vector b.

b_hr is the headroom of b. If it is unknown, it can be obtained using vect_s32_headroom(). Alter-
natively, the value @ can always be safely used (but may result in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the b_shr produced by this function can be adjusted according to the fol-
lowing:

exponent_t a_exp;

right_shift_t b_shr;

vect_s16_mul_prepare(&a_exp, &b_shr, b_exp, c_exp, b_hr, c_hr);
exponent_t desired_exp = ...; // Value known a priori

b_shr = b_shr + (desired_exp - a_exp);

a_exp = desired_exp;

When applying the above adjustment, the following condition should be maintained:
* b_hr + b_shr >= 0

Be aware that using smaller values than strictly necessary for b_shr can result in saturation,
and using larger values may result in unnecessary underflows or loss of precision.
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Also, if a larger exponent is used than necessary, a larger depth parameter (see
vect_s32_sqrt()) will be required to achieve the same precision, as the results are computed
bit by bit, starting with the most significant bit.

See also:

vect_s32_sqgrt

Parameters
- a_exp — [out] Exponent of outputs of vect_s32_sqrt()
« b_shr — [out] Right-shift to be applied to elements of b
* b_exp — [in] Exponent of vector{b}

+ b_hr - [in] Headroom of vector{b}

void vect_2vec_prepare(exponent_t *a_exp, right_shift_t *b_shr, right_shift_t *c_shr, const exponent_t

b_exp, const exponent_t c_exp, const headroom_t b_hr, const headroom_t
c_hr, const headroom_t extra_operand_hr)

Obtain the output exponent and input shifts required to perform a binary add-like operation.

This function computes the output exponent and input shifts required for BFP operations which
take two vectors as input, where the operation is “add-like”.

Here, “add-like” operations are loosely defined as those which require input vectors to share an
exponent before their mantissas can be meaningfully used to perform that operation.

For example, consider adding 3-2* +4-2Y. If x = y, then the mantissas can be added directly to get
a meaningful result (3 + 4) - 2%. If x # y however, adding the mantissas together is meaningless.
Before the mantissas can be added in this case, one or both of the input mantissas must be shifted
so that the representations correspond to the same exponent. Likewise, similar logic applies to
binary comparisons.

This is in contrast to a “multiply-like” operation, which does not have this same requirement (e.g.
a-2%-b-2Y = ab-2°"Y regardless of whether z = y).

For a general operation like:
a - 20-€Tp — B . 2b_exp @ ¢ - c-eTp

b and ¢ are the input mantissa vectors with exponents b_exp and c_exp, which are shared by each
element of their respective vectors. @ is the output mantissa vector with exponent a_exp. Two ad-
ditional properties, b_hr and c_hr, which are the headroom of mantissa vectors b and ¢ respectively,
are required by this function.

In addition to a_exp, this function computes b_shr and c_shr, signed arithmetic right-shifts applied
to the mantissa vectors b and ¢ so that the add-like @ operation can be applied.

This function chooses a_exp to be the minimum exponent which can be used to express both
B and C without saturation of their mantissas, and which leaves both b and ¢ with at least
extra_operand_hr bits of headroom. The shifts b_shr and c_shr are derived from a_exp using
b_exp and c_exp.

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the b_shr and c_shr produced by this function can be adjusted according
to the following:



exponent_t desired_exp = ...; // Value known a priori

right_shift_t new_b_shr = b_shr + (desired_exp - a_exp);

right_shift_t new_c_shr = c_shr + (desired_exp - a_exp);

When applying the above adjustment, the following conditions should be maintained:
* b_hr + b_shr >= 0
* c_hr + c_shr >= 0

Be aware that using smaller values than strictly necessary for b_shr and c_shr can result in
saturation, and using larger values may result in unnecessary underflows or loss of precision.

Notes

« If b_hr or c_hr are unknown, they can be calculated using the appropriate headroom func-
tion (e.g. vect_complex_s16_headroom() for complex 16-bit vectors) or the value @ can
always be safely used (but may result in reduced precision).

Parameters

- a_exp — [out] Output exponent associated with output mantissa vector a

« b_shr — [out] Signed arithmetic right-shift to be applied to elements of b. Used by
the function which computes the output mantissas a

- c_shr — [out] Signed arithmetic right-shift to be applied to elements of ¢. Used by
the function which computes the output mantissas a

- b_exp — [in] Exponent of BFP vector b
+ c_exp — [in] Exponent of BFP vector &
+ b_hr - [in] Headroom of BFP vector b
« c_hr - [in] Headroom of BFP vector ¢

+ extra_operand_hr — [in] The minimum amount of headroom that will be left in the
mantissa vectors following the arithmetic right-shift, as required by some opera-
tions.

4.7.11 16-Bit Complex Vector Prepare Functions

group vect_complex_s16_prepare_api
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Defines

vect_complex_s16_add_prepare

Obtain the output exponent and shifts required for a call to vect_complex_si6_add().

The logic for computing the shifts and exponents of vect_complex_s16_add() is identical to that
for vect_s32_add().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_s32_add_prepare()

vect_complex_s16_add_scalar_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s16_add_scalar().

The logic for computing the shifts and exponents of vect_complex_s16_add_scalar() is identical
to that for vect_s32_add().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_s16_add_prepare()

vect_complex_s16_conj_mul_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s16_conj_mul().

The logic for computing the shifts and exponents of vect_complex_si6_conj_mul() is identical to
that for vect_complex_s16_mul().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_complex_s16_mul_prepare()

vect_complex_s16_nmacc_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s16_nmacc().

The logic for computing the shifts and exponents of vect_complex_si6_nmacc( ) is identical to that
for vect_complex_s16_macc().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_complex_s16_macc_prepare(), vect_complex_s16_nmacc()

vect_complex_s16_conj_macc_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s16_conj_macc().

The logic for computing the shifts and exponents of vect_complex_s16_conj_macc() is identical
to that for vect_complex_si6_macc().

This macro is provided as a convenience to developers and to make the code more readable.
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See also:

vect_complex_s16_macc_prepare(), vect_complex_s16_conj_macc()

vect_complex_s16_conj_nmacc_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s16_conj_nmacc().

The logic for computing the shifts and exponents of vect_complex_s16_conj_nmacc() is identical
to that for vect_complex_si16_macc().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_complex_s16_macc_prepare(), vect_complex_s16_conj_nmacc()

vect_complex_s16_mag_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s16_mag().

The logic for computing the shifts and exponents of vect_complex_s16_mag() is identical to that
for vect_complex_s32_mag().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_complex_s32_mag_prepare()

vect_complex_s16_real_scale_prepare

Obtain the output exponent and shifts required for a call to vect_complex_sTé_real_scale().

The logic for computing the shifts and exponents of vect_complex_s16_real_scale() is identical
to that for vect_s32_scale().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_s16_scale_prepare()

vect_complex_s16_scale_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s16_scale().

The logic for computing the shifts and exponents of vect_complex_s16_scale( ) isidentical to that
for vect_complex_s32_mul().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_complex_s16_mul_prepare()

vect_complex_s16_sub_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s16_sub().

The logic for computing the shifts and exponents of vect_complex_si6_sub() is identical to that
for vect_s32_add().

This macro is provided as a convenience to developers and to make the code more readable.
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See also:

vect_s32_add_prepare()

Functions

void vect_complex_s16_macc_prepare(exponent_t *new_acc_exp, right_shift_t *acc_shr, right_shift_t

*bc_sat, const exponent_t acc_exp, const exponent_t b_exp,
const exponent_t c_exp, const headroom_t acc_hr, const
headroom_t b_hr, const headroom_t ¢c_hr)

Obtain the output exponent and shifts needed by vect_complex_s16_macc().

This function is used in conjunction with vect_complex_s16_macc() to perform an element-wise
multiply-accumlate of complex 16-bit BFP vectors.

This function computes new_acc_exp and acc_shr and bc_sat, which are selected to maxi-
mize precision in the resulting accumulator vector without causing saturation of final or inter-
mediate values. Normally the caller will pass these outputs to their corresponding inputs of
vect_complex_s16_macc().

acc_exp is the exponent associated with the accumulator mantissa vector a prior to the operation,
whereas new_acc_exp is the exponent corresponding to the updated accumulator vector.

b_exp and c_exp are the exponents associated with the complex input mantissa vectors b and é
respectively.

acc_hr,b_hr and c_hr are the headrooms of @, b and é respectively. If the headroom of any of these
vectors is unknown, it can be obtained by calling vect_complex_s16_headroom(). Alternatively, the
value o can always be safely used (but may result in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the acc_shr and bc_sat produced by this function can be adjusted according
to the following:

// Presumed to be set somewhere
exponent_t acc_exp, b_exp, c_exp;
headroom_t acc_hr, b_hr, c_hr;
exponent_t desired_exp;

// Call prepare

right_shift_t acc_shr, bc_sat;

vect_complex_s16_macc_prepare(&acc_exp, &acc_shr, &bc_sat,
acc_exp, b_exp, c_exp,
acc_hr, b_hr, c_hr);

// Modify results

right_shift_t mant_shr = desired_exp - acc_exp;
acc_exp += mant_shr;

acc_shr += mant_shr;

bc_sat += mant_shr;

// acc_shr and bc_sat may now be used in a call to vect_complex_sl6_macc()
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When applying the above adjustment, the following conditions should be maintained:
* bc_sat >= 0 (bc_sat is an unsigned right-shift)
+ acc_shr > -acc_hr (Shifting any further left may cause saturation)

It is up to the user to ensure any such modification does not result in saturation or unaccept-
able loss of precision.

See also:

vect_complex_s16_macc

Parameters

- new_acc_exp — [out] Exponent associated with output mantissa vector a (after
macc)

- acc_shr — [out] Signed arithmetic right-shift used for @ in vect_complex_s16_macc()

* be_sat — [out] Unsigned arithmetic right-shift applied to the product of elements by,
and ¢, in vect_complex_s16_macc()

- acc_exp — [in] Exponent associated with input mantissa vector a (before macc)
- b_exp — [in] Exponent associated with input mantissa vector b

- c_exp — [in] Exponent associated with input mantissa vector &

+ acc_hr — [in] Headroom of input mantissa vector a (before macc)

« b_hr — [in] Headroom of input mantissa vector b

+ c¢_hr - [in] Headroom of input mantissa vector ¢

void vect_complex_s16_mul_prepare(exponent_t *a_exp, right_shift_t *a_shr, const exponent_t b_exp,

const exponent_t c_exp, const headroom_t b_hr, const
headroom_t c_hr)

Obtain the output exponent and output shift used by vect_.complex_sT6_mul() and
vect_complex_s16_conj_mul().

This function is used in conjunction with vect_complex_s16_mul() to perform a complex element-
wise multiplication of two complex 16-bit BFP vectors.

This function computes a_exp and a_shr.

a_exp is the exponent associated with mantissa vector a, and must be chosen to be large enough
to avoid overflow when elements of @ are computed. To maximize precision, this function chooses
a_exp to be the smallest exponent known to avoid saturation (see exception below). The a_exp
chosen by this function is derived from the exponents and headrooms of associated with the input
vectors.

a_shr is the shift parameter required by vect_complex_s16_mul() to achieve the chosen output
exponent a_exp.

b_exp and c_exp are the exponents associated with the input mantissa vectors b and ¢ respectively.

b_hr and c_hr are the headroom of b and ¢ respectively. If the headroom of b or ¢ is unknown, they
can be obtained by calling vect_complex_s16_headroom(). Alternatively, the value 8 can always be
safely used (but may result in reduced precision).

Adjusting Output Exponents
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If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the a_shr and c_shr produced by this function can be adjusted according
to the following:

exponent_t desired_exp = ...; // Value known a priori

right_shift_t new_a_shr = a_shr + (desired_exp - a_exp);

When applying the above adjustment, the following conditions should be maintained:
* new_a_shr >= 0

Be aware that using smaller values than strictly necessary for a_shr can result in saturation,
and using larger values may result in unnecessary underflows or loss of precision.

Notes

+ Using the outputs of this function, an output mantissa which would otherwise be
INT16_MIN will instead saturate to -INT16_MAX. This is due to the symmetric saturation
logic employed by the VPU and is a hardware feature. This is a corner case which is usu-
ally unlikely and results in 1 LSb of error when it occurs.

See also:

vect_complex_s16_conj_mul, vect_complex_s16_mul

Parameters
- a_exp — [out] Exponent associated with output mantissa vector a
- a_shr — [out] Unsigned arithmetic right-shift for b used by vect_complex_s16_mul()
- b_exp — [in] Exponent associated with input mantissa vector b
+ c_exp — [in] Exponent associated with input mantissa vector &
+ b_hr — [in] Headroom of input mantissa vector b

+ ¢_hr - [in] Headroom of input mantissa vector &

void vect_complex_s16_real_mul_prepare(exponent_t *a_exp, right_shift_t *a_shr, const exponent_t

b_exp, const exponent_t c_exp, const headroom_t b_hr,
const headroom_t c_hr)

Obtain the output exponent and output shift used by vect_complex_si6_real_mul().

This function is used in conjunction with vect_complex_sT6_real_mul() to perform a complex
element-wise multiplication of a complex 16-bit BFP vector by a real 16-bit vector.

This function computes a_exp and a_shr.

a_exp is the exponent associated with mantissa vector @, and must be chosen to be large enough
to avoid overflow when elements of @ are computed. To maximize precision, this function chooses
a_exp to be the smallest exponent known to avoid saturation (see exception below). The a_exp
chosen by this function is derived from the exponents and headrooms of associated with the input
vectors.

a_shr is the shift parameter required by vect_complex_s16_real_mul() to achieve the chosen output
exponent a_exp.

b_exp and c_exp are the exponents associated with the input mantissa vectors b and ¢ respectively.
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b_hr and c_hr are the headroom of b and & respectively. If the headroom of b or & is unknown, they
can be obtained by calling vect_complex_s16_headroom(). Alternatively, the value @ can always be

safely used (but may result in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the a_shr and c_shr produced by this function can be adjusted according

to the following:

exponent_t desired_exp = ...; // Value known a priori
right_shift_t new_a_shr = a_shr + (desired_exp - a_exp);

When applying the above adjustment, the following conditions should be maintained:

* new_a_shr >= 0

Be aware that using smaller values than strictly necessary for a_shr can result in saturation,

and using larger values may result in unnecessary underflows or loss of precision.

Notes

+ Using the outputs of this function, an output mantissa which would otherwise be
INT16_MIN will instead saturate to -INT16_MAX. This is due to the symmetric saturation
logic employed by the VPU and is a hardware feature. This is a corner case which is usu-

ally unlikely and results in 1 LSb of error when it occurs.

See also:

vect_complex_s16_real_mul

Parameters
- a_exp — [out] Exponent associated with output mantissa vector a

- a_shr — [outl] Unsigned arithmetic right-shift for a used
vect_complex_s16_real_mul()

- b_exp — [in] Exponent associated with input mantissa vector b
- c_exp — [in] Exponent associated with input mantissa vector &
« b_hr — [in] Headroom of input mantissa vector b
+ c_hr - [in] Headroom of input mantissa vector ¢

void vect_complex_s16_squared_mag_prepare(exponent_t *a_exp, right_shift_t *a_shr, const
exponent_t b_exp, const headroom_t b_hr)

Obtain the output exponent and input shift used by vect_complex_s16_squared_mag().

by

This function is used in conjunction with vect complex_s16_squared_mag() to compute the

squared magnitude of each element of a complex 16-bit BFP vector.

This function computes a_exp and a_shr.

a_exp is the exponent associated with mantissa vector a, and is be chosen to maximize precision
when elements of @ are computed. The a_exp chosen by this function is derived from the exponent

and headroom associated with the input vector.



a_shr is the shift parameter required by vect_complex_s16_mag() to achieve the chosen output
exponent a_exp.

b_exp is the exponent associated with the input mantissa vector b.

b_hr is the headroom of b. If the headroom of b is unknown it can be calculated using
vect_complex_s16_headroom(). Alternatively, the value @ can always be safely used (but may result
in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the a_shr produced by this function can be adjusted according to the fol-
lowing:

exponent_t a_exp;

right_shift_t a_shr;

vect_s16_mul_prepare(&a_exp, &a_shr, b_exp, c_exp, b_hr, c_hr);

exponent_t desired_exp = ...; // Value known a priori

a_shr = a_shr + (desired_exp - a_exp);

a_exp = desired_exp;

When applying the above adjustment, the following condition should be maintained:
* a_shr >= 0

Using larger values than strictly necessary for a_shr may result in unnecessary underflows or
loss of precision.

See also:

vect_complex_s16_squared_mag()

Parameters
- a_exp — [out] Output exponent associated with output mantissa vector a

a_shr - Jout] Unsigned arithmetic right-shift for @ used by
vect_complex_s16_squared_mag()

- b_exp — [in] Exponent associated with input mantissa vector b

« b_hr — [in] Headroom of input mantissa vector b

4.7.12 32-Bit Complex Vector Prepare Functions

group vect_complex_s32_prepare_api
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Defines

vect_complex_s32_add_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s32_add().

The logic for computing the shifts and exponents of vect_complex_s32_add() is identical to that
for vect_s32_add().

This macro is provided as a convenience to developers and to make the code more coherent.

See also:

vect_s32_add_prepare()

vect_complex_s32_add_scalar_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s32_add_scalar().

The logic for computing the shifts and exponents of vect_complex_s32_add_scalar() is identical
to that for vect_s32_add().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_s32_add_prepare()

vect_complex_s32_conj_mul_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s32_conj_mul().

The logic for computing the shifts and exponents of vect_complex_s32_conj_mul() is identical to
that for vect_complex_s32_mul().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_complex_s32_mul_prepare()

vect_complex_s32_nmacc_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s32_nmacc().

The logic for computing the shifts and exponents of vect_complex_s32_nmacc( ) is identical to that
for vect_complex_s32_macc_prepare().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_complex_s32_macc_prepare(), vect_complex_s32_nmacc()

vect_complex_s32_conj_macc_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s32_conj_macc().

The logic for computing the shifts and exponents of vect_complex_s32_conj_macc() is identical
to that for vect_complex_s32_macc_prepare().

This macro is provided as a convenience to developers and to make the code more readable.
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See also:

vect_complex_s32_macc_prepare(), vect_complex_s32_conj_macc()

vect_complex_s32_conj_nmacc_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s32_conj_nmacc().

The logic for computing the shifts and exponents of vect_complex_s32_conj_nmacc() is identical
to that for vect_complex_s32_macc_prepare().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_complex_s32_macc_prepare(), vect_complex_s32_conj_nmacc()

vect_complex_s32_real_scale_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s32_real_scale().

The logic for computing the shifts and exponents of vect_complex_s32_real_scale() is identical
to that for vect_s32_mul().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_s32_mul_prepare()

vect_complex_s32_sub_prepare

Obtain the output exponent and shifts required for a call to vect_complex_s32_sub().

The logic for computing the shifts and exponents of vect_complex_s32_sub() is identical to that
for vect_s32_add().

This macro is provided as a convenience to developers and to make the code more readable.

See also:

vect_s32_add_prepare()

Functions

void vect_complex_s32_macc_prepare(exponent_t *new_acc_exp, right_shift_t *acc_shr, right_shift_t

*b_shr, right_shift_t *c_shr, const exponent_t acc_exp, const
exponent_t b_exp, const exponent_t c_exp, const exponent_t
acc_hr, const headroom_t b_hr, const headroom_t ¢c_hr)

Obtain the output exponent and shifts needed by vect_complex_s32_macc().

This function is used in conjunction with vect_complex_s32_macc() to perform an element-wise
multiply-accumlate of 32-bit BFP vectors.

This function computes new_acc_exp, acc_shr, b_shr and c_shr, which are selected to maxi-
mize precision in the resulting accumulator vector without causing saturation of final or inter-
mediate values. Normally the caller will pass these outputs to their corresponding inputs of
vect_complex_s32_macc().

acc_exp is the exponent associated with the accumulator mantissa vector a prior to the operation,
whereas new_acc_exp is the exponent corresponding to the updated accumulator vector.



b_exp and c_exp are the exponents associated with the complex input mantissa vectors b and &
respectively.

acc_hr,b_hr and c_hr are the headrooms of @, b and é respectively. If the headroom of any of these
vectors is unknown, it can be obtained by calling vect_complex_s32_headroom(). Alternatively, the
value o can always be safely used (but may result in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the acc_shr and bec_sat produced by this function can be adjusted according
to the following:

// Presumed to be set somewhere
exponent_t acc_exp, b_exp, c_exp;
headroom_t acc_hr, b_hr, c_hr;
exponent_t desired_exp;

// Call prepare
right_shift_t acc_shr, b_shr, c_shr;
vect_complex_s32_macc_prepare(&acc_exp, &acc_shr, &b_shr, &c_shr,
acc_exp, b_exp, c_exp,
acc_hr, b_hr, c_hr);

// Modify results

right_shift_t mant_shr = desired_exp - acc_exp;
acc_exp += mant_shr;

acc_shr += mant_shr;

b_shr += mant_shr;

c_shr += mant_shr;

// acc_shr, b_shr and c_shr may now be used in a call to vect_complex_s32_macc()

When applying the above adjustment, the following conditions should be maintained:
« acc_shr > -acc_hr (Shifting any further left may cause saturation)
* b_shr => -b_hr (Shifting any further left may cause saturation)
 c_shr => -c_hr (Shifting any further left may cause saturation)

It is up to the user to ensure any such modification does not result in saturation or unaccept-
able loss of precision.

See also:

vect_complex_s32_macc

Parameters

- new_acc_exp — [out] Exponent associated with output mantissa vector a (after
macc)

« acc_shr — [out] Signed arithmetic right-shift used for @ in vect_complex_s32_macc()
« b_shr — [out] Signed arithmetic right-shift used for b in vect_complex_s32_macc()

+ c_shr — [out] Signed arithmetic right-shift used for & in vect_complex_s32_macc()
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- acc_exp — [in] Exponent associated with input mantissa vector a (before macc)
- b_exp — [in] Exponent associated with input mantissa vector b

+ c_exp — [in] Exponent associated with input mantissa vector ¢

- acc_hr - [in] Headroom of input mantissa vector a (before macc)

« b_hr — [in] Headroom of input mantissa vector b

+ c_hr - [in] Headroom of input mantissa vector ¢

void vect_complex_s32_mag_prepare(exponent_t *a_exp, right_shift_t *b_shr, const exponent_t b_exp,

const headroom_t b_hr)

Obtain the output exponent and input shift used by vect complex_s32-mag() and
vect_complex_s16_mag().

This function is used in conjunction with vect_complex_s32_mag() to compute the magnitude of
each element of a complex 32-bit BFP vector.

This function computes a_exp and b_shr.

a_exp is the exponent associated with mantissa vector a, and is be chosen to maximize precision
when elements of @ are computed. The a_exp chosen by this function is derived from the exponent
and headroom associated with the input vector.

b_shr is the shift parameter required by vect_complex_s32_mag() to achieve the chosen output
exponent a_exp.

b_exp is the exponent associated with the input mantissa vector b.

b_hr is the headroom of b. If the headroom of b is unknown it can be calculated using
vect_complex_s32_headroom(). Alternatively, the value @ can always be safely used (but may result
in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the b_shr produced by this function can be adjusted according to the fol-
lowing:

exponent_t desired_exp = ...; // Value known a priori

right_shift_t new_b_shr = b_shr + (desired_exp - a_exp);

When applying the above adjustment, the following condition should be maintained:
* b_hr + b_shr >=0

Using larger values than strictly necessary for b_shr may result in unnecessary underflows or
loss of precision.

See also:

vect_complex_s32_mag()

Parameters
- a_exp — [out] Output exponent associated with output mantissa vector a
- b_shr — [out] Signed arithmetic right-shift for b used by vect_complex_s32_mag()
- b_exp — [in] Exponent associated with input mantissa vector b

« b_hr — [in] Headroom of input mantissa vector b
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void vect_complex_s32_mul_prepare(exponent_t *a_exp, right_shift_t *b_shr, right_shift_t *c_shr,

const exponent_t b_exp, const exponent_t c_exp, const
headroom_t b_hr, const headroom_t c_hr)

Obtain the output exponent and input shifts used by vect_complex_s32_mul() and
vect_complex_s32_conj_mul().

This function is used in conjunction with vect_complex_s32_mul() to perform a complex element-
wise multiplication of two complex 32-bit BFP vectors.

This function computes a_exp, b_shr and c_shr.

a_exp is the exponent associated with mantissa vector @, and must be chosen to be large enough
to avoid overflow when elements of @ are computed. To maximize precision, this function chooses
a_exp to be the smallest exponent known to avoid saturation (see exception below). The a_exp
chosen by this function is derived from the exponents and headrooms of associated with the input
vectors.

b_shr and c_shr are the shift parameters required by vect_complex_s32_mul() to achieve the cho-
sen output exponent a_exp.

b_exp and c_exp are the exponents associated with the input mantissa vectors b and ¢ respectively.

b_hr and c_hr are the headroom of b and ¢ respectively. If the headroom of b or ¢ is unknown, they
can be obtained by calling vect_complex_s32_headroom(). Alternatively, the value @ can always be
safely used (but may result in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the b_shr and c_shr produced by this function can be adjusted according
to the following:

exponent_t desired_exp = ...; // Value known a priori

right_shift_t new_b_shr = b_shr + (desired_exp - a_exp);

right_shift_t new_c_shr = c_shr + (desired_exp - a_exp);

When applying the above adjustment, the following conditions should be maintained:
* b_hr + b_shr >=0
* c_hr + c_shr >= 0

Be aware that using smaller values than strictly necessary for b_shr and c_shr can result in
saturation, and using larger values may result in unnecessary underflows or loss of precision.

Notes

-+ Using the outputs of this function, an output mantissa which would otherwise be
INT32_MIN will instead saturate to -INT32_MAX. This is due to the symmetric saturation
logic employed by the VPU and is a hardware feature. This is a corner case which is usu-
ally unlikely and results in 1 LSb of error when it occurs.

See also:

vect_complex_s32_conj_mul, vect_complex_s32_mul

Parameters
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- a_exp — [out] Exponent associated with output mantissa vector a

- b_shr - [out] Signed arithmetic right-shift for b used by vect_complex_s32_mul()
+ c_shr — [out] Signed arithmetic right-shift for & used by vect_complex_s32_mul()
- b_exp — [in] Exponent associated with input mantissa vector b

+ c_exp — [in] Exponent associated with input mantissa vector &

+ b_hr — [in] Headroom of input mantissa vector b

+ ¢_hr - [in] Headroom of input mantissa vector &

void vect_complex_s32_real_mul_prepare(exponent_t *a_exp, right_shift_t *b_shr, right_shift_t *c_shr,

const exponent_t b_exp, const exponent_t c_exp, const
headroom_t b_hr, const headroom_t c_hr)

Obtain the output exponent and input shifts used by vect_complex_s32_real_mul().

This function is used in conjunction with vect_complex_s32_real_mul() to perform a the element-
wise multiplication of complex 32-bit BFP vector by a real 32-bit BFP vector.

This function computes a_exp, b_shr and c_shr.

a_exp is the exponent associated with mantissa vector @, and must be chosen to be large enough
to avoid overflow when elements of @ are computed. To maximize precision, this function chooses
a_exp to be the smallest exponent known to avoid saturation (see exception below). The a_exp
chosen by this function is derived from the exponents and headrooms of associated with the input
vectors.

b_shr and c_shr are the shift parameters required by vect_complex_s32_mul() to achieve the cho-
sen output exponent a_exp.

b_exp and c_exp are the exponents associated with the input mantissa vectors b and ¢ respectively.

b_hr and c_hr are the headroom of b and & respectively. If the headroom of b or is unknown, they
can be obtained by calling vect_complex_s32_headroom(). Alternatively, the value @ can always be
safely used (but may result in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the b_shr and c_shr produced by this function can be adjusted according
to the following:

exponent_t desired_exp = ...; // Value known a priori

right_shift_t new_b_shr = b_shr + (desired_exp - a_exp);

right_shift_t new_c_shr = c_shr + (desired_exp - a_exp);

When applying the above adjustment, the following conditions should be maintained:
* b_hr + b_shr >= 0
* c_hr + c_shr >= 0

Be aware that using smaller values than strictly necessary for b_shr and c_shr can result in
saturation, and using larger values may result in unnecessary underflows or loss of precision.

Notes
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- Using the outputs of this function, an output mantissa which would otherwise be
INT32_MIN will instead saturate to -INT32_MAX. This is due to the symmetric saturation
logic employed by the VPU and is a hardware feature. This is a corner case which is usu-
ally unlikely and results in 1 LSb of error when it occurs.

See also:

vect_complex_s32_real_mul

Parameters
- a_exp — [out] Output exponent associated with @

- b_shr - [out] Signed arithmetic right-shift for & wused by
vect_complex_s32_real_mul()

- c_shr - [out] Signed arithmetic right-shift for & wused by
vect_complex_s32_real_mul()

- b_exp — [in] Exponent associated with b
+ c_exp — [in] Exponent associated with ¢
* b_hr - [in] Headroom of mantissa vector b

+ c_hr — [in] Headroom of mantissa vector &

void vect_complex_s32_scale_prepare(exponent_t *a_exp, right_shift_t *b_shr, right_shift_t *c_shr,

const exponent_t b_exp, const exponent_t c_exp, const
headroom_t b_hr, const headroom_t c_hr)

Obtain the output exponent and input shifts used by vect_complex_s32_scale().

This function is used in conjunction with vect_complex_s32_scale() to perform a complex multipli-
cation of a complex 32-bit BFP vector by a complex 32-bit scalar.

This function computes a_exp, b_shr and c_shr.

a_exp is the exponent associated with mantissa vector a, and must be chosen to be large enough
to avoid overflow when elements of @ are computed. To maximize precision, this function chooses
a_exp to be the smallest exponent known to avoid saturation (see exception below). The a_exp
chosen by this function is derived from the exponents and headrooms associated with the input
vectors.

b_shr and c_shr are the shift parameters required by vect_complex_s32_mul() to achieve the cho-
sen output exponent a_exp.

b_exp and c_exp are the exponents associated with the input mantissa vectors b and é respectively.

b_hr and c_hr are the headroom of b and ¢ respectively. If the headroom of b or ¢ is unknown, they
can be obtained by calling vect_complex_s32_headroom(). Alternatively, the value @ can always be
safely used (but may result in reduced precision).

Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the b_shr and c_shr produced by this function can be adjusted according
to the following:

exponent_t desired_exp = ...; // Value known a priori
right_shift_t new_b_shr = b_shr + (desired_exp - a_exp);
right_shift_t new_c_shr = c_shr + (desired_exp - a_exp);
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When applying the above adjustment, the following conditions should be maintained:
* b_hr + b_shr >= 0
* c_hr + c_shr >= 0

Be aware that using smaller values than strictly necessary for b_shr and c_shr can result in
saturation, and using larger values may result in unnecessary underflows or loss of precision.

Notes

+ Using the outputs of this function, an output mantissa which would otherwise be
INT32_MIN will instead saturate to -INT32_MAX. This is due to the symmetric saturation
logic employed by the VPU and is a hardware feature. This is a corner case which is usu-
ally unlikely and results in 1 LSb of error when it occurs.

See also:

vect_complex_s32_scale

Parameters
- a_exp — [out] Exponent associated with output mantissa vector a
- b_shr — [out] Signed arithmetic right-shift for b used by vect_complex_s32_scale()
+ c_shr - [out] Signed arithmetic right-shift for & used by vect_complex_s32_scale()
- b_exp — [in] Exponent associated with input mantissa vector b
+ c_exp — [in] Exponent associated with input mantissa vector ¢
« b_hr — [in] Headroom of input mantissa vector b

+ c¢_hr - [in] Headroom of input mantissa vector ¢

void vect_complex_s32_squared_mag_prepare(exponent_t *a_exp, right_shift_t *b_shr, const

exponent_t b_exp, const headroom_t b_hr)
Obtain the output exponent and input shift used by vect_complex_s32_squared_mag().

This function is used in conjunction with vect_complex_s32_squared_mag() to compute the
squared magnitude of each element of a complex 32-bit BFP vector.

This function computes a_exp and b_shr.

a_exp is the exponent associated with mantissa vector a, and is be chosen to maximize precision
when elements of @ are computed. The a_exp chosen by this function is derived from the exponent
and headroom associated with the input vector.

b_shr is the shift parameter required by vect_complex_s32_mag() to achieve the chosen output
exponent a_exp.

b_exp is the exponent associated with the input mantissa vector b.

b_hr is the headroom of b. If the headroom of b is unknown it can be calculated using
vect_complex_s32_headroom(). Alternatively, the value @ can always be safely used (but may result
in reduced precision).
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Adjusting Output Exponents

If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the b_shr produced by this function can be adjusted according to the fol-
lowing:

exponent_t desired_exp = ...; // Value known a priori

right_shift_t new_b_shr = b_shr + (desired_exp - a_exp);

When applying the above adjustment, the following condition should be maintained:
* b_hr + b_shr >=0

Using larger values than strictly necessary for b_shr may result in unnecessary underflows or
loss of precision.

See also:

vect_complex_s32_squared_mag()

Parameters
- a_exp — [out] Output exponent associated with output mantissa vector a

- b_shr - [out] Signed arithmetic right-shift for b used by
vect_complex_s32_squared_mag()

- b_exp — [in] Exponent associated with input mantissa vector b

« b_hr — [in] Headroom of input mantissa vector b

void vect_complex_s32_sum_prepare(exponent_t *a_exp, right_shift_t *b_shr, const exponent_t b_exp,

const headroom_t b_hr, const unsigned length)
Obtain the output exponent and input shift used by vect_complex_s32_sum().

This functionis used in conjunction with vect_complex_s32_sum() to compute the sum of elements
of a complex 32-bit BFP vector.

This function computes a_exp and b_shr.

a_exp is the exponent associated with the 64-bit mantissa a returned by vect_complex_s32_sum(),
and must be chosen to be large enough to avoid saturation when a is computed. To maximize
precision, this function chooses a_exp to be the smallest exponent known to avoid saturation (see
exception below). The a_exp chosen by this function is derived from the exponents and headrooms
associated with the input vector.

b_shr is the shift parameter required by vect_complex_s32_sum() to achieve the chosen output
exponent a_exp.

b_exp is the exponent associated with the input mantissa vector b.

b_hr is the headroom of b. If the headroom of b is unknown it can be calculated using
vect_complex_s32_headroom(). Alternatively, the value @ can always be safely used (but may result
in reduced precision).

length is the number of elements in the input mantissa vector b.

Adjusting Output Exponents



If a specific output exponent desired_exp is needed for the result (e.g. for emulating fixed-
point arithmetic), the b_shr produced by this function can be adjusted according to the fol-
lowing:

exponent_t desired_exp = ...; // Value known a priori
right_shift_t new_b_shr = b_shr + (desired_exp - a_exp);

When applying the above adjustment, the following conditions should be maintained:
* b_hr + b_shr >= 0

Be aware that using smaller values than strictly necessary for b_shr can result in saturation,
and using larger values may result in unnecessary underflows or loss of precision.

See also:

vect_complex_s32_sum

Parameters
- a_exp — [out] Exponent associated with output mantissa a
« b_shr — [out] Signed arithmetic right-shift for b used by vect_complex_s32_sum()
- b_exp — [in] Exponent associated with input mantissa vector b
« b_hr — [in] Headroom of input mantissa vector b

« length — [in] Number of elements in b

4.7.13 32-Bit Vector Chunk (8-Element) API

group chunk32_api

Functions

int32_t chunk_s32_dot (const int32_t b[VPU_INT32_EPV], const g2_30 c[VPU_INT32_EPV])
Compute the inner product between two vector chunks.
This function computes the inner product of two vector chunks, b and .

Conceptually, elements of b may have any number of fractional bits (int, fixed-point, mantissas of
a BFP vector) so long as they're all the same. Elements of ¢ are Q2.30 fixed-point values. Given
that, the returned value a will have the same number of fractional bits as b.

Only the lowest 32 bits of the sum a are returned.

Operation Performed

VPU_INT32_EPV—1 be - c
a <+ Z (round ( k230 k ))

k=0

Parameters
« b - [in] Input chunk b

+ ¢ — [in] Input chunk &
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a

void chunk_s32_log(q8_24 a[VPU_INT32_EPV], const int32_t b[VPU_INT32_EPV], const exponent_t
b_exp)

Compute the natural log of a vector chunk of 32-bit values.

This function computes the natural logarithm of each of the 8 elements in vector chunk b. The
result is returned as an 8-element chunk a of Q8.24 values.

b_exp is the exponent associated with elements of b.

Any input b, < 0 will result in a corresponding output ay = INT32yIN.

Operation Performed

log(by, - 2°-) by, >0
INT32_MIN otherwise

for k € 0..VPU_INT32_EPV — 1

Parameters
+ a — [out] Output vector chunk @
- b - [in] Input vector chunk b
- b_exp — [in] Exponent associated with b
Throws ET_LOAD_STORE
Raised if b or a is not double word-aligned (See Note: Vector Alignment)

void chunk_float_s32_log (g8 24 a[VPU_INT32_EPV], const float_s32_t b[VPU_INT32_EPV])
Compute the natural log of a vector chunk of float_s32_t.

This function computes the natural logarithm of each of the vPU_INT32_EPV elements in vector
chunk b. The result is returned as an 8-element chunk a of Q8.24 values.

Any input b < 0 will result in a corresponding output ay = INT32yIN.

Operation Performed

l
a OQ(bk) b, >0 .
INT32_MIN otherwise

for k € 0..VPU_INT32_EPV — 1

Parameters
+ a — [out] Output vector chunk @
- b - [in] Input vector chunk b

Throws ET_LOAD_STORE
Raised if b or a is not double word-aligned (See Note: Vector Alignment)

void chunk_q30_power_series(int32_t a[VPU_INT32_EPV], const g2_30 b[VPU_INT32_EPV], const
int32_t c[l, const unsigned term_count)
Compute a power series on a vector chunk of Q2.30 values.

This function is used to compute a power series summation on a vector chunk (VPU_INT32_EPV-
element vector) b. b contains Q2.30 values. ¢ is a vector containing coefficients to be multiplied
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by powers of b, and may have any associated exponent. The output is vector chunk @ and has the
same exponent as ¢.

c[] is an array with shape (term_count, VPU_INT32_EPV), where the second axis contains the
same value replicated across all VPU_INT32_EPV elements. Thatis,c[k][i] = c[k][j] foriand j
in@..(VPU_INT32_EPV-1). This is for performance reasons. (For the purpose of this explanation,
¢ is considered to be single-dimensional, without redundancy.)

Operation Performed

bk70 _ 230

bi,i—1 - bk
by,; = round (230>
fori € 1..(N —1)

Nl be - i
ap Z round( k’2230 Z)

=0
for k € 0..VPU_INT32_EPV — 1

Parameters
+ a — [out] Output vector chunk a
« b - [in] Input vector chunk b
« ¢ — [in] Coefficient vector ¢

+ term_count — [in] Number of power series terms, N

void chunk_q38_exp_small (g2 30 a[VPU_INT32_EPV], const g2 30 b[VPU_INT32_EPV])

Compute e’ on a vector chunk of Q2.30 values.

This function computes e?* for each element of a vector chunk (VPU_INT32_EPV-element vector) b
of Q2.30 values near 0. The result is computed using the power series approximation of e* near
zero. It is recommended that this function only be used for —0.5 < by, - 273% < 0.5.

The output vector chunk a is also in a Q2.30 format.

Operation Performed

9—30
ap — ebr2

for k € 0..VPU_INT32_EPV

Parameters
+ a — [out] Output vector chunk @

« b - [in] Input vector chunk b



4.8 Q-Format Macros

group qfmt_macros
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Defi

F(N)

a(N)

nes

Convert fixed-point value to double-precision float.

This macro is meant to allow for parameterized access to the more specific conversion macros,
suchasFsg(),F24(),F31() and soon. Being parameterized allows the user to specify the Q-format
(fractional bit count) using another macro. For example:

#define X_FRAC_BITS 24
int32_t x = .. .;

// Convert x to double
double dbl_x = F(X_FRAC_BITS)(x);

Convert floating-point value to fixed-point value.

This macro is meant to allow for parameterized access to the more specific conversion macros,
suchasQ8(),024(),031() and so on. Being parameterized allows the user to specify the Q-format
(fractional bit count) using another macro. For example:

#include <math.h>

#define PI_FRAC_BITS 24
int32_t x = Q(PI_FRAC_BITS)(M_PI);

Q31(f)

Convert double value to Q1.31 fixed-point value, with rounding.

Q30(f)

Convert double value to Q2.30 fixed-point value, with rounding.

Q29(f)

Convert double value to Q3.29 fixed-point value, with rounding.

Q28(f)

Convert double value to Q4.28 fixed-point value, with rounding.

Q27(f)

Convert double value to Q5.27 fixed-point value, with rounding.

Q26(f)

Convert double value to Q6.26 fixed-point value, with rounding.

Q25(f)

Convert double value to Q7.25 fixed-point value, with rounding.

Q24(f)

Convert double value to Q8.24 fixed-point value, with rounding.
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Q23(f
| C)onvert double value to Q9.23 fixed-point value, with rounding.

Q22(f)

Convert double value to Q10.22 fixed-point value, with rounding.
Q21(f)

Convert double value to Q11.21 fixed-point value, with rounding.
Q2e(f)

Convert double value to Q12.20 fixed-point value, with rounding.
Q19(f)

Convert double value to Q13.19 fixed-point value, with rounding.
Q18(f)

Convert double value to Q14.18 fixed-point value, with rounding.
Q17(f)

Convert double value to Q15.17 fixed-point value, with rounding.
Q16(f)

Convert double value to Q16.16 fixed-point value, with rounding.
Q15(f)

Convert double value to Q17.15 fixed-point value, with rounding.
Q14(f)

Convert double value to Q18.14 fixed-point value, with rounding.
Q13(f)

Convert double value to Q19.13 fixed-point value, with rounding.
Q12(f)

Convert double value to Q20.12 fixed-point value, with rounding.
Q11(f)

Convert double value to Q21.11 fixed-point value, with rounding.
Qie(f)

Convert double value to Q22.10 fixed-point value, with rounding.
Q9(f)

Convert double value to Q23.9 fixed-point value, with rounding.
8(f)

Convert double value to Q24.8 fixed-point value, with rounding.
F31(X)

Convert Q1.31 fixed-point value to double value.
F30(X)

Convert Q2.30 fixed-point value to double value.
F29(X)

Convert Q3.29 fixed-point value to double value.
F28(X)

Convert Q4.28 fixed-point value to double value.
F27(X)

Convert Q5.27 fixed-point value to double value.
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F26(X)

Convert Q6.26 fixed-point value to double value.
F25(X)

Convert Q7.25 fixed-point value to double value.
F24(X)

Convert Q8.24 fixed-point value to double value.
F23(X)

Convert Q9.23 fixed-point value to double value.
F22(X)

Convert Q10.22 fixed-point value to double value.
F21(x)

Convert Q11.21 fixed-point value to double value.
F20(X)

Convert Q12.20 fixed-point value to double value.
F19(X)

Convert Q13.19 fixed-point value to double value.
F18(X)

Convert Q14.18 fixed-point value to double value.
F17(X)

Convert Q15.17 fixed-point value to double value.
F16(X)

Convert Q16.16 fixed-point value to double value.
F15(X)

Convert Q17.15 fixed-point value to double value.
F14(X)

Convert Q18.14 fixed-point value to double value.
F13(X)

Convert Q19.13 fixed-point value to double value.
F12(X)

Convert Q20.12 fixed-point value to double value.
F11(X)

Convert Q21.11 fixed-point value to double value.
F10(X)

Convert Q22.10 fixed-point value to double value.
F9(X)

Convert Q23.9 fixed-point value to double value.
F8(X)

Convert Q24.8 fixed-point value to double value.



4.9 XMath Util Functions and Macros

group util_macros

Defines

MAX (A, B)

Takes the greater of arguments A and B, preferring A on equality.

Note: This is not safe from multiple evaluation of arguments.

Parameters
+ A —[in] First input
+ B — [in] Second input
Returns
Maximum of the inputs.
MIN(A, B)

Takes the lesser of arguments A and B, preferring A on equality.

Note: This is not safe from multiple evaluation of arguments.

Parameters

« A —[in] First input

+ B — [in] Second input
Returns

Minimum of the inputs.

CLS_S8(X)
Count leading sign bits of an int8_t.

Parameters

+ X = [in] Input

Returns
Leading sign bits of x

CLS_S16(X)
Count leading sign bits of an int16_t.
Parameters
« X = [in] Input

Returns
Leading sign bits of X

CLS_S32(X)
Count leading sign bits of an int32_t.

Parameters
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X — [in] Input
Returns
Leading sign bits of X
CLS_S64(X)
Count leading sign bits of an int64_t.
Parameters
« X — [in] Input
Returns
Leading sign bits of X
CLS_C16(X)

Count leading sign bits of a complex_s76_t.

The number of leading sign bits for a complex integer is defined as the minimum of the number
of leading sign bits for its real part and for its imaginary part.

Parameters
« X — [in] Input
Returns
Leading sign bits of X
cLS_C32(X)

Count leading sign bits of a complex_s32_t.

The number of leading sign bits for a complex integer is defined as the minimum of the number
of leading sign bits for its real part and for its imaginary part.

Parameters
X = [in] Input
Returns
Leading sign bits of X
HR_S64(X)
Get the headroom of an int64_t.
Parameters
« X = [in] Input

Returns
Headroom of X

HR_S32(X)
Get the headroom of an int32_t.
Parameters
« X = [in] Input

Returns
Headroom of X

HR_S16 (X)
Get the headroom of an int16_t.
Parameters
« X = [in] Input

Returns
Headroom of X
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HR_S8(X)
Get the headroom of an int8_t.

Parameters
« X - [in] Input

Returns
Headroom of X

HR_C32(X)
Get the headroom of a complex_s32_t.

The headroom of a complex N-bit integer is the minimum of the headroom of each of its N-bit real
and imaginary parts.

Parameters
« X — [in] Input

Returns
Headroom of X

HR_C16 (X)
Get the headroom of a complex_s76_t.

The headroom of a complex N-bit integer is the minimum of the headroom of each of its N-bit real
and imaginary parts.

Parameters
« X - [in] Input

Returns
Headroom of X

Functions
void xs3_memcpy (void *dst, const void *src, unsigned bytes)
VPU-based memcpy implementation.

Same as standard memcpy () except for an extra constraint that both dst andsrc’ must be word-
aligned addresses.

Parameters
- dst — [out] Destination address
« src — [in] Source address
* bytes — [in] Number of bytes to copy

static inline unsigned els(const int32_t a)
Count leading sign bits of int32_t.

This function returns the number of most-significant bits in a which are equal to its sign bit.

Note: This is the total number of leading sign bits, not redundant leading sign bits.

Parameters
« a — [in] Input value

Returns
Number of leading sign bits of a
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static inline unsigned n_bitrev(const unsigned index, const unsigned bits)
Reverse the bits of an integer.

This function returns takes an integer index and reverses the bits least-significant bits to form a
new integer which is returned. All more significant bits are ignored.

This is useful for algorithms, such as the FFT, whose implementation requires reordering of ele-
ments by reversing the bits of the indices.

Parameters
+ index - [in] Input value
+ bits - [in] The number of least-significant bits to reverse.

Returns
The bits LSb’s of index reversed.

4.10 Library Configuration

4.10.1 Configuration Options

group config_options
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Defines

XMATH_BFP_DEBUG_CHECK_LENGTHS
Indicates whether the BFP functions should check vector lengths for errors.

Iff true, BFP functions will check (assert()) to ensure that each BFP vector argument does not
violate any length constraints. Most often this simply ensures that, where BFP functions take
multiple vectors as parameters, each of the vectors has the same length.

Defaults to false ().

XMATH_BFP_SQRT_DEPTH_S16
The number of most significant bits which are computed by bfp_s76_sqgrt().

The function bfp_sqrt_s16() computes results one bit at a time, starting with bit 14 (the second-to-
most significant bit). Because this is a relatively expensive operation, it may be desirable to trade
off precision of results for a speed-up.

The time cost of bfp_sqrt_s16() is approximately linear with respect to the depth.
Defaults to VECT_SQRT_S16_MAX_DEPTH (15)

See also:

bfp_s16_sqrt

XMATH_BFP_SQRT_DEPTH_S32
The number of most significant bits which are computed by bfp_s32_sqrt().
The function bfp_sqrt_s32() computes results one bit at a time, starting with bit 30 (the second-to-

most significant bit). Because this is a relatively expensive operation, it may be desirable to trade
off precision of results for a speed-up.



The time cost of bfp_sqrt_s32() is approximately linear with respect to the depth.
Defaults to VECT_SQRT_S32_MAX_DEPTH (31)

See also:
bfp_s32_sqrt

XMATH_MALLOC
Function used to dynamically allocate memory.

This function is used to dynamically allocate memory. Defaults to malloc. Must have same sig-
nature asmalloc()

See also:
XMATH_FREE

XMATH_FREE
Function use to free dynamically allocated memory.

This function is used to deallocate dynamically allocated memory. Defaults to free. Must have
same signature as free()

See also:
XMATH_MALLOC

4.11 Library Notes

4.11.1 Note: Vector Alignment

page note_vector_alignment

This library makes use of the XMOS architecture’s vector processing unit (VPU). All loads and stores
to and from the XS3 VPU have the requirement that the loaded/stored addresses must be aligned to a
4-byte boundary (word-aligned).

Inthe current version of the AP, this leads to the requirement that most API functions require vectors (or
the data backing a BFP vector) to begin at word-aligned addresses. Vectors are not required, however,
to have a size (in bytes) that is a multiple of 4.

Writing Alignment-safe Code
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The alignment requirement is ultimately always on the data that backs a vector. For the low-level AP,
that is the pointers passed to the functions themselves. For the high-level API, that is the memory to
which the data field (or the real and imag fields in the case of bfp_complex_si6_t) points, specified
when the BFP vector is initialized.

Arrays of type int32_t and complex_s32_t will normally be guaranteed to be word-aligned by the com-
piler. However, if the user manually specifies the beginning of an int32_t array, as in the following..



uint8_t byte_buffer[100];
int32_t* integer_array = (int32_t*) &byte_buffer[1];

.. the vector may not be word-aligned. It is the responsibility of the user to ensure proper alignment of
data.

For int16_t arrays, the compiler does not by default guarantee that the array starts on a word-aligned
address. To force word-alignment on arrays of this type, use __attribute__((aligned (4))) inthe
variable definition, as in the following.

int16_t __attribute__((aligned (4))) data[100];

Occasionally, 8-byte (double word) alignment is required. In this case, neither int32_t nor int16_t is
necessarily guaranteed to align as required. Similar to the above, this can be hinted to the compiler as
in the following.

int32_t __attribute__((aligned (8))) data[100];

This library also provides the macros WORD_ALIGNED and DWORD_ALIGNED which force 4- and 8-byte align-
ment respectively as above.

4.11.2 Note: Symmetrically Saturating Arithmetic

page note_symmetric_saturation
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With ordinary integer arithmetic the block floating-point logic chooses exponents and operand shifts
to prevent integer overflow with worst-case input values. However, the XS3 VPU uses symmetrically
saturating integer arithmetic.

Saturating arithmetic is that where partial results of the applied operation use a bit depth greater than
the output bit depth, and values that can't be properly expressed with the output bit depth are set to the
nearest expressible value.

For example, in ordinary C integer arithmetic, a function which multiplies two 32-bit integers may in-
ternally compute the full 64-bit product and then clamp values to the range (INT32_MIN, INT32_MAX)
before returning a 32-bit result.

Symmetrically saturating arithmetic also includes the property that the lower bound of the expressible
range is the negative of the upper bound of the expressible range.

One of the major troubles with non-saturating integer arithmetic is that in a twos complement encoding,
there exists a non-zero integer (e.g. INT16_MIN in 16-bit twos complement arithmetic) value z for which
—1 -2 = 2. Serious arithmetic errors can result when this case is not accounted for.

One of the results of symmetric saturation, on the other hand, is that there is a corner case where (using
the same exponent and shift logic as non-saturating arithmetic) saturation may occur for a particular
combination of input mantissas. The corner case is different for different operations.

When the corner case occurs, the minimum (and largest magnitude) value of the resulting vector is 1
LSb greater than its ideal value (e.g. -0x3FFF instead of -0x4000 for 16-bit arithmetic). The error in this
output element’s mantissa is then 1 LSb, or 27, where p is the exponent of the resulting BFP vector.

Of course, the very nature of BFP arithmetic routinely involves errors of this magnitude.



4.11.3 Note: Spectrum Packing

page note_spectrum_packing

In its general form, the N-point Discrete Fourier Transform is an operation applied to a complex N-point
signal z[n] to produce a complex spectrum X|[f]. Any spectrum X|[f] which is the result of a N-point
DFT has the property that X[f + N] = X[f]. Thus, the complete representation of the N-point DFT of
X[n] requires N complex elements.

Complex DFT and IDFT

In this library, when performing a complex DFT (e.g. using fft_bfp_forward_complex()), the spectral
representation that results in a straight-forward mapping:

X[f]+— X[f]for0< f< N

where X is an N-element array of complex_s32_t, where the real part of X[f] is in X[f].re and the
imaginary partin X[ f].im.

Likewise, when performing an N-point complex inverse DFT, that is also the representation that is ex-
pected.

Real DFT and IDFT
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Oftentimes we instead wish to compute the DFT of real signals. In addition to the periodicity property (
X|[f+ N] = X|[f]), the DFT of a real signal also has a complex conjugate symmetry such that X|[—f] =
X*[f], where X*[f] is the complex conjugate of X[f]. This symmetry makes it redundant (and thus
undesirable) tostore such symmetric pairs of elements. This would allow us to get away with only
explicitly storing X[f for0 < f < N/2in (N/2) 4+ 1 complex elements.

Unfortunately, using such a representation has the undesirable property that the DFT of an N-point real
signal cannot be computed in-place, as the representation requires more memory than we started with.

However, if we take the periodicity and complex conjugate symmetry properties together:

X[0] = X*[0] = Imag{X[0]} =0
X[—(N/2)+ N] = X[N/2]
X[-N/2]=X*IN/2] - X[N/2] = X*[N/2] = Imag{X[N/2]} =0
Because both X[0] and X[V /2] are guaranteed to be real, we can recover the benefit of in-place com-

putation in our representation by packing the real part of X [N /2] into the imaginary part of X[0].

Therefore, the functions in this library that produce the spectra of real signals (such as
fft_bfp_forward_mono() and fft_bfp_forward_stereo()) will pack the spectra in a slightly less straight-
forward manner (as compared with the complex DFTs):

X[f]«— X[f]for1< f<N/2
X[e] «— X[0] + jX[N/2]
where X is an N /2-element array of complex_s32_t.

Likewise, this is the encoding expected when computing the N-point inverse DFT, such as by
fft_bfp_inverse_mono() or fft_bfp_inverse_stereo().

Note: One additional note, when performing a stereo DFT or inverse DFT, so as to preserve the in-
place computation of the result, the spectra of the two signals will be encoded into adjacent blocks

V4



of memory, with the second spectrum (i.e. associated with ‘channel b’) occupying the higher memory
address.

4.11.4 Note: Library FFT Length Support

page fft_length_support

When computing DFTs this library relies on one or both of a pair of look-up tables which contain por-
tions of the Discrete Fourier Transform matrix. Longer FFT lengths require larger look-up tables. When
building using CMake, the maximum FFT length can be specified as a CMake option, and these tables
are auto-generated at build time.

If not using CMake, you can manually generate these files using a python script included with the library.
The scriptis located at 1ib_xcore_math/scripts/gen_fft_table.py. If generated manually, you must
add the generated .c file as a source, and the directory containing xmath_fft_lut.h must be added as
an include directory when compiling the library’s files.

Note that the header file must be named xmath_fft_lut.h as it is included via #include
"xmath_fft_lut.h".

By default the tables contain the coefficients necessary to perform forward or inverse DFTs of up to
1024 points. If larger DFTs are required, or if the maximum required DFT size is known to be less than
1024 points, the MAX_FFT_LEN_L0G2 CMake option can be modified from its default value of 10.

The two look-up tables correspond to the decimation-in-time and decimation-in-frequency FFT algo-
rithms, and the run-time symbols for the tables are xmath_dit_fft_lut and xmath_dif_fft_lut re-
spectively. Each table contains N — 4 complex 32-bit values, with a size of 8 - (N — 4) bytes each.

To manually regenerate the tables for amaximum FFT length of 16384 ( = 2'%), supporting only the
decimation-in-time algorithm, for example, use the following:

python lib_xcore_math/script/gen_fft_table.py --dit --max_fft_log2 14

Use the --help flag with gen_fft_table.py for a more detailed description of its syntax and parame-
ters.

4.11.5 Note: Digital Filter Conversion

page filter_conversion
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This library supports optimized implementations of 16- and 32-bit FIR filters, as well as cascaded 32-bit
biguad filters. Each of these filter implementations requires that the filter coefficients be represented in
a compatible form.

To assist with that, several python scripts are distributed with this library which can be used to con-
vert existing floating-point filter coefficients into a code which is easily callable from within an xCore
application.

Each script reads in floating-point filter coefficients from a file and computes a new representa-
tion for the filter with coefficients which attempt to maximize precision and are compatible with the
lib_xcore_math filtering API.

Each script outputs two files which can be included in your own xCore application. The first outputisa C
source (. c) file containing the computed filter parameters and several function definitions for initializing
and executing the generated filter. The second output is a C header (.h) file which can be #included
into your own application to give access to those functions.
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Additionally, each script also takes a user-provided filter name as an input parameter. The output files
(as well as the function names within) include the filter name so that more than one filter can be gener-
ated and executed using this mechanism.

As an example, take the following command to generate a 32-bit FIR filter:
python lib_xcore_math/script/gen_fir_filter_s32.py MyFilter filter_coefs.txt

This command creates a filter named “MyFilter”, with coefficients taken from a file filter_coefs. txt.
Two output files will be generated, MyFilter.c and MyFilter.h. Including MyFilter.h provides ac-
cess to 3 functions, MyFilter_init(), MyFilter_add_sample(), and MyFilter () which correspond to
thelibrary functions filter_fir_s32_init(),filter_fir_s32_add_sample()andfilter_fir_s32()re-
spectively.

Use the --help flag with the scripts for more detailed descriptions of inputs and other options.

Filter Type Script

32-bit FIR lib_xcore_math/script/gen_fir_filter_s32.py
16-bit FIR lib_xcore_math/script/gen_fir_filter_s16.py
32-bit Biguad lib_xcore_math/script/gen_biquad_filter_s32.py




5 Example Applications

Several example applications are offered to demonstrate use of the 1ib_xcore_math APIs through actual,
simple code examples.

5.1 Building Examples

After configuring the CMake project (with the -DDEV_LIB_XCORE_MATH=1 option), all the examples can be built
by using the make 1lib_xcore_math-examples command within the build directory. Individual examples can
be built using make EXAMPLE_NAME, where EXAMPLE_NAME is the example to build.

5.2 Running Examples

To run example EXAMPLE_NAME on the XCORE-AI-EXPLORER board, from the CMake build directory, run the
following command (after building):

xrun --xscope example/EXAMPLE_NAME/EXAMPLE_NAME . xe

For instance, to run the bfp_demo example, use:

xrun --xscope example/bfp_demo/bfp_demo.xe

To run the example using the xCore simulator instead, use:

xsim example/EXAMPLE _NAME /EXAMPLE_NAME . xe

5.3 bfp_demo

The purpose of this application is to demonstrate, through example, how the arithmetic functions of
lib_xcore_math’s block floating-point APl may be used.

Init, three 32-bit BFP vectors are allocated, initialized and filled with random data. Then several BFP operations
are applied using those vectors as inputs and/or outputs.

The example only demonstrates the real 32-bit arithmetic BFP functions (that is, functions with names
bfp_s32_*). The real 16-bit (bfp_s16_*), complex 32-bit (bfp_complex_s32_*) and complex 16-bit
(bfp_complex_s16_%) functions all use similar naming conventions.
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5.4 vect_demo

The purpose of this application is to demonstrate, through example, how the arithmetic functions of
lib_xcore_math's lower-level vector APl may be used.

In general the low-level arithmetic API are the functions in this library whose names begin with vect_x*, such
as vect_s32_mul () for element-wise multiplication of 32-bit vectors, and vect_complex_s16_scale() for mul-
tiplying a complex 16-bit vector by a complex scalar.

We assume that where the low-level APl is being used it is because some behavior other than the default
behavior of the high-level block floating-point APl is required. Given that, rather than showcasing the breadth
of operations available, this example examines first how to achieve comparable behavior to the BFP API, and
then ways in which that behavior can be modified.

5.5 fft_demo

The purpose of this application is to demonstrate, through example, how the FFT functions of
lib_xcore_math's block floating-point APl may be used.

In this example we demonstrate each of the offered forward and inverse FFTs of the BFP API.

5.6 filter_.demo

The purpose of this application is to demonstrate, through example, how the functions of 1ib_xcore_math's
filtering vector APl may be used.

The filtering API currently supports three different filter types:
- 32-bit FIR Filter
+ 16-bit FIR Filter
+ 32-bit Biquad Filter

This example app presents simple demonstrations of how to use each of these filter types.
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