
XCORE Software Development Kit - Programming
Guide
Release: 1.0.0
Publication Date: 2023/05/02

Table of Contents

1 Introduction 1
1.1 Installation . 1

1.1.1 Prerequisites . 1
Windows . 1
macOS . 1

1.1.2 Install Steps . 1
Step 1. Cloning the repository . 2
Step 2. Install Host Applications . 2
Optional Step 3. Install Python and Python Requirements 2
Build & Run Your First Application . 3

1.2 Getting Started Tutorials . 3
1.3 Advanced Tutorials . 3

1.3.1 Platform . 3
Architecture & Hardware Guide . 3
Programming Guide . 3

1.3.2 Bare-Metal . 3
Bare-metal Code Examples . 3

1.3.3 FreeRTOS . 5
FreeRTOS Code Examples . 5
FreeRTOS FAQs . 24
FreeRTOS Common Issues . 25

1.4 Frequently Asked Questions . 26
1.4.1 Build Issues . 26

Submodule updates . 26
fatfs_mkimage: not found . 26
xcc2clang.exe: error: no such file or directory . 26

1.4.2 FreeRTOS . 26
1.5 Copyright & Disclaimer . 26
1.6 Licenses . 27

1.6.1 XMOS . 27
1.6.2 Third-Party . 27

iiiiii

1 Introduction

XCORE-IOT is a collection of C/C++ software libraries designed to simplify and accelerate application devel-
opment on xcore processors. It is composed of the following components:

• Peripheral IO libraries including; UART, I2C, I2S, SPI, QSPI, PDM microphones, and USB. These libraries
support bare-metal and RTOS application development.

• Libraries core to DSP applications, including vectorized math. These libraries support bare-metal and
RTOS application development.

• Libraries that enable multi-core FreeRTOS development on xcore including a wide array of RTOS drivers
and middleware.

• Code Examples - Examples showing a variety of xcore features based on bare-metal and FreeRTOS
programming.

• Documentation - Tutorials, references and API guides.

XCORE-IOT is designed to be used in conjunction with the xcore.ai Evaluation Kit (XK-EVK-XU316). Further
information about the xcore.ai Evaluation Kit and xcore.ai devices is available to on www.xmos.ai.

1.1 Installation

1.1.1 Prerequisites

XTC Tools 15.2.1 or newer and CMake 3.21 or newer are required for building the example applications. If
necessary, download and follow the installation instructions for those components.

Windows

A standard C/C++ compiler is required to build applications for the host PC. Windows users may use Build
Tools for Visual Studio command-line interface.

Host build should also work using other Windows GNU development environments like GNU Make, MinGW
or Cygwin.

libusb The DFU example requires dfu-util which requires libusb v1.0. libusb requires the installation of
a driver for use on a Windows host. Driver installation should be done using a third-party installation tool like
Zadig.

macOS

A standard C/C++ compiler is required to build applications for the host PC. Mac users may use the Xcode
command-line tools.

1.1.2 Install Steps

Follow the following steps to install and setup XCORE-IOT:

111

https://www.xmos.ai/
https://www.xmos.com/software/tools/
https://cmake.org/download/
https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=msvc-170#download-and-install-the-tools
https://docs.microsoft.com/en-us/cpp/build/building-on-the-command-line?view=msvc-170#download-and-install-the-tools
https://dfu-util.sourceforge.net/
https://zadig.akeo.ie/

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Step 1. Cloning the repository

Clone the XCORE-IOT repository with the following command:

git clone --recurse-submodules git@github.com:xmos/xcore_iot.git

Step 2. Install Host Applications

XCORE-IOT includes utilities that run on the PC host. Run the following command to build and install these
utilities:

Linux and MacOS

cmake -B build_host

cd build_host

sudo make install

This command installs the applications at /opt/xmos/bin/ directory. You may wish to append this directory
to your PATH variable.

export PATH=$PATH:/opt/xmos/bin/

Some host applications require that the location of xscope_endpoint.so be added to your LD_LIBRARY_PATH
environment variable. This environment variable will be set if you run the host application in the XTC Tools
command-line environment. For more information see Configuring the command-line environment.

Or, you may prefer to set this environment variable manually.

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<path-to-XTC-Tools>/lib

Windows Windows users must run the x86 native tools command prompt from Visual Studio

cmake -G "NMake Makefiles" -B build_host

cd build_host

nmake install

This command installs the applications at <USERPROFILE>\.xmos\bin\ directory. You may wish to add this
directory to your PATH variable.

Some host applications require that the location of xscope_endpoint.dll be added to your PATH. This envi-
ronment variable will be set if you run the host application in the XTC Tools command-line environment. For
more information see Configuring the command-line environment.

Optional Step 3. Install Python and Python Requirements

XCORE-IOTdoes not require installing Python, however, several example applications do utilize Python scripts.
To run these scripts, Python 3 is needed, we recommend and test with Python 3.8. Install Python and install
the dependencies using the following commands:

Note: You can also setup a Python virtual environment using Conda or other virtual environment tool.

Install pip if needed:

python -m pip install --upgrade pip

222

https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/tools-guide/install-configure/getting-started.html
https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/tools-guide/install-configure/getting-started.html
https://www.python.org/downloads/

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Then use pip to install the required modules.

pip install -r tools/install/requirements.txt

Build & Run Your First Application

Once your have installed XCORE-IOT, the next step is to build and run your first xcore application.

1.2 Getting Started Tutorials

Follow these 3 steps:

1. Check the system requirements and prerequisites

2. Install XCORE-IOT

3. Select the Getting Started guide below based on your preferred development path

• Build and run your first FreeRTOS application on xcore

Now you are ready to dive into the advanced tutorials.

1.3 Advanced Tutorials

1.3.1 Platform

Architecture & Hardware Guide

See the Architecture & Hardware Guide in the XTC Tools documentation for an introduction to the xcore
platform architecture and hardware.

Programming Guide

See the Programming Guide in the XTC Tools documentation for an introduction to xcore platform program-
ming.

1.3.2 Bare-Metal

Note: Stay tuned for a bare-metal application development Getting Started Guide.

Bare-metal Code Examples

Several example bare-metal applications are included to illustrate the fundamental tool flow and provide a
starting point for basic evaluation. The examples do not seek to exhibit the full potential of the platform,
and are purposely basic to provide instruction. Select an example below for more information on what the
example demonstrates, how to build the example, and how to run it.

333

https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/prog-guide/arch-hw-guide/index.html
https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/prog-guide/index.html

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Explorer Board This example application demonstrates various capabilities of the Explorer board.

The example consists of pdm_mics to a simple audio processing pipelinewhich applies a variable gain. Press-
ing button 0 will increase the gain. Pressing button 1 will decrease the gain. The processed audio is sent to
the DAC.

When button 0 is pressed, LED 0 will be lit. When button 1 is pressed, LED 1 will be lit. When the gain adjusted
audio passes a frame power threshold, LED 2 will be lit. Lastly, LED 3 will blink periodically.

Additionally, the example demonstrates a simple flash, UART loopback and SPI setup.

Preparing the hardware The UART loopback section of the demo requires that a jumper cable be connected
between X1D36 and X1D39. This connects the Tx pin to the Rx pin.

Deploying the firmware with Linux or macOS

Building the firmware Run the following commands in the xcore_sdk root folder to build the firmware:

cmake -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

make example_bare_metal_explorer_board

Running the firmware From the build folder run:

make run_example_bare_metal_explorer_board

Debugging the firmware with xgdb From the build folder run:

make debug_example_bare_metal_explorer_board

Deploying the firmware with Windows

Building the firmware Run the following commands in the xcore_sdk root folder to build the firmware:

cmake -G "NMake Makefiles" -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.

→˓cmake

cd build

nmake example_bare_metal_explorer_board

Running the firmware From the build folder run:

nmake run_example_bare_metal_explorer_board

Debugging the firmware with xgdb From the build folder run:

nmake debug_example_bare_metal_explorer_board

444

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

1.3.3 FreeRTOS

FreeRTOS Code Examples

Several FreeRTOS code examples are included to illustrate the fundamental tool flow and provide a starting
point for new applications. The examples do not seek to exhibit the full potential of the platform, and are
purposely basic to provide instruction. Select an example below for more information on what the example
demonstrates, how to build the example, and how to run it.

Audio Mux This example application can be configured for onboard mic, usb audio, or i2s input. Outputs
are usb audio and i2s. No DSP is performed on the audio, but the example contains an empty 2 tile pipeline
skeleton for a user to populate. In this example all USB audio endpoints are sychronous.

Preparing the host On Linux and macOS the user may need to update their udev rules for USB configura-
tions. Add a custom udev rule for USB device with VID 0x20B1 and PID 0x0021.

Deploying the firmware with Linux or macOS

Building the firmware Run the following commands in the repository root folder.

cmake -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

make example_audio_mux

Running the firmware Run the following commands in the build folder.

make run_example_audio_mux

Debugging the firmware with xgdb Run the following commands in the build folder.

make debug_example_audio_mux

Deploying the firmware with Windows

Building the firmware Run the following commands in the repository root folder.

cmake -G "NMake Makefiles" -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.

→˓cmake

cd build

nmake example_audio_mux

Running the firmware Run the following commands in the build folder.

nmake run_example_audio_mux

Debugging the firmware with xgdb Run the following commands in the build folder.

555

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

nmake debug_example_audio_mux

Device Control This example application demonstrates how to use device control over USB and I2C.

Deploying the firmware with Linux or macOS

Building the firmware Run the following commands in the xcore_sdk root folder to build the firmware:

cmake -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

make example_freertos_device_control

Running the firmware From the build folder run:

make run_example_freertos_device_control

Debugging the firmware with xgdb From the build folder run:

make debug_example_freertos_device_control

Building the host application With the firmware running in its own terminal, in a new window, run the fol-
lowing commands in the xcore_sdk root folder to build the host app:

cmake -B build_host

cd build_host

make example_freertos_device_control_host

Running the host application From the xcore_sdk/build_host/examples/freertos/device_control/host folder
run:

./example_freertos_device_control_host -g test_cmd

Deploying the firmware with Windows

Building the firmware Run the following commands in the xcore_sdk root folder to build the firmware:

cmake -G "NMake Makefiles" -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.

→˓cmake

cd build

nmake example_freertos_device_control

Running the firmware From the build folder run:

nmake run_example_freertos_device_control

666

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Debugging the firmware with xgdb From the build folder run:

nmake debug_example_freertos_device_control

Building the host application With the firmware running in its own terminal, in a new window, run the fol-
lowing commands in the xcore_sdk root folder to build the host app:

cmake -G "NMake Makefiles" -B build_host

cd build_host

nmake example_freertos_device_control_host

Running the host application From the xcore_sdk/build_host/examples/freertos/device_control/host folder
run:

example_freertos_device_control_host.exe -g test_cmd

Verifying a successful build After running the host application, you should see the following output in your
console:

Command test_cmd sent with resid 3

Bytes received are:

50462976

DFU This example application demonstrates a method to add DFU to a FreeRTOS application on XCORE.

Preparing the host This application supports any host host application that is capable of USB DFU Class
V1.1.

The application was verified using dfu-util.

Installation instructions for respective operating system can be found here

If on Linux the user may need to add the USB device to their udev rules. This example defaults to Vendor ID
0xCAFE with Product ID 0x4000.

If on Windows the user may need to use a tool such as Zadig to install USB drivers.

Deploying the firmware with Linux or macOS

Building the firmware Run the following commands in the xcore_sdk root folder to build the firmware:

cmake -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

make example_freertos_dfu_v1

make example_freertos_dfu_v2

Preparing the hardware It is recommended to begin from an erased flash. To erase flash run:

make erase_all_example_freertos_dfu_v1

777

https://dfu-util.sourceforge.net/

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

This target will use xflash to erase the flash of the device specified by the provided target XN file.

After building the firmware and erasing the flash, the factory image must be flashed. From the build folder
run:

make flash_app_example_freertos_dfu_v1

This target will use xflash to flash the application as a factory image with a boot partition size specified in
dfu.cmake.

The board may then be power cycled and will boot up the application.

make create_upgrade_img_example_freertos_dfu_v2

This target will use xflash to create an upgrade image for the specified target.

Running the firmware After flashed, the factory image will run by default. The user may opt to manually run
via xrun to see debug messages.

make run_example_freertos_dfu_v1

Debugging the firmware with xgdb From the build folder run:

make debug_example_freertos_dfu_v1

Deploying the firmware with Windows

Building the firmware Run the following commands in the xcore_sdk root folder to build the firmware:

cmake -G "NMake Makefiles" -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.

→˓cmake

cd build

nmake example_freertos_dfu_v1

nmake example_freertos_dfu_v2

Preparing the hardware It is recommended to begin from an erased flash. To erase flash run:

nmake erase_all_example_freertos_dfu_v1

This target will use xflash to erase the flash of the device specified by the provided target XN file.

After building the firmware and erasing the flash, the factory image must be flashed. From the build folder
run:

nmake flash_app_example_freertos_dfu_v1

This target will use xflash to flash the application as a factory image with a boot partition size specified in
dfu.cmake.

The board may then be power cycled and will boot up the application.

nmake create_upgrade_img_example_freertos_dfu_v2

This target will use xflash to create an upgrade image for the specified target.

888

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Running the firmware After flashed, the factory image will run by default. The user may opt to manually run
via xrun to see debug messages.

From the build folder run:

nmake run_example_freertos_dfu_v1

Debugging the firmware with xgdb From the build folder run:

nmake debug_example_freertos_dfu_v1

Upgrading the firmware via DFU Once the application is running, a USBDFU v1.1 tool can be used to perform
various actions. This example will demonstrate with dfu-util commands.

MacOS users may need to sudo the following commands.

To verify the device is running run:

dfu-util -l

The output of this command will very based on which image is running. For example_freertos_dfu_v1, the
output should contain:

Found DFU: [cafe:4000] ver=0100, devnum=53, cfg=1, intf=0, path="3-4.1", alt=2, name=

→˓"DFU dev DATAPARTITION v1", serial="123456"

Found DFU: [cafe:4000] ver=0100, devnum=53, cfg=1, intf=0, path="3-4.1", alt=1, name=

→˓"DFU dev UPGRADE v1", serial="123456"

Found DFU: [cafe:4000] ver=0100, devnum=53, cfg=1, intf=0, path="3-4.1", alt=0, name=

→˓"DFU dev FACTORY v1", serial="123456"

For example_freertos_dfu_v2, the output should contain:

Found DFU: [cafe:4000] ver=0100, devnum=53, cfg=1, intf=0, path="3-4.1", alt=2, name=

→˓"DFU dev DATAPARTITION v2", serial="123456"

Found DFU: [cafe:4000] ver=0100, devnum=53, cfg=1, intf=0, path="3-4.1", alt=1, name=

→˓"DFU dev UPGRADE v2", serial="123456"

Found DFU: [cafe:4000] ver=0100, devnum=53, cfg=1, intf=0, path="3-4.1", alt=0, name=

→˓"DFU dev FACTORY v2", serial="123456"

The factory image can be read back by running:

dfu-util -e -d 4000 -a 0 -U readback_factory_img.bin

From the build folder, the upgrade image can be written by running:

dfu-util -e -d 4000 -a 1 -D example_freertos_dfu_v2_upgrade.bin

After updating the upgrade image it may be necessary to unplug the USB device to initiate a host re-
enumeration.

The upgrade image can be read back by running:

dfu-util -e -d 4000 -a 1 -U readback_upgrade_img.bin

The data partition image can be read back by running:

dfu-util -e -d 4000 -a 2 -U readback_data_partition_img.bin

The data partition image can be written by running:

999

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

dfu-util -e -d 4000 -a 2 -D readback_data_partition_img.bin

If running the application with the run_example_freertos_dfu_v1 target, information is printed to verify behav-
ior.

Initially, the debug prints will contain:

DFU Image Info

Factory:

Addr:0x1C70

Size:103108

Version:0

Upgrade:

Addr:0x1B000

Size:0

Version:0

Data Partition

Addr:0x100000

First word at data partition start is: 0xFFFFFFFF

After writing an upgrade image the debug prints will contain:

DFU Image Info

Factory:

Addr:0x1C70

Size:103108

Version:0

Upgrade:

Addr:0x1B000

Size:103108

Version:0

Data Partition

Addr:0x100000

First word at data partition start is: 0xFFFFFFFF

The debug prints include the value of the first word at the start of the data partition. Writing a text file con-
taining “XMOS” will result in:

DFU Image Info

Factory:

Addr:0x1C70

Size:103108

Version:0

Upgrade:

Addr:0x1B000

Size:103108

Version:0

Data Partition

Addr:0x100000

First word at data partition start is: 0x534F4D58

Explorer Board This example application demonstrates various capabilities of the Explorer board using
FreeRTOS. The application uses I2C, I2S, SPI, UART, flash, mic array, and GPIO devices.

The FreeRTOS application creates a single stage audio pipeline which applies a variable gain. The output
audio is sent to the DAC and can be listened to via the 3.5mm audio jack. The audio gain can be adjusted via
GPIO, where button A is volume up and button B is volume down.

101010

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Preparing the hardware The UART loopback section of the demo requires that a jumper cable be connected
between X1D36 and X1D39. This connects the Tx pin to the Rx pin.

Deploying the firmware with Linux or macOS

Building the firmware Run the following commands in the xcore_sdk root folder to build the firmware:

cmake -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

make example_freertos_explorer_board

Note: The host applications are required to create the filesystem. See the XCORE-IOT installation instructions
for more information.

From the build folder, create the filesystem and flash the device with the following command:

make flash_app_example_freertos_explorer_board

Running the firmware From the build folder run:

make run_example_freertos_explorer_board

Debugging the firmware with xgdb From the build folder run:

make debug_example_freertos_explorer_board

Deploying the firmware with Windows

Building the firmware Run the following commands in the xcore_sdk root folder to build the firmware:

cmake -G "NMake Makefiles" -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.

→˓cmake

cd build

nmake example_freertos_explorer_board

Note: The host applications are required to create the filesystem. See the XCORE-IOT installation instructions
for more information.

From the build folder, create the filesystem and flash the device with the following command:

nmake flash_app_example_freertos_explorer_board

Running the firmware From the build folder run:

nmake run_example_freertos_explorer_board

111111

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Debugging the firmware with xgdb From the build folder run:

nmake debug_example_freertos_explorer_board

IoT This example demonstrates how to control GPIO using MQTT.

Networking configuration In this example, we demonstrate using the Eclipse Mosquitto MQTT broker. En-
sure that you have installed Mosquitto by following the instructions here: https://mosquitto.org/download/.

Note: You can modify the example code to connect to a different MQTT broker. When doing so, you will
also need to modify the filesystem setup scripts before running them. This is to ensure that the correct
client certificate, private key, and CA certificate are flashed. See filesystem_support/create_fs.sh and
the instructions for setting up the filesystem below.

Next, configure the example software to connect to the proper MQTT broker. If you are running the MQTT
broker on your local PC, you will need to know that PC’s IP address. This can be determined a number of
ways including the ifconfig and ipconfig commands in Linux/macoS and Windows operating systems,
respectively.

Lastly, in appconf.h, set appconfMQTT_HOSTNAME to your MQTT broker IP address or URL:

define appconfMQTT_HOSTNAME "your endpoint here"

Deploying the firmware with Linux or macOS

Building the firmware Run the following commands in the repo’s root folder:

cmake -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

make example_freertos_iot

Setting up the hardware
Note: The host applications are required to create the filesystem. See the installation instructions for more
information.

Before the demo can be run, the filesystem must be configured and flashed.

make flash_app_example_freertos_iot

The script will create TLS credentials and prompt you for WiFi credentials:

Enter the WiFi network SSID:

Enter the WiFi network password:

Enter the security (0=open, 1=WEP, 2=WPA):

Add another WiFi network? y/[n]:

Enter the MQTT server's IP/hostname:

Note: The MQTT server’s IP/hostname is what is entered into the “Common Name” (CN) of the certification
generation process. If a hostname was specified for the MQTT server, a DNS server must be available that is
configured to resolve that name.

121212

https://mosquitto.org/download/

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Note: Once these files have been created theywill be automatically be used. If theWiFi profile orMQTT certifi-
cates/keys need to be changed, delete the corresponding components (i.e. networks.dat or files contained
in mqtt_broker_certs).

Running the firmware Run the following commands in the repo’s build folder:

make run_example_freertos_iot

Deploying the firmwarewithWindows In order to generate the certificates/keys, OpenSSLmust be installed.
There are various options for obtaining aWindows version of OpenSSL that include MinGW and Git installations
as well as standalone installations.

Prior to running the commands below, ensure the host system has been setup to permit PowerShell exe-
cution. By default, Windows systems are set to the Restricted execution policy, for more information see
about_Execution_Policies. Setting the policy to RemotedSigned should be sufficient for proper execution; this
can be set from an Administrator PowerShell instance via the command:

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned

Note: These scripts are not digitally signed, so depending on how they were acquired/downloaded, the
policy set above may still prevent execution. These files may be unblocked via PowerShell using the cmdlet
Unblock-File.

Building the firmware Run the following commands in the repo’s root folder:

cmake -G "NMake Makefiles" -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.

→˓cmake

cd build

nmake example_freertos_iot

Setting up the hardware
Note: The host applications are required to create the filesystem. See the installation instructions for more
information.

Before the demo can be run, the filesystem must be configured and flashed.

nmake flash_app_example_freertos_iot

The script will create TLS credentials and prompt you for WiFi credentials:

Enter the WiFi network SSID:

Enter the WiFi network password:

Enter the security (0=open, 1=WEP, 2=WPA):

Add another WiFi network? y/[n]:

Enter the MQTT server's IP/hostname:

Note: The MQTT server’s IP/hostname is what is entered into the “Common Name” (CN) of the certification
generation process. If a hostname was specified for the MQTT server, a DNS server must be available that is
configured to resolve that name.

131313

https://go.microsoft.com/fwlink/?LinkID=135170

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Note: Once these files have been created theywill be automatically be used. If theWiFi profile orMQTT certifi-
cates/keys need to be changed, delete the corresponding components (i.e. networks.dat or files contained
in mqtt_broker_certs).

Running the firmware Run the following commands in the repo’s build folder:

nmake run_example_freertos_iot

Testing MQTT Messages

Running the broker From the root folder of the iot example run:

cd mosquitto

mosquitto -v -c mosquitto.conf

Note: You may need to modify permissions of the cryptocredentials for mosquitto to use them.

Sending messages To turn LED 0 on, from the IoT example’s filesystem_support subdirectory, run the fol-
lowing command (replacing <MQTT_SERVER> with the value used during certificate generation):

mosquitto_pub -h <MQTT_SERVER> --cafile mqtt_broker_certs/ca.crt --cert mqtt_broker_

→˓certs/client.crt --key mqtt_broker_certs/client.key -d -t "explorer/ledctrl" -m '{"LED

→˓": "0", "status": "on"}'

Supported values for “LED” are [“0”, “1”, “2”, “3”], supported values for “status” are [“on”, “off”].

L2 Cache Example The L2 cache example demonstrates how to use the software defined L2 cache.

Deploying the firmware with Linux or macOS

Building the firmware Run the following commands in the xcore_sdk root folder to build the firmware:

cmake -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

make example_freertos_l2_cache

Setting up the hardware Before running the firmware, the swmem must be flashed.

make flash_example_freertos_l2_cache_swmem

Running the firmware Running with hardware.

make run_example_freertos_l2_cache

Deploying the firmware with Windows

141414

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Building the firmware Run the following commands in the xcore_sdk root folder to build the firmware:

cmake -G "NMake Makefiles" -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.

→˓cmake

cd build

nmake example_freertos_l2_cache

Setting up the hardware Before running the firmware, the swmem must be flashed.

nmake flash_example_freertos_l2_cache_swmem

Running the firmware Running with hardware.

nmake run_example_freertos_l2_cache

Tracealyzer Example This is a simplemulti-tile FreeRTOS example application illustrating how to use FreeR-
TOS’ trace functionality with Percepio’s Tracealyzer. The application illustrates a timeout issue in an example
state machine which can be visualized/diagnosed with Tracealyzer. In the absence of Tracealyzer, it is pos-
sible to define another trace implementation, see FreeRTOS Trace Macros documentation for more details.
For such instances, an ASCII trace implementation is available as a good starting point. This can be enabled
by changing the trace mode define in the cmake file to: USE_TRACE_MODE=TRACE_MODE_XSCOPE_ASCII.

The application starts the FreeRTOS scheduler running on both tile[0] and tile[1]. tile[0] has 11 tasks,
whereas tile[1] has only 1 task runing. Both tile[0] and tile[1] share the same logic for a “hello” task
which prints amessage every second. The other 10 tile[0] tasks serve to demonstrate an issue that can be
introduced on command by the user by interacting with the buttons on the xCORE.AI Explorer board. Pressing
button 1 will increase a counter up to a maximum value of 8 (while button 0 decreases this counter down to a
minimum value of 0). This value affects howmany subprocess tasks sequentially interrupt themain process
task. Themain process taskmonitors timing while in its RUN state. If it detects an interruption greater than or
equal to a configured threshold, the process will momentarily transition to a timeout state. Pressing Button
1 four or more consecutive times should result in this timeout event. Using tools such as Tracealyzer reduces
the effort involved in diagnosing multi-core/task applications.

Limitations and Known Issues The following are the currently known issues/limitations for this example:

• Tracing is performed on a single tile at a time. In this example, Tracealyzer is setup on tile[0].

• Tracealyzer’s snapshot mode is not supported.

• It may be necessary to disable certain trace events (see trcConfig.h), limit user events (i.e. via xTra-
cePrint), or disable additional xSCOPE probes to reduce the bandwidth requirements over xSCOPE. In
some cases the application may exit prematurely or drop trace data when there are exceptionally high
number of trace events being recorded. This behavior may be attributed to the host PC’s USB controller
or general performance factors regarding the offloading of trace data from the XTAG. In such cases,
xscope2psf will log a “missing events” warning.

Deploying the firmware with Linux or macOS

Building the host application Run the following commands in the root folder to build the host application
using your native x86 Toolchain:

Note: Permissions may be required to install the host applications.

151515

https://www.freertos.org/rtos-trace-macros.html

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

cmake -B build_host

cd build_host

make xscope2psf

make install

The host application, xscope2psf, will be installed at /opt/xmos/bin/, and may be moved if desired.

Building the firmware Run the following commands in the xcore_sdk root folder to build the firmware:

cmake -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

make example_freertos_tracealyzer

Running the firmware From the build folder run:

make run_xscope_to_file_example_freertos_tracealyzer

Deploying the firmware with Windows

Building the host application Run the following commands in the root folder to build the host application
using your native x86 Toolchain:

Note: Permissions may be required to install the host applications.

cmake -G "NMake Makefiles" -B build_host

cd build_host

nmake xscope2psf

nmake install

The host application, xscope2psf.exe, will be install at %USERPROFILE%\.xmos\bin\\, and may be moved if
desired.

The instructions that follow will assume that the path of this binary has been added to your PATH variable or
the binary has been copied to the current directory.

Building the firmware Run the following commands in the xcore_sdk root folder to build the firmware:

cmake -G "NMake Makefiles" -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.

→˓cmake

cd build

nmake example_freertos_tracealyzer

Running the firmware

nmake run_xscope_to_file_example_freertos_tracealyzer

Verifying a successful build If the run command is successful, the console should have printed a subset
of messages similar to the following:

161616

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Hello task running from tile 1 on core 4

Entered subprocess task (7) on core 3

Entered subprocess task (6) on core 4

Entered subprocess task (5) on core 5

Entered subprocess task (4) on core 0

Entered subprocess task (3) on core 2

Entered subprocess task (2) on core 3

Entered subprocess task (1) on core 4

Entered subprocess task (0) on core 5

Entered main process on core 0

Hello task running from tile 0 on core 2

Entered gpio task on core 1

Hello from tile 0

Hello from tile 1

Hello from tile 0

Hello from tile 1

The LED behavior should be as follows:

• LED 0 should turn on while Button 0 is pressed.

• LED 1 should turn on while Button 0 is pressed.

• LED 2 should toggle when the main process enters the timeout state.

• LED 3 should toggle every 500ms.

There should also be two new files generated:

• freertos_trace.vcd

• freertos_trace.gtkw

Generating a Tracealyzer PSF File With the previously generated freertos_trace.vcd file, from the build
directory run:

xscope2psf -v -i freertos_trace.vcd -o freertos_trace.psf

The output from this command should look similar to what is shown below:

Opening input file ...

Opening output file ...

Processing file (Probe: 0) ...

[PSF Header]

- Format Version: 0x000A

- Options: 0x00000000

- Number of Cores: 6

- Platform: FreeRTOS

- Platform ID: 0x1AA1

- Platform Config: 1.0 Patch 0

- ISR Tail-Chaining Threshold: 0

[PSF Timestamp]

- Type: 1

- Frequency: 100000000

- Period: 100000

- Wraparounds: 0

- OS Tick Hz: 1000

- Latest Timestamp: 0

- OS Tick Count: 0

End of file reached.

(continues on next page)

171717

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

(continued from previous page)

Read 282879 lines.

Processed 70714 events.

Closing files ...

Done.

Successful execution of this command will produce the Percepio Streaming Format (PSF) file that can be
opened in Tracealyzer for inspection.

Live Trace Visualization (streaming) The previous steps illustrated a way to save a VCD trace to disk and
post process it. Alternatively, this workflow can be changed to visualize the trace live. Two methods are
currently available for this which will be discussed in this section.

Before continuing, Tracealyzer must be configured to use the ‘File System` as the PSF streaming option. This
can be configured via the following steps:

1. From the menubar in Tracealyzer, click File –> Settings

2. In the Settings window’s left-hand menu tree, click Project Settings –> PSF Streaming Settings.

3. Under Target Connection select File System.

4. This setting will provide an option to specify a PSF file. Specify the freertos_trace.psf file that was
previously generated.

5. Click OK.

6. From the menubar, click Trace –> Open Live Stream Tool.

7. This will open a new Live Stream window, in this window click Connect.

With the xrun/xgdb example_freertos_tracealyzer.xe and xscope2psf applications still running, it should
now be possible to click Start Session and see the trace data live. Alternatively, the Start and Stop record-
ing button in the main window’s left hand menu bar may be utilized for control.

Note: The Live Stream window’s reported Event Rate and Data Rate is useful when optimizing xscope
bandwidth utilization and to determine if it is necessary to limit the frequency or types of events being
recorded. A Data Rate versus time graph can be shown in this window via the menubar’s View –> Data

Rate option.

Using –xscope-file From the build folder run:

1. Start the application:

xrun --xscope-file freertos_trace example_freertos_tracealyzer.xe

2. Start the PSF file generation process:

xscope2psf -v -s -i freertos_trace.vcd -o freertos_trace.psf

As the VCD file is being written to (via xscope), xscope2psf will produce status updates on the number of
lines processed and how many events have been written to the PSF file. The console output will look similar
to the following:

Opening input file ...

Opening output file ...

Processing file (Probe: 0) ...

[PSF Header]

- Format Version: 0x000A

(continues on next page)

181818

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

(continued from previous page)

- Options: 0x00000000

- Number of Cores: 6

- Platform: FreeRTOS

- Platform ID: 0x1AA1

- Platform Config: 1.0 Patch 0

- ISR Tail-Chaining Threshold: 0

[PSF Timestamp]

- Type: 1

- Frequency: 100000000

- Period: 100000

- Wraparounds: 0

- OS Tick Hz: 1000

- Latest Timestamp: 0

- OS Tick Count: 0

[STREAM STATUS]

- Read 33027 lines

- Processed 8251 events

[STREAM STATUS]

- Read 41359 lines

- Processed 10334 events

[STREAM STATUS]

- Read 47431 lines

- Processed 11852 events

[STREAM STATUS]

- Read 56771 lines

- Processed 14187 events

Using –xscope-port

1. Start the application:

xrun --xscope-port localhost:10234 example_freertos_tracealyzer.xe

2. Start the PSF file generation process:

xscope2psf -v -I localhost:10234 -o freertos_trace.psf

As record data is sent to xscope2psf it will produce status updates on the number of events written to the
PSF file. The console output will look similar to the following:

Configuring xscope callbacks ...

Opening output file ...

Connecting to xscope (Probe: 0, Host: localhost, Port: 10234) ...

[REGISTERED] Probe ID: 0, Name: 'freertos_trace'

[PSF Header]

- Format Version: 0x000A

- Options: 0x00000000

- Number of Cores: 6

- Platform: FreeRTOS

- Platform ID: 0x1AA1

- Platform Config: 1.0 Patch 0

- ISR Tail-Chaining Threshold: 0

[PSF Timestamp]

- Type: 1

- Frequency: 100000000

- Period: 100000

(continues on next page)

191919

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

(continued from previous page)

- Wraparounds: 0

- OS Tick Hz: 1000

- Latest Timestamp: 0

- OS Tick Count: 0

[STREAM STATUS]

- Processed 162 events

[STREAM STATUS]

- Processed 1585 events

[STREAM STATUS]

- Processed 3902 events

[STREAM STATUS]

- Processed 5288 events

In this case the target application’s printf output will not be present in either xrun/xgdb or xscope2psf (while
xscope2psf is connected). This output can be emitted on xscope2psf by providing the --print-endpoint

option. It is recommended to use the -p and -v options separately as the current implementation of this
utility does not provide anymeasures to ensure the target’s printf log entries are not interrupted by the regular
stream status reporting.

XLINK This example application demonstrates the AN01024 application note in FreeRTOS on xcore.ai.

Note: This example application required XTC Tools version 15.2.1 or newer.

Preparing the hardware This example requires 2 XCORE-AI-EXPLORER boards, and a user provided device
to act as an I2C slave.

To setup the board for testing, the following connections must be made:

Table 1.1: XCORE-AI-EXPLORER to XCORE-AI-EXPLORER Connec-
tions 2 Wire

BOARD 0 BOARD 1

GND GND
X1D65 X1D66
X1D66 X1D65
X1D64 X1D67
X1D67 X1D64
X1D63 X1D68
X1D68 X1D63
X1D62 X1D69
X1D69 X1D62
X1D61 X1D70
X1D70 X1D61

202020

https://www.xmos.ai/file/an01024-xconnect-dynamic-configuration-demo-sw/

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Table 1.2: XCORE-AI-EXPLORER to XCORE-AI-EXPLORER Connec-
tions 5 Wire Additions

BOARD 0 BOARD 1

X1D63 X1D68
X1D68 X1D63
X1D62 X1D69
X1D69 X1D62
X1D61 X1D70
X1D70 X1D61

Table 1.3: XCORE-AI-EXPLORER Board 0 to Host Connections

BOARD 0 Host

GND Host GND
SCL Host SCL
SDA Host SDA

Building the firmware Run the following commands in the xcore_sdk root folder to build the firmware:

On Linux and Mac:

cmake -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

make example_freertos_xlink_both

On Windows:

cmake -G "NMake Makefiles" -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.

→˓cmake

cd build

nmake example_freertos_xlink_both

Running the firmware This application requires example_freertos_xlink_0.xe to be run on BOARD 0, IE,
the board with a host I2C connection.

Use the following command to determine available device:

xrun --list-devices

From the build folder run:

xrun --id 0 example_freertos_xlink_0.xe

In another console, from the build folder run:

xrun --id 1 example_freertos_xlink_1.xe

BOARD 0 will send out status messages and communication details to slave address 0xC.

The data will contain an ID, followed by a 4 byte payload. The payload is an int32, sent least significant byte
first.

Payloads match to ID per the table below:

212121

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Table 1.4: XCORE-AI-EXPLORER to XCORE-AI-EXPLORER Connec-
tions 2 Wire

ID Payload

0x01 RX state
0x82 received data bytes in the last second
0x83 received control tokens in the last second
0x84 timeouts in the last second

Note: Data rates are highly dependant on the electrical characteristics of the physical connection. Refer to
xCONNECT Architecture for more information.

XSCOPE File I/O This FreeRTOS example application reads aWAV file from the host over an XSCOPE server,
propagates the data through multiple threads across both tiles, and then writes the output to a WAV file on
the host PC, also over an XSCOPE server.

The 3-stage pipeline in the example covers both XCORE tiles. Stage #1 and Stage #2 run on tile[1], while Stage
#3 runs on tile[0].

Stages #1 and #2 are implemented in the functions stage_1 and stage_2which can be found in the file src\
data_pipeline\src\data_pipeline_tile1.c. In this example, both stages apply a fixed gain to the PCM
audio samples. In stage_1, preemption is disabled with the rtos_interrupt_mask_all() function to insure
the FreeRTOS kernel does not interrupt the task and perform a context switch during a performance critical
code section. stage_2 is a typical FreeRTOS task which can be preempted. However, this example is rather
simple so, instead of leaving a context switch up to chance, the stage_2 function periodically yields to the
FreeRTOS kernel - emulating a context switch.

222222

https://www.xmos.ai/file/xconnect-architecture/

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Both the stage_1 and stage_2 functions have been instrumented with a stopwatch-like timer to measure the
time spent applying the fixed gain.

Stage #3 is implemented in the function stage_3 which can be found in the file src\data_pipeline\src\

data_pipeline_tile0.c. In this example, Stage 3 does nothing. It is provided to demonstrate a multi-tile
pipeline.

The example application input file name is hard-coded to in.wav and the output file file name is hard-coded
to out.wav. Running the application can be wrapped in a simple script if alternative file names are desired.
Simply copy your file to in.wav, run the applications, then copy out.wav to you preferred output file name.

The example input file provided is 16 KHz, however, 48 KHz will also work. The input file sample rate must be
32 bits per sample.

This example is already configured to link with the XMOS vectorized math library. Users wishing to take
advantage of the vector processing unit (VPU) on the XMOSXS3 architecture can use this example application
as a starting point.

Deploying the firmware with Linux or macOS

Building the host application Run the following commands in the root folder to build the host application
using your native x86 Toolchain:

Note: Permissions may be required to install the host applications.

cmake -B build_host

cd build_host

make xscope_host_endpoint

make install

The host application, xscope_host_endpoint, will be installed at /opt/xmos/bin/, and may be moved if
desired. You may wish to add this directory to your PATH variable.

Before running the host application, you may need to add the location of xscope_endpoint.so to your
LD_LIBRARY_PATH environment variable. This environment variable will be set if you run the host applica-
tion in the XTC Tools command-line environment. For more information see Configuring the command-line
environment.

Building the firmware Run the following commands in the root folder to build the embedded application
using the XTC Toolchain:

cmake -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.cmake

cd build

make example_freertos_xscope_fileio

Running the firmware From the build folder run:

make run_example_freertos_xscope_fileio

In a second console, run the host xscope server:

./xscope_host_endpoint 12345

Deploying the firmware with Windows

232323

https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/tools-guide/install-configure/getting-started.html
https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/tools-guide/install-configure/getting-started.html

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Building the host application Run the following commands in the root folder to build the host application
using your native x86 Toolchain:

Note: Permissions may be required to install the host applications.

Before building the host application, you will need to add the path to the XTC Tools to your environment.

set "XMOS_TOOL_PATH=<path-to-xtc-tools>"

Then build the host application:

cmake -G "NMake Makefiles" -B build_host

cd build_host

nmake xscope_host_endpoint

nmake install

The host application, xscope_host_endpoint.exe, will be install at <USERPROFILE>\.xmos\bin, and may be
moved if desired. You may wish to add this directory to your PATH variable.

Before running the host application, youmay need to add the location of xscope_endpoint.dll to your PATH.
This environment variable will be set if you run the host application in the XTC Tools command-line environ-
ment. For more information see Configuring the command-line environment.

Building the firmware Run the following commands in the root folder to build the embedded application
using the XTC Toolchain:

set PATH=%PATH%;<path-to-nmake>

To build the embedded application:

cmake -G "NMake Makefiles" -B build -DCMAKE_TOOLCHAIN_FILE=xmos_cmake_toolchain/xs3a.

→˓cmake

cd build

nmake example_freertos_xscope_fileio

Running the firmware From the build folder run:

nmake run_example_freertos_xscope_fileio

In a second console, run the host xscope server:

xscope_host_endpoint.exe 12345

FreeRTOS FAQs

1. What is the memory overhead of the FreeRTOS kernel?

The FreeRTOS kernel requires approximately 9kB of RAM.

2. How do I determine the number of words to allocate for use as a task’s stack?

Since tasks run within FreeRTOS, the RTOS stack requirement must be known at compile
time. In FreeRTOS applications on most other microcontrollers, the general practice is to cre-
ate a taskwith a large amount of stack, use the FreeRTOS stack debug functions to determine
the worst case runtime usage of stack, and then adjust the stack memory value accordingly.
The problem with this method is that the stack of any given thread varies greatly based on
the functions that are called within, and thus a code or compiler optimization change result

242424

https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/tools-guide/install-configure/getting-started.html

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

in the optimal task stack usage to have to be redetermined. This issue results in many FreeR-
TOS applications being written in such a way that wastesmemory, by providing task with way
more stack than they should need. Additionally, stack overflow bugs can remain hidden for a
long time and even when bugs do manifest, the source can be difficult to pinpoint.

The XTCTools address this issue by creating a symbol that represents themaximumstack re-
quirement of any function at compile time. By using theRTOS_THREAD_STACK_SIZE()macro,
for the stack words argument for creating a FreeRTOS task, it is guaranteed that the optimal
stack requirement is used, provided that the function does not call function pointers nor can
infinitely recurse.

xTaskCreate((TaskFunction_t) example_task,

"example_task",

RTOS_THREAD_STACK_SIZE(example_task),

NULL,

EXAMPLE_TASK_PRIORITY,

NULL);

If function pointers are used within a thread, then the application programmer must annotate
the code with the appropriate function pointer group attribute. For recursive functions, the
only option is to specify the stack manually. See Appendix A - Guiding Stack Size Calculation
in the XTC Tools documentation for more information.

3. Can I use xcore resources like channels, timers and hw_locks?

You are free to use channels, ports, timers, etc. . . in your FreeRTOS applications. However,
some considerations need to be made. The RTOS kernel knows about RTOS primitives. For
example, if RTOS thread A attempts to take a semaphore, the kernel is free to schedule other
tasks in thread A’s place while thread A is waiting for some other task to give the semaphore.
The RTOS kernel does not know anything about xcore resources. For example, if RTOS thread
A attempts to recv on a channel, the kernel is not free to schedule other tasks in its placewhile
thread A is waiting for some other task to send to the other end of the channel. A developer
should be aware that blocking calls on xcore resources will block a FreeRTOS thread. This
may be OK as long as it is carefully considered in the application design. There are a variety
of methods to handle the decoupling of xcore and RTOS resources. These can be best seen
in the various RTOS drivers, which wrap the realtime IO hardware imitation layer.

FreeRTOS Common Issues

Task Stack Space One easy to make mistake in FreeRTOS, is not providing enough stack space for a cre-
ated task. A vast amount of questions exist online around how to select the FreeRTOS stack size, which the
most common answer being to create the task with more than enough stack, force the worst case stack
condition (not always trivial), and then use the FreeRTOS debug function uxTaskGetStackHighWaterMark() to
determine how much you can decrease the stack. This method leaves plenty of room for error and must be
done during runtime, and therefore on a build by build basis. The static analysis tools provided by The XTC
Tools greatly simplify this process since they calculate the exact stack required for a given function call. The
macro RTOS_THREAD_STACK_SIZE will return the nstackwords symbol for a given thread plus the additional
space required for the kernel ISRs. Using this macro for every task create will ensure that there is appropriate
stack space for each thread, and thus no stack overflow.

xTaskCreate((TaskFunction_t) task_foo,

"foo",

RTOS_THREAD_STACK_SIZE(task_foo),

NULL,

configMAX_PRIORITIES-1,

NULL);

252525

https://www.xmos.ai/documentation/XM-014363-PC-LATEST/html/prog-guide/quick-start/c-programming-guide/index.html

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

1.4 Frequently Asked Questions

1.4.1 Build Issues

Submodule updates

XCORE-IOT uses submodules. If you have cloned the repository and later performan update, it will sometimes
also be necessary to update the submodules. To update all submodules, run the following command

git submodule update --init --recursive

fatfs_mkimage: not found

This issue occurswhen the fatfs_mkimage utility cannot be found. Themost common cause for these issues
are an incomplete installation of the XCORE-IOT.

Ensure that the host applications setup has been completed. Verify that the fatfs_mkimage binary is in-
stalled to a location on PATH, or that the default application installation folder is added to PATH. See the
sdk-installation guide for more information on installing the host applications.

xcc2clang.exe: error: no such file or directory

Those strange characters at the beginning of the path are known as a byte-order mark (BOM). CMake adds
them to the beginning of the response files it generates during the configure step. Why does it add them?
Because the MSVC compiler toolchain requires them. However, some compiler toolchains, like gcc and xcc,
do not ignore the BOM. Why did CMake think the compiler toolchain was MSVC and not the XTC toolchain?
Because of a bug in which certain versions of CMake and certain versions of Visual Studio do not play nice
together. The good news is that this appears to have been addressed in CMake version 3.22.3.

Update to CMake version 3.22.2 or newer.

1.4.2 FreeRTOS

See the FreeRTOS FAQs or FreeRTOS Common Issues

1.5 Copyright & Disclaimer

Copyright © 2023, XMOS Ltd

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. XMOS Ltd makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United King-
dom and other countries and may not be used without written permission. Company and product names
mentioned in this document are the trademarks or registered trademarks of their respective owners.

262626

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

1.6 Licenses

1.6.1 XMOS

All original source code is licensed under the XMOS License.

1.6.2 Third-Party

Additional third party code is included under the following copyrights and licenses:

Table 1.5: Third Party Module Copyrights & Licenses

Module Copyright & License

Argtable3 Copyright (C) 1998-2001,2003-2011,2013 Stewart Heitmann, licensed
under LICENSE

FatFS Copyright (C) 2017 ChaN, licensed under a BSD-style license
FreeRTOS Copyright (c) 2017 Amazon.com, Inc., licensed under the MIT License
HTTP Parser Copyright (c) Joyent, Inc. and other Node contributors, licensed under

the MIT license
JSMN JSON Parser Copyright (c) 2010 Serge A. Zaitsev, licensed under the MIT license
KISS FFT Copyright (c) 2003-2010 Mark Borgerding, licensed under the SPDX-

License-Identifier BSD-3-Clause
Mbed TLS library Copyright (c) 2006-2018 ARM Limited, licensed under the Apache Li-

cense 2.0
Paho MQTT C/C++ client for Em-
bedded platforms

Copyright (c) 2013 Eclipse Foundation, licensed under the Eclipse Pub-
lic License and Eclipse Distribution License

TensorFlow Copyright (c) 2020 The TensorFlow Authors, licensed under the
Apache License

TinyUSB Copyright (c) 2018 hathach (tinyusb.org), licensed under the MIT li-
cense

272727

https://github.com/xmos/xcore_sdk/blob/develop/LICENSE.rst
https://github.com/xmos/fwk_rtos/tree/develop/tools/fatfs_mkimage/argtable
https://github.com/xmos/fwk_rtos/blob/cbb80e17373ea76ca474921012ca684d092d1059/modules/sw_services/fatfs/host/argtable/LICENSE
http://elm-chan.org/fsw/ff/00index_e.html
https://github.com/xmos/fwk_rtos/blob/develop/modules/sw_services/fatfs/thirdparty/LICENSE.txt
https://freertos.org/
https://github.com/xmos/FreeRTOS/blob/release/xcore-smp/LICENSE.md
https://github.com/nodejs/http-parser/blob/d9275da4650fd1133ddc96480df32a9efe4b059b/LICENSE-MIT
https://github.com/zserge/jsmn
https://github.com/zserge/jsmn/blob/master/LICENSE
https://github.com/berndporr/kiss-fft
https://github.com/mborgerding/kissfft/blob/master/LICENSES/BSD-3-Clause
https://github.com/mborgerding/kissfft/blob/master/LICENSES/BSD-3-Clause
https://www.trustedfirmware.org/projects/mbed-tls/
https://github.com/ARMmbed/mbedtls/blob/2a1d9332d55d1270084232e42df08fdb08129f1b/LICENSE
https://github.com/ARMmbed/mbedtls/blob/2a1d9332d55d1270084232e42df08fdb08129f1b/LICENSE
https://github.com/eclipse/paho.mqtt.embedded-c
https://github.com/eclipse/paho.mqtt.embedded-c
https://github.com/eclipse/paho.mqtt.embedded-c/blob/29ab2aa29c5e47794284376d7f8386cfd54c3eed/about.html
https://github.com/eclipse/paho.mqtt.embedded-c/blob/29ab2aa29c5e47794284376d7f8386cfd54c3eed/about.html
https://www.tensorflow.org/
http://www.apache.org/licenses/LICENSE-2.0
https://docs.tinyusb.org/en/latest/index.html
https://github.com/hathach/tinyusb/blob/1bba2c0fc3bce05e9fbe4ff23dda30283d08574d/LICENSE
https://github.com/hathach/tinyusb/blob/1bba2c0fc3bce05e9fbe4ff23dda30283d08574d/LICENSE

XCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming GuideXCORE Software Development Kit - Programming Guide

Copyright © 2023, All Rights Reserved.

XMOS Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and
is providing it to you “AS IS” with no warranty of any kind, express or implied and shall have no liability in
relation to its use. XMOS Ltd makes no representation that the Information, or any particular implementation
thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any
such claims.

XMOS, XCORE, VocalFusion and the XMOS logo are registered trademarks of XMOS Ltd. in the United King-
dom and other countries and may not be used without written permission. Company and product names
mentioned in this document are the trademarks or registered trademarks of their respective owners.

282828

	Introduction
	Installation
	Prerequisites
	Windows
	libusb

	macOS

	Install Steps
	Step 1. Cloning the repository
	Step 2. Install Host Applications
	Linux and MacOS
	Windows

	Optional Step 3. Install Python and Python Requirements
	Build & Run Your First Application

	Getting Started Tutorials
	Advanced Tutorials
	Platform
	Architecture & Hardware Guide
	Programming Guide

	Bare-Metal
	Bare-metal Code Examples
	Explorer Board
	Preparing the hardware
	Deploying the firmware with Linux or macOS
	Building the firmware
	Running the firmware
	Debugging the firmware with xgdb
	Deploying the firmware with Windows
	Building the firmware
	Running the firmware
	Debugging the firmware with xgdb

	FreeRTOS
	FreeRTOS Code Examples
	Audio Mux
	Preparing the host
	Deploying the firmware with Linux or macOS
	Building the firmware
	Running the firmware
	Debugging the firmware with xgdb
	Deploying the firmware with Windows
	Building the firmware
	Running the firmware
	Debugging the firmware with xgdb

	Device Control
	Deploying the firmware with Linux or macOS
	Building the firmware
	Running the firmware
	Debugging the firmware with xgdb
	Building the host application
	Running the host application
	Deploying the firmware with Windows
	Building the firmware
	Running the firmware
	Debugging the firmware with xgdb
	Building the host application
	Running the host application
	Verifying a successful build

	DFU
	Preparing the host
	Deploying the firmware with Linux or macOS
	Building the firmware
	Preparing the hardware
	Running the firmware
	Debugging the firmware with xgdb
	Deploying the firmware with Windows
	Building the firmware
	Preparing the hardware
	Running the firmware
	Debugging the firmware with xgdb
	Upgrading the firmware via DFU

	Explorer Board
	Preparing the hardware
	Deploying the firmware with Linux or macOS
	Building the firmware
	Running the firmware
	Debugging the firmware with xgdb
	Deploying the firmware with Windows
	Building the firmware
	Running the firmware
	Debugging the firmware with xgdb

	IoT
	Networking configuration
	Deploying the firmware with Linux or macOS

	Building the firmware
	Setting up the hardware
	Running the firmware
	Deploying the firmware with Windows

	Building the firmware
	Setting up the hardware
	Running the firmware
	Testing MQTT Messages
	Running the broker
	Sending messages

	L2 Cache Example
	Deploying the firmware with Linux or macOS
	Building the firmware
	Setting up the hardware
	Running the firmware
	Deploying the firmware with Windows
	Building the firmware
	Setting up the hardware
	Running the firmware

	Tracealyzer Example
	Limitations and Known Issues
	Deploying the firmware with Linux or macOS
	Building the host application
	Building the firmware
	Running the firmware
	Deploying the firmware with Windows
	Building the host application
	Building the firmware
	Running the firmware
	Verifying a successful build
	Generating a Tracealyzer PSF File
	Live Trace Visualization (streaming)
	Using –xscope-file
	Using –xscope-port

	XLINK
	Preparing the hardware
	Building the firmware
	Running the firmware

	XSCOPE File I/O
	Deploying the firmware with Linux or macOS
	Building the host application
	Building the firmware
	Running the firmware
	Deploying the firmware with Windows
	Building the host application
	Building the firmware
	Running the firmware

	FreeRTOS FAQs
	FreeRTOS Common Issues
	Task Stack Space

	Frequently Asked Questions
	Build Issues
	Submodule updates
	fatfs_mkimage: not found
	xcc2clang.exe: error: no such file or directory

	FreeRTOS

	Copyright & Disclaimer
	Licenses
	XMOS
	Third-Party

